
entropy

Article

Bayesian Computational Methods for Sampling from
the Posterior Distribution of a Bivariate Survival
Model, Based on AMH Copula in the Presence of
Right-Censored Data

Erlandson Ferreira Saraiva 1, Adriano Kamimura Suzuki 2,* and Luis Aparecido Milan 3

1 Instituto de Matemática, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
erlandson.saraiva@ufms.br

2 Departamento de Matemática Aplicada e Estatística, Universidade de São Paulo,
São Carlos 13566-590, Brazil

3 Departamento de Estatística, Universidade de São Carlos, São Carlos 13565-905, Brazil; dlam@ufscar.br
* Correspondence: suzuki@icmc.usp.br; Tel.: +55-16-3373-8164

Received: 27 June 2018; Accepted: 23 August 2018; Published: 27 August 2018
����������
�������

Abstract: In this paper, we study the performance of Bayesian computational methods to estimate
the parameters of a bivariate survival model based on the Ali–Mikhail–Haq copula with marginal
distributions given by Weibull distributions. The estimation procedure was based on Monte Carlo
Markov Chain (MCMC) algorithms. We present three version of the Metropolis–Hastings algorithm:
Independent Metropolis–Hastings (IMH), Random Walk Metropolis (RWM) and Metropolis–Hastings
with a natural-candidate generating density (MH). Since the creation of a good candidate generating
density in IMH and RWM may be difficult, we also describe how to update a parameter of
interest using the slice sampling (SS) method. A simulation study was carried out to compare
the performances of the IMH, RWM and SS. A comparison was made using the sample root mean
square error as an indicator of performance. Results obtained from the simulations show that the SS
algorithm is an effective alternative to the IMH and RWM methods when simulating values from
the posterior distribution, especially for small sample sizes. We also applied these methods to a
real data set.

Keywords: Bayesian inference; Ali–Mikhail–Haq copula; MCMC; Metropolis-Hastings; slice sampling

1. Introduction

In survival studies, it is common to observe two or more lifetimes for the same client, patient or
equipment. For instance, in a bivariate scenario, the lifetimes of a pair of organs can be observed, such
as a pair of kidneys, liver, or eyes in patients; or the lifetimes of engines in a twin-engine airplane.

These variables are usually correlated and we are interested in the bivariate model that considers
the dependence between them. The copula model is useful for modeling this kind of bivariate data. It
has been used in several articles, including the following: [1] describes a comparison between bivariate
frailty models, and models based on bivariate exponential and Weibull distributions; [2] proposes a
copula model to study the association between survival time of individuals infected with HIV and
persistence time of infection; [3] models the association of bivariate failure times by copula functions,
and investigates two-stage parametric and semi-parametric procedures; and [4] considers a Gaussian
copula model and estimates the copula association parameter using a two-stage estimation procedure.

According to [5,6], a copula is a joint distribution function of random variables for which the
marginal probability distribution of each variable is uniformly distributed on the interval [0, 1].

Entropy 2018, 20, 642; doi:10.3390/e20090642 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/1099-4300/20/9/642?type=check_update&version=1
http://dx.doi.org/10.3390/e20090642
http://www.mdpi.com/journal/entropy

Entropy 2018, 20, 642 2 of 21

There are many parametric copula families in the literature, each one representing a different
dependence structure between the random variables. One advantage of a copula model is
its simplicity when applied to model bivariate data. This is explored by many authors in
survival analysis. Among them are: Romeo et al. [7] and da Cruz et al. [8], who considered
the Archimedean copula family; Louzada et al. [9] and Suzuki et al. [10], who considered the
Farlie–Gumbel–Morgenstern (FGM) copula; and Romeo et al. [11], who considered the two-parameter
Archimedean family of power variance function (PVF) copulas.

In this paper, we apply the Ali–Mikhail–Haq (AMH) copula to model bivariate survival data with
random right-censored observations. From a practical point of view, the main reason for using the
AMH copula is that it is an Archimedean copula that allows both positive and negative values for the
dependence parameter, and whose mathematical formula is simpler than other Archimedean copulas.
Another advantage is that assuming the AMH copula, the Kendall rank-order correlation τ between
the bivariate lifetimes is a monotonic function of the dependence parameter φ. According to [12], the
Kendall’s τ can range from (approximately) −0.18 to 0.33, with τ = 0 when φ = 0; and the Spearman’s
ρ associated to φ can range (approximately) from −0.2711 to 0.4784, indicating that the AMH copula is
adequate for modeling bivariate data with a weak correlation.

In order to proceed with the copula model it is necessary to specify the marginal distributions.
At this point, several probability distributions could be considered. Generally, the choice for marginal
distributions depends on the application. We restrict our analysis to the case where the marginal
distributions are Weibull distributions. This is because it is a very flexible distribution for the modeling
of various types of lifetime data. In addition, the parametrization of the Weibull distribution—as well
as the mathematical expression of the AMH copula—is very attractive from the mathematical point
of view, allowing the development of a Bayesian approach to estimate the parameters of interest in a
clear and concise way.

As the conditional posterior distributions for parameters of interest does not follow any familiar
distribution, the estimation procedure was carried out using versions of the Metropolis–Hastings
algorithm, referred to here as Independent Metropolis–Hastings (IMH), Random Walk Metropolis
(RWM) and Metropolis–Hastings (MH). MH refers to the Metropolis–Hastings algorithm with a
natural candidate generating density whose parameters depend on the hyperparameter values and
the observed data. Since the creation of a good candidate generating density in IMH and RWM can be
difficult, we also used the slice sampling algorithm [13].

Combining IMH, RWM, MH and SS in different ways, we developed three MCMC algorithms to
estimate the model parameters. A simulation study was carried out with the objective of investigating
the behavior of each algorithm. The data sets were generated by considering different sample sizes
and percentages of right-censored observations. Based on the root mean square error (RMSE), we
identified the algorithms with the best performances when estimating the model parameters. We also
compared the performances of the three algorithms using the effective sample size and the integrated
autocorrelation time [14]. Results obtained from these simulations show that the algorithm that
applied the SS algorithm is an effective alternative for standard MCMC methods (IMH and RWM)
when simulating values from the posterior distribution of the model parameters, especially when the
sample size is small.

We applied the three proposed algorithms to a real data set. This data set is related to diabetic
retinopathy, described in The Diabetic Retinopathy Study Research Group [15], and is available in
the ‘survival’ package [16] of the R software [17]. For this case, we compared the performance of
the algorithms. Comparison was based on the RMSE relative to the empirical distribution function
obtained from Kaplan–Meier estimates.

The remainder of the paper is organized as follows. In Section 2, we introduce the bivariate
survival model based on the AMH copula with Weibull marginal distributions. The Bayesian approach
and the three MCMC algorithms are described in Section 3. In Section 4, the simulation study is

Entropy 2018, 20, 642 3 of 21

reported. In Section 5 we apply the three algorithms to the real data set. Section 6 summarizes
our findings.

2. Bivariate Survival Model and Observed Data

Let (T1, T2) be the vector of bivariate lifetimes of an item (or an individual) with marginal density
functions (f (t1|θ1), f (t2|θ2)) and the survival functions be (S(t1|θ1), S(t2|θ2)), where θ1 and θ2 are
unknown parameters (scalars or vectors).

Consider that (T1, T2) comes from the copula C̃φ, where φ is a parameter showing dependence
between T1 and T2. Then the joint survival function for (T1, T2) is given by

S(t1, t2|θ, φ) = C̃φ (S1(t1|θ1), S2(t2|θ2)) ,

where θ = (θ1, θ2) and φ is a dependence parameter.
We also assume that copula C̃φ is given by the Ali–Mikhail–Haq copula [18]. Thus, we have

S(t1, t2|θ, φ) = C̃φ (S1(t1|θ1), S2(t2|θ2)) =
S1(t1|θ1)S2(t2|θ2)

1− φ (1− S1(t1|θ1)) (1− S2(t2|θ2))
, (1)

for φ ∈ [−1, 1). Note that under this assumption the survival functions and the dependence structure
can be visualized separately with the dependence structure represented by the copula.

Let (T11, T12), . . . , (Tn1, Tn2) and (C11, C12), . . . , (Cn1, Cn2) be a sample of size n of bivariate
lifetimes and censured bivariate lifetimes, respectively. Suppose (Ti1, Ti2) and (Ci1, Ci2) are
independent, for i = 1, . . . , n. Consider tij = min(Tij, Cij)—the i-th observed value and δij—a
censorship indicator given by

δij =

{
1, if the lifetime is uncensored, i.e., Tij = tij;
0, if the lifetime is censored, i.e., Tij > tij,

for j = 1, 2 and i = 1, . . . , n. We denote the observed values using t = (t1, t2) and δ = (δ1, δ2),
where t1 = (t11, . . . , tn1), t2 = (t12, . . . , tn2), δ1 = (δ11, . . . , δn1) and δ2 = (δ12, . . . , δn2).

The likelihood function for (θ, φ), given (t, δ), is (see Lawless, [19])

L(θ, φ|t, δ) =
n

∏
i=1

f (ti1, ti2|θ, φ)δi1δi2S′δi1(1−δi2)
(t1)

S′(1−δi1)δi2
(t2)

S(ti1, ti2|θ, φ)(1−δi1)(1−δi2)

where f (ti1, ti2|θ, φ) = d2S(ti1,ti2|θ,φ)
dti1dti2

is the joint probability density function for (ti1, ti2),

S′(t1)
=
(
− dS(ti1,ti2|θ,φ)

dti1

)
, S′(t2)

=
(
− dS(ti1,ti2|θ,φ)

dti2

)
, and S(ti1, ti2|θ, φ) is the copula given by (1),

for i = 1, . . . , n.
From Equation (1), we have

d2S(ti1, ti2|θ, φ)

dti1dti2
=

f1(ti1|θ1) f2(ti2|θ2) [(1 + φ)(1 + φF1(ti1|θ1)F2(ti2|θ2))− 2φ(F1(ti1|θ1) + F2(ti2|θ2))]

[1− φF1(ti1|θ1)F2(ti2|θ2)]
3 ,

−dS(ti1, ti2|θ, φ)

dti1
=

f1(ti1|θ1)S2(ti2|θ2) [1− φF2(ti2|θ2)]

[1− φF1(ti1|θ1)F2(ti2|θ2)]
2 ,

−dS(ti1, ti2|θ, φ)

dti2
=

f2(ti2|θ2)S1(ti1|θ1) [1− φF1(ti1|θ1)]

[1− φF1(ti1|θ1)F2(ti2|θ2)]
2 ,

where Fj(tij|θj) = 1− Sj(tij|θj) is the cumulative distribution function for j = 1, 2 and i = 1, . . . , n.

Entropy 2018, 20, 642 4 of 21

Weibull Marginal Distribution

Assume that the marginal distributions for T1 and T2 are given by Weibull distributions [20], i.e.,

Ti1|α1, β1 ∼Weibull(α1, β1) and Ti2|α2, β2 ∼Weibull(α2, β2), (2)

with shape parameter αj and scale parameter β
−αj
j [21], each one having a probability density function

f (tij|αj, β j) = β jαjt
αj−1
ij exp{−β jt

αj
i }

for j = 1, 2 and i = 1, . . . , n.
The survival function Sj(tij|θj) and hazard function hj(tij|θj) are

Sj(tij|θj) = exp
{
−β jt

αj
ij

}
and hj(tij|θj) = β jαjt

αj−1
ij

respectively, where θj = (αj, β j) for j = 1, 2 and i = 1, . . . , n.
Thus, the joint survival function in (1) is

S(ti1, ti2|θ, φ) =
exp

{
−β1tα1

i1
}

exp
{
−β2tα2

i2
}

1− φ
(
1− exp

{
−β1tα1

i1
}) (

1− exp
{
−β2tα2

i2
})

where θ = (θ1, θ2). The likelihood function for (θ, φ) is

L(θ, φ|t, δ) ∝

[
2

∏
j=1

β
rj
j α

rj
j exp

{
αj

n

∑
i=1

δijlog(tij)− β j

n

∑
i=1

t
αj
ij

}]
n

∏
i=1

Ψi(θ, φ|t, δ), (3)

where rj =
n
∑

i=1
δij is the number of uncensored observations for j = 1, 2, Ψ(θ, φ|t, δ) =

4
∏

k=1
Ψik(θ, φ|t, δ), and

Ψi1(θ, φ|t, δ) = [(1+ φ)(1+ φF1(ti1|θ1)F2(ti2|θ2))− 2φ(F1(ti1|θ1) + F2(ti2|θ2))]
δi1δi2 ,

Ψi2(θ, φ|t, δ) = [1− φF2(ti2|θ2)]
δi1(1−δi2) ,

Ψi3(θ, φ|t, δ) = [1− φF1(ti1|θ1)]
δi2(1−δi1) ,

Ψi4(θ, φ|t, δ) = [1− φF1(ti1|θ1)F2(ti2|θ2)]
−(δi1+δi2+1) ,

for i = 1, . . . , n.

3. Bayesian Approach

In order to develop the Bayesian approach, we need to specify the prior distributions for αj, βj and

φ, for j = 1, 2. We assume that priors are independent, i.e., π(θ, φ) = π(θ)π(φ) =

[
2

∏
j=1

π(αj)π(βj)

]
π(φ).

Therefore, we consider the following prior distributions

αj|aj1, aj2 ∼ Γ(aj1, aj2) and βj|bj1, bj2 ∼ Γ(bj1, bj2),

where Γ(·) is the Gamma distribution and aj1, aj2, bj1 and bj2 are known hyperparameters, all of them
with support on (0,+∞), for j = 1, 2. The parametrization of the Gamma distribution is such that the
mean is aj1/aj2 and the variance is aj1/a2

j2, for j = 1, 2. The choice of values for the hyperparameters
depends on the application. In the remainder of the article, we set up the hyperparameters values that
give prior distributions with large variances. In particular, we set aj1 = bj1 = 0.01, for j = 1, 2. For φ we
chose the uniform prior distribution on the interval (−1, 1), φ ∼ U(−1, 1).

Entropy 2018, 20, 642 5 of 21

Using Bayes theorem, the joint posterior distribution for (θ, φ) is

π(θ, φ|t, δ) ∝ L(θ, φ|t, δ)π(θ)π(φ),

where L(θ, φ|t, δ) is given in Equation (3).
The conditional posterior distributions are

π(αj|t, δ, θ−αj , φ) ∝ α
aj1+rj−1
j exp

{
αj

(
n

∑
i=1

δijlog(tij)− aj2

)
− βj

n

∑
i=1

t
αj
ij

}
n

∏
i=1

Ψi(θ, φ|t, δ), (4)

π(βj|t, δ, θ−βj , φ) ∝ β
bj1+rj−1
j exp

{
−βj

[
bj2 +

n

∑
i=1

t
αj
ij

]}
n

∏
i=1

Ψi(θ, φ|t, δ) and (5)

π(φ|t, δ, θ) ∝ L(θ, φ|t, δ)Iφ(−1, 1), (6)

where θ−νj , for νj ∈ {αj, βj}, is the vector of parameters θ without the parameter νj, j = 1, 2.
The conditional posterior distributions in Equations (4)–(6) are not familiar distributions.

Thus, in order to simulate from conditional posterior distributions, we used the Metropolis–Hastings
algorithm. At each iteration, the Metropolis–Hastings algorithm considers a value generated from a
proposal distribution. This value is accepted according to a properly specified acceptance probability.
This procedure guarantees the convergence of the Markov chain for the target density. More details on
the Metropolis–Hastings algorithm can be found in [22–25] and their references.

3.1. MCMC for αj

Without loss of generality, we describe here how to update parameter α1 conditional on all other
parameters, θ−α1 = (β1, α2, β2) and φ. The update procedure for α2 is similar.

Let (α1, θ−α1 , φ) be the current state of the Markov chain. Consider α∗1 a value generated from a
candidate generating density q[α∗1|α1]. The value α∗1 is accepted with probability ψ(α∗1|α1) = min(1, Aα1),
where

Aα1 =
L(α∗1, θ−α1 , φ|t, δ)π(α∗1)

L(α1, θ−α1 , φ|t, δ)π(α1)

q[α1|α∗1]
q[α∗1|α1]

, (7)

and L(·|y) is the likelihood function, given in Equation (3).
The Metropolis–Hastings algorithm is implemented as follows.

• Metropolis–Hastings Algorithm: Let the current state of the Markov chain be(
α
(l−1)
1 , θ

(l−1)
−α1

, φ(l−1)
)

, where l is the l-th iteration of the algorithm, α
(l−1)
1 , θ

(l−1)
−α1

=(
β
(l−1)
1 , α

(l−1)
2 , β

(l−1)
2

)
and φ(l−1) are the values of α1, θ−α1 and φ in (l − 1)-th iteration,

respectively, for l = 1, . . . , L, in which, α(0), θ
(0)
−α1

and φ(0) are the initial values. At the l-th iteration
of the algorithm, we updated α1 as follows:

(1) Generate α∗1 ∼ q[α∗1|α1];
(2) Calculate ψ(α∗1|α1) = min(1, Aα1), where Aα1 is given by (7);

(3) Generate U ∼ U(0, 1). If u ≤ ψ(α∗1|α1) accept α∗1 and do α
(l)
1 = α∗1. Otherwise, reject α∗1 and

set α
(l)
1 = α

(l−1)
1 .

3.1.1. Two Common Choices for q[·]

To implement the Metropolis–Hastings algorithm, the candidate-generating density q[α∗1|α1] needs
to be specified. Generally, one may explore the form of the conditional posterior distribution to set
the candidate-generating density. For example, if we can write π(α1|y, θ−α1 , φ) as π(α1|y, θ−α1 , φ) ∝
η(α1)h(α1), where h(α1) is a density that can be easily generated and η(α1) is uniformly bounded, then
we may set up q(α∗1|α1) = h(α∗1). However, this is not the case for π(α1|y, θ−α1).

Entropy 2018, 20, 642 6 of 21

Another option is to generate α∗1 from a candidate generating density that does not depend on
the current α1 value. That is, we may set up q[α∗1|α1] = q[α∗1]. Thus, we have a special case of the
original MH algorithm, called Independent Metropolis–Hastings (IMH), where Aα1 is given in (7) and
simplifies to

Aα1 =
L(α∗1, θ−α1 , φ|t, δ)π(α∗1)

L(α1, θ−α, φ|t, δ)π(α1)

q[α1]

q[α∗1]
.

In order to implement this case, one may set q[α∗1] as the prior distribution, i.e., q[α∗1] = π(α∗1).
Then, Aα1 is given by the likelihood ratios,

Aα1 =
L(α∗1, θ−α1 , φ|t, δ)

L(α1, θ−α, φ|t, δ)
. (8)

This algorithm is implemented as follows.

• Independent Metropolis–Hastings Algorithm: Let the current state of the Markov chain be(
α
(l−1)
1 , θ

(l−1)
−α , φ(l)

)
. For the l-th iteration of the algorithm do the following:

(1) Generate α∗1 from the prior distribution α∗1 ∼ Γ(a11, a12);
(2) Calculate ψ(α∗1|α1) = min(1, Aα1), where Aα1 is given by (8);

(3) Generate U ∼ U(0, 1). If u ≤ ψ(α∗1|α1) accept α∗1 and set α
(l)
1 = α∗1. Otherwise, reject α∗1 and

set α
(l)
1 = α

(l−1)
1 .

Although the choice of the prior distribution as the candidate generating density may be
mathematically attractive, it usually leads to a slow convergence of the algorithm. This happens
when vague prior information is available and prior distribution has large variance. As a consequence,
many of the proposed values are rejected.

An alternative is to explore the neighborhood of the current value of the Markov chain to propose
a new value. This method is termed the random walk Metropolis (RWM). In the RWM, the candidate
value α∗1 is generated from a symmetric density g(·). That is, we set up q[α∗1|α1] = g(|α1− α∗1|) and the
probability of generating a move from α1 to α∗1 depends only on the distance between them. For this
case, Aα1 given in (7) simplifies to

Aα1 =
L(α∗1, θ−α1 , φ|t, δ)π(α∗1)

L(α1, θ−α1 , φ|t, δ)π(α1)
(9)

since the proposal kernels from numerator and denominator cancel.
In order to implement the RWM it is necessary to simulate α∗1 setting α∗1 = α1 + ε, where ε is a

random perturbation generated from a Normal distribution with mean 0 and variance σ2
α1

, ε ∼ N (0, σ2
α1
),

meaning that α∗1 ∼ N (α1, σ2
α1
). This algorithm is implemented as follows.

• Random Walk Metropolis Algorithm: Let the current state of the Markov chain be(
α
(l−1)
1 , θ

(l−1)
−α1

, φ(l)
)

. For the l-th iteration of the algorithm, l = 1, . . . , L, do the following:

(1) Generate ε ∼ N (0, σ2
α1
) and set α∗1 = α

(l−1)
1 + ε;

(2) Calculate ψ(α∗1|α1) = min(1, Aα1), where Aα1 is given by (9);

(3) Generate U ∼ U(0, 1). If u ≤ ψ(α∗1|α1) accept α∗1 and set α
(l)
1 = α∗1. Otherwise, reject α∗1 and

set α
(l)
1 = α

(l−1)
1 .

An issue in RWM is how to choose the value of σ2
α1

. It has a strong influence on the efficiency of
the algorithm. If σ2

α1
is too small, the random perturbations will be small in magnitude and almost all

will be accepted. The consequence is that it will take a large number of iterations to explore the entire

Entropy 2018, 20, 642 7 of 21

state-space. On the other hand, if σ2
α1

is large there will be many rejections of the proposed values,
slowing down the convergence. More details on this issue can be found in [23,26–28].

Typically, one may fix the value of σ2
α1

by testing some values on a few pilot runs and then
choosing a value whose acceptance ratio lies between 20% and 30% (see, for example, [24,25]). Thus,
after a pilot run we set up σ2

α = 1.

3.1.2. Slice Sampling Algorithm

An alternative to the IMH and RWM sampling from some generic distribution is the slice sampling
algorithm. This algorithm is a type of Gibbs sampling based on the simulation of specific uniform
random variables. Here we explain the algorithm slice sampling in the context of the simulation of α1.
The sampling procedure for α2 is similar. More details about SS can be found in [13].

In SS, an auxiliary variable U is introduced and the joint distribution π(α1, U|t, δ, θ−α1 , φ) is given
by a uniform distribution over the region U = {(α1, u) : 0 < u < κ(α1)} below the curve defined by
κ(α1). From (4), we have

κ(α1) = αa11+r1−1
1 exp

{
α1

(
n

∑
i=1

δi1log(ti1)− a12

)
− β1

n

∑
i=1

tα1
i1

}
n

∏
i=1

Ψi(θ, φ|t, δ). (10)

Marginalizing π(α1, U|t, δ, θ−α1 , φ) over U yields π(α1|t, δ, θ−α1 , φ), so sampling from
π(α1, U|t, δ, θ−α1 , φ) and discarding U is equivalent to sampling from π(α1|t, δ, θ−α1 , φ).

As sampling from π(α1, U|t, δ, θ−α1 , φ) is not straightforward, we implemented a Gibbs sampling

algorithm where at every iteration l, we first generate U(l) ∼ U
(

0, κ
(

α
(l−1)
1

))
and then sample

α
(l)
1 ∼ U(A), where A = {α1 : u(l) < κ(α1)}. However, as the inverse of κ(α1) cannot be obtained

analytically, we adopted the following procedure to update α1:

(i) Let λ = 0.01 and Ã be an empty set.

(a) For m = 1, 2, . . .:
Set α

−(m)
1 = α

(l−1)
1 −mλ

If u(l) < κ
(

α
−(m)
1

)
do Ã = Ã∪

{
α
−(m)
1

}
else break

(b) For m = 1, 2, . . .:
Set α

+(m)
1 = α

(l−1)
1 + mλ

If u(l) < κ
(

α
+(m)
1

)
do Ã = Ã∪

{
α
+(m)
1

}
else break

(ii) Generate α
(l)
1 ∼ U(min(Ã), max(Ã)).

This algorithm is implemented as follows.

• Slice sampling algorithm: Let the current state of the Markov chain be
(

α
(l−1)
1 , θ

(l−1)
−α1

, φ(l−1)
)

and

u(l−1). For the l-th iteration of the algorithm, l = 1, . . . , L:

(1) Generate U(l) ∼ U
(

0, κ
(

α
(l−1)
1

))
, where κ(·) is given by (10).

(2) obtain Ã, conditional on u(l).
(3) Generate α

(l)
1 ∼ U(min(Ã), max(Ã)).

3.2. MCMC for βj and φ

Note from (5) that the conditional posterior distribution for the scale parameter β1,
π(β1|t, δ, θ−β1 , φ), is given by the kernel of a Gamma distribution with parameters b11 + r11 and

Entropy 2018, 20, 642 8 of 21

b12 +
n
∑

i=1
tα1
i1 multiplied by η(β1) =

n
∏
i=1

Ψi(θ, φ|t, δ). In other words, π(β1|t, δ, θ−β1 , φ) may be

written as π(β1|y, θ−β1) ∝ η(β1)h(β1), where h(β1) is the density of the Gamma distribution

Γ
(

b11 + r11, b12 +
n
∑

i=1
tα1
i1

)
with η(β1) being uniformly bounded. Thus, we set up the candidate

generating density for β1 as q(β∗1|β1) = h(β∗1). The acceptance probability for the generated value β∗1 is
given by ψ(β∗1|β1) = min(1, Aβ1), where

Aβ1 =
η(β∗1)

η(β1)
. (11)

This algorithm is implemented as follows.

• Metropolis–Hastings Algorithm: Let the current state of the Markov chain be(
β
(l−1)
1 , θ

(l−1)
−β1

, φ(l−1)
)

, where θ
(l−1)
−β1

=
(

α
(l)
1 , α

(l−1)
2 , β

(l−1)
2

)
. For the l-th iteration of the algorithm,

l = 1, . . . , L:

(1) Generate β∗1 ∼ Γ
(

b11 + r11, b12 +
n
∑

i=1
t
α
(l)
1

i1

)
.

(2) Calculate ψ(β∗1|β1) = min(1, Aβ1), where Aβ1 is given by (11).

(3) Generate U ∼ U(0, 1). If u ≤ ψ(β∗1|β1) accept β∗1 and set β
(l)
1 = β∗1. Otherwise, reject β∗1 and

set β
(l)
1 = β

(l−1)
1 .

The Metropolis–Hastings algorithm for updating β2 is similar. To update the dependence parameter φ

conditional on the remaining parameters θ = (α1, β1, α2, β2), we used the following IMH algorithm. Let
Gφ be a grid from−1 to 1 with increments of 0.1. Consider [Ia, Ia+1), an interval defined by two adjacent
grid values of Gφ where a is the index of the a-th value of the grid for a = 1, . . . , 20. For example, for
a = 1 we have the interval [−1,−0.9); for a = 11, we have the interval [0, 0.1); and for a = 20 we have
the interval [0.9, 1). Then generate the a candidate value φ∗ as follows:

(i) If the current value of φ is in the interval (I1, I2), then generate φ∗ from one of the two following
Uniform distributions

φ∗ ∼
{
U(I1, I2), with probability 1/2,
U(I2, I3), with probability 1/2.

For this case, we generate an auxiliary variable U ∼ U(0, 1); if u ≤ 1/2, then we generate φ∗ from
U(I1, I2), φ∗ ∼ U(I1, I2), otherwise we generate φ∗ from U(I2, I3), φ∗ ∼ U(I2, I3).

(ii) If the current value of φ is in (I20, I21), then generate φ∗ from one of the two following uniform
distributions

φ∗ ∼
{
U(I19, I20), with probability 1/2,
U(I20, I21), with probability 1/2,

Similarly to item (i), we generate an auxiliary variable U ∼ U(0, 1); if u ≤ 1/2, then φ∗ ∼ U(I20, I21),
otherwise φ∗ ∼ U(I19, I20).

(iii) If the current value of φ is in the interval (Ia, Ia+1), for a 6= 1 and a 6= 20, then generate φ∗ from
one of three following uniform distributions

φ∗ ∼


U(Ia−1, Ia), with probability 1/3,
U(Ia, Ia+1), with probability 1/3,
U(Ia+1, Ia+2), with probability 1/3.

For this case, we generate an auxiliary variable U ∼ U(0, 1); if u ≤ 1/3, then we generate
φ∗ from U(Ia−1, Ia), φ∗ ∼ U(Ia, Ia+1); if 1/3 < u ≤ 2/3, then we generate φ∗ from U(Ia, Ia+1),
φ∗ ∼ U(Ia, Ia+1); and if u > 2/3, we generate φ∗ from U(Ia+1, Ia+2), φ∗ ∼ U(Ia+1, Ia+2).

Entropy 2018, 20, 642 9 of 21

The acceptance probability is given by ψ[φ∗|φ] = min(1, Aφ), where Aφ = L(φ∗,θ|t,δ)
L(φ,θ|t,δ) Pφ for Pφ = 1

or Pφ = 1/2
1/3 according to items (i)–(iii) described above. This algorithm is implemented as follows.

• IMH algorithm for φ: Let the current state of the Markov chain be
(

θ(l), φ(l−1)
)

. For the l-th
iteration of the algorithm, l = 2, . . . , L:

(1) Generate φ∗ according to one of the items (i), (ii) or (iii) described above.
(2) Calculate ψ(φ∗|φ) = min(1, Aφ).
(3) Generate U ∼ U(0, 1). If u ≤ ψ(φ∗|φ) accept φ∗ and set φ(l) = φ∗. Otherwise, reject φ∗ and

set φ(l) = φ(l−1).

3.3. MCMC Algorithms

Using the algorithms IMH, RWM, SS and MH described above, we implemented three
MCMC algorithms:

• Algorithm A1: Parameters αj’s are updated via IMH,
• Algorithm A2: Parameters αj’s are updated via RWM,
• Algorithm A3: Parameters αj’s are updated via SS.

For these three algorithms, the parameters βj and φ are updated via MH and IMH, as described in
Section 3.2, for j = 1, 2.

After defining the algorithms, we ran them for L iterations and a burn-in B. We also consider
jumps of size J, i.e., only 1 drawn from every J was extracted from the original sequence obtaining a
sub sequence of size S = [(L− B)/J] to make inferences.

The estimates for parameters are given by

α̃j =
1
S

L

∑
l=1

α
(K(l))
j ; β̃j =

1
S

L

∑
l=1

β(K(l)) and φ̃ =
1
S

L

∑
l=1

φ(K(l)), (12)

where θ(K(l)) is the value generated for θ in the K(l) = [(B + 1 + lJ)]-th iteration of the algorithm,
for j = 1, 2 and l = 1, . . . , L.

4. Simulation Study

In this section, we present the comparison between the performances of the three algorithms
applied to simulated data sets. Simulated random samples of sizes n = 25, 50, 100 and 250 with 0%, 5%,
10%, 20% and 30% random right-censored were generated to represent small, medium and large data
sets. Using these, we generated four simulated data sets with fixed parameters, as specified in Table 1.

Data set D1 has two increasing hazard functions with a positive dependence parameter, while
data set D2 has a constant and increasing hazard function with a negative dependence parameter. Data
set A3 has parameters to produce a decreasing and a constant hazard function with weak dependence,
while data set A4 has strong dependence and two increasing hazard functions.

Table 1. Parameter values for simulated data sets.

Data Set Parameters
α1 β1 α2 β2 φ

D1 2.00 1.00 3.00 1.00 0.50
D2 1.00 2.00 2.00 0.50 −0.75
D3 0.75 1.50 1.00 2.00 0.05
D4 1.80 2.40 2.20 1.20 0.95

Entropy 2018, 20, 642 10 of 21

The simulation procedure to generate n observations (ti1, ti2), for i = 1, · · · , n, is given by the
following steps:

(i) Set up the sample size n and set i = 1;
(ii) Generate the censoring times Cij ∼ U(0, τj), where τj controls the percentage of censored

observations, for j = 1, 2;
(iii) Generate uniform values uij ∼ U(0, 1), j = 1, 2 and calculate wi, the solution of the nonlinear

equation ui2 −
wi [1−φ(1−wi)]

[1−φ(1−ui1)(1−wi)]2
= 0. Here we used the rootsolve package and the uniroot.all

command from R software to solve the nonlinear equation and obtain wi;
(iv) Calculate Ti1 = (−log(ui1)/β1)

1/α1 and Ti2 = (−log(wi)/β2)
1/α2 ;

(v) Calculate the times tij = min(Tij, Cij) and the censorship indicators δij, which are equal to 1 if
tij < Tij and 0 otherwise, for j = 1, 2;

(vi) Set i = i + 1. If i = n stop. Otherwise, return to step (ii).

We generated M = 200 different simulated data sets according to steps (i)–(vi) described above
and the parameters were estimated according to algorithms A1, A2 and A3.

We used hyperparameters aj1 = aj2 = bj1 = bj2 = 0.01 to obtain prior distributions with large
variance, for j = 1, 2. For the m-th generated data set, we applied algorithms A1, A2 and A3 fixing L =
55,000 iterations, burn-in B = 5000 and J = 10.

Comparison of the algorithms was made using the sample Root Mean Square Error (RMSE),
given by

RMSE =

√√√√ 1
M

M

∑
m=1

[
2

∑
j=1

(
α̂
(m)
j − αj

)2
+
(

β̂
(m)
j − β j

)2
]
+
(
φ̂(m) − φ

)2.

A smaller RMSE indicates better overall quality of the estimates.
Table 2 presents the RMSE value for each simulated data set by algorithm, sample size and

percentage of censorship. The smaller RMSE value for each sample size and percentage of censorship
is highlighted in bold. For the three algorithms, by fixing the sample size and increasing the censuring
percentage (% cens.), the RMSE values increased. When the sample size increases at a fixed percentage
of censures, the RMSE values decrease, consequently improving the precision of the estimators.

Based on the results presented in Table 2, for the smaller sample size n = 25, the algorithm A3

(with SS) outperformed algorithm A1 (with IMH) and algorithm A2 (with RWM), i.e., it gave a smaller
RMSE value for all percentages of censures. This better performance also happened for data sets D3

and D4 for n = 50. For all other simulated cases, the algorithm A2 outperformed algorithms A1 and
A3. An exception is the case with n = 250 and 0% of censuring in data set D2, in which algorithm A1

had a better performance. These results suggest a possible complementarity between algorithms A2

and A3, where algorithm A2 performs better for higher sample sizes and algorithm A3 performs better
for smaller sample sizes.

We verified the convergence of algorithms A1, A2 and A3 using the effective sample size [14] and
the integrated autocorrelation time (IAT). The effective sample size (ESS) is the number of effectively
independent draws from the posterior distribution. Method with larger ESS are the most efficient. The
IAT is a MCMC diagnostic that estimates the average number of autocorrelated samples required to
produce one independent sample draw. Lower IAT is means more efficiency. The EES and IAT values
were obtained using the coda and LaplacesDemon. Both packages are available in the R software.

Tables A1 and A2 in Appendix A show the average of ESS and IAT values for each algorithm by
parameter for data set D1. Algorithm A3 showed a better performance than algorithms A1 and A2, i.e.,
it had the highest ESS values and smallest IAT values by parameter for all simulated cases. Note that
algorithm A1 had the worst results, especially for simulated values for αj, j = 1, 2. Results for data sets
D2, D3 and D4 were similar.

Entropy 2018, 20, 642 11 of 21

Table 2. Root mean square error (RMSE) by algorithm for data sets D1, D2, D3 and D4.

Sample Size % of
Censures

Data Set D1 Data Set D2 Data Set D3 Data Set D4
Algorithm Algorithm Algorithm Algorithm

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

n = 25

0% 0.3678 0.3717 0.3581 0.3774 0.3781 0.3458 0.3375 0.3370 0.3368 1.1085 1.0888 1.0883
5% 0.4078 0.3869 0.3597 0.3861 0.3901 0.3736 0.3586 0.3573 0.3523 1.1325 1.1305 1.1278

10% 0.4189 0.4012 0.3670 0.4144 0.4259 0.4135 0.3687 0.3675 0.3611 1.1428 1.1396 1.1323
20% 0.4245 0.4153 0.3772 0.4472 0.4648 0.4381 0.3772 0.3729 0.3727 1.1726 1.1714 1.1711
30% 0.4362 0.4543 0.3989 0.5335 0.5614 0.5303 0.3994 0.3990 0.3944 1.2078 1.1946 1.1925

n = 50

0% 0.2595 0.2507 0.2678 0.2633 0.2552 0.2573 0.2162 0.2112 0.2048 1.0397 1.0318 1.0312
5% 0.2663 0.2652 0.2699 0.2641 0.2601 0.2719 0.2239 0.2283 0.2233 1.0470 1.0442 1.0403

10% 0.2831 0.2806 0.2814 0.2959 0.2683 0.2844 0.2390 0.2457 0.2269 1.0483 1.0453 1.0433
20% 0.2846 0.2820 0.2863 0.2966 0.2820 0.3026 0.2719 0.2546 0.2366 1.0517 1.0528 1.0513
30% 0.2983 0.2885 0.3104 0.3245 0.3170 0.3182 0.2828 0.2776 0.2736 1.0915 1.0666 1.0550

n = 100

0% 0.1822 0.1819 0.1833 0.1917 0.1816 0.1878 0.1664 0.1657 0.1702 1.0153 1.0041 1.0124
5% 0.1953 0.1851 0.1859 0.1925 0.1857 0.1914 0.1769 0.1755 0.1782 1.0228 1.0063 1.0152

10% 0.1982 0.1924 0.1927 0.2026 0.2019 0.2023 0.1788 0.1760 0.1791 1.0239 1.0088 1.0157
20% 0.1996 0.1964 0.2074 0.2029 0.2028 0.2047 0.1934 0.1832 0.1879 1.0282 1.0092 1.0177
30% 0.2131 0.2122 0.2144 0.2463 0.2112 0.2211 0.2094 0.1967 0.2143 1.0291 1.0128 1.0265

n = 250

0% 0.1138 0.1123 0.1130 0.1075 0.1079 0.1115 0.1156 0.1140 0.1162 0.9934 0.9923 0.9936
5% 0.1141 0.1136 0.1149 0.1206 0.1141 0.1129 0.1179 0.1146 0.1183 0.9970 0.9963 0.9968

10% 0.1165 0.1164 0.1167 0.1244 0.1199 0.1237 0.1186 0.1159 0.1197 0.9985 0.9977 0.9972
20% 0.1224 0.1216 0.1229 0.1258 0.1252 0.1287 0.1303 0.1260 0.1273 0.9991 0.9984 0.9991
30% 0.1374 0.1333 0.1344 0.1677 0.1398 0.1458 0.1391 0.1328 0.1329 0.9999 0.9993 0.9997

Entropy 2018, 20, 642 12 of 21

Appendix B presents an empirical convergence check for the sampled values for α1 for each
algorithm. As shown in Figure A1, the generated values for α1 by algorithm A1 did not mix well and
the stability for the ergodic mean and estimated autocorrelation were not satisfactory. On the other
hand, the values generated by algorithms A2 and A3 were well mixed and present satisfactory stability
for the ergodic mean and autocorrelation. As an illustration of convergence diagnostic, Figure A1(j–l)
shows the Gelman plot for the sequence of α1 values in two chains by each algorithm. As can be seen
in the figure, the number of iterations was sufficient for algorithms A2 and A3 to reach convergence,
but not for algorithm A1. In addition, the scale reduction factor of the Gelman–Rubin diagnostic [29]
for each parameter in algorithms A2 and A3 were smaller than 1.1, meaning that there is no indication
of non-convergence. This implies a faster convergence of algorithms A2 and A3 in relation to algorithm
A1. For β1 sampled values, the three algorithms present satisfactory properties, i.e., good mixing, and
satisfactory stability for ergodic mean and autocorrelation (see Figure A2 in Appendix B).

The results indicate that algorithm A3 (SS for αj) is an effective alternative to algorithms A1 (with
IMH for αj) and A2 (with RWM for αj) to simulate samples from the posterior distribution of bivariate
survival models based on the Ali–Mikhail–Haq copula with marginal Weibull distributions.

5. Application to a Real Data Set

Next, we examine the performance of algorithms A1, A2 and A3 on the diabetic retinopathy data set
described in [15], which is available in the R software ‘survival’ package [16]. This data set consists of the
follow-up times of 197 diabetic patients under 60 years of age. The main objective of the study was to
evaluate the effectiveness of the photocoagulation treatment for proliferative retinopathy. The treatment
was randomly assigned to one eye of each patient and the other eye was taken as a control.

Let (T1, T2) be the bivariate times, where T1 is the time to visual loss for the treatment eye and T2

is the time to visual loss for the control eye. The percentage of censure times for each variable is 72.59%
(143 observations) for T1 and 48.73% (96 observations) for T2.

We used (1) to model this data with Weibull marginal distributions with parameters αj and βj and
dependence parameter φ.

We compared the performances of the algorithms using the RMSE in relation to the empirical
distribution function,

RMSE =

√√√√ 1
n

n

∑
i=1

2

∑
j=1

(
F̂j(tij)− Fj(tij)

)2,

where F̂j(tij) is obtained by substituting the estimates of αj, βj and φ (obtained by each algorithm); and
Fj(tij) is the empirical distribution function obtained from the Kaplan–Meier estimates, for j = 1, 2 and
i = 1, . . . , n.

We ran the three algorithms using the same number of iterations, burn-in, thinning and
hyperparameters values used with the simulation data. Table 3 shows the parameters estimates,
the credibility intervals (95%) and RMSE values by algorithm. For this data set, the algorithm A3 (with
SS for αj) gave the smaller RMSE value.

Figure 1 shows the estimated survival functions by algorithms A1 (red line) and A3 (blue line).
The step functions (black lines) are the Kaplan–Meier estimates. The estimated curves by algorithms
A1 and A2 are very close and so we show only the curve estimated by A1, in order to provide a good
visualization. The Kaplan–Meier estimates were obtained using the survival package and the survfit
command in the R software.

Table 4 shows the ESS and IAT values for the sequences generated by algorithms A1, A2, and A3.
Algorithm A3 had a better performance than algorithms A1 and A2, i.e., the highest ESS value and the
lowest IAT value per parameter.

We also compared the performances of the algorithms in relation to the sequences generated
for each parameter. Figure 2 shows the traceplots, the ergodic means, and the autocorrelations for
sequences of α1 values simulated by algorithms A1, A2 and A3.

Entropy 2018, 20, 642 13 of 21

Table 3. Parameters estimates and RMSE by algorithm.

Algorithm
Parameter RMSE

α1 β1 α2 β2 φ Value

A1
0.7624 0.0186 0.8399 0.0294 0.7159

0.4227
(0.5999,0.9361) (0.0087, 0.0338) (0.7607, 0.9353) (0.0195, 0.0414) (0.3765, 0.9637)

A2
0.7757 0.0179 0.8308 0.0310 0.7148

0.4619
(0.5929, 0.9853) (0.0071, 0.0343) (0.6897, 0.9679) (0.0172, 0.0515) (0.3560, 0.9600)

A3
0.6438 0.0289 0.7015 0.0494 0.7266

0.3562
(0.5103, 0.7967) (0.0142, 0.0482) (0.5910, 0.8273) (0.0293, 0.0746) (0.3675, 0.9715)

0 20 40 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

times

E
s
ti
m

a
te

d
 S

u
rv

iv
a
l

A1

A3

Figure 1. The estimated survival function for algorithms A1 and A3.

Table 4. Integrated autocorrelation time (IAT) and effective sample size (ESS) values for algorithms
A1, A2 and A3.

Parameter ESS IAT
A1 A2 A3 A1 A2 A3

α1 5.4650 159.8655 791.0559 435.0485 34.2212 6.4039
β1 6.5887 205.4812 880.9221 81.9980 26.8373 5.6359
α2 8.1633 134.7412 227.6705 327.9376 35.6760 24.6754
β2 16.1893 133.8282 230.9487 36.7590 30.5560 21.1668
φ 2443.3791 2400.0097 2461.1781 2.3426 2.3348 2.2813

0 1000 2000 3000 4000 5000

0
.4

0
.6

0
.8

1
.0

1
.2

Iterations

S
a

m
p

le
d

 v
a

lu
e

s

(a) α1 by A1.

0 1000 2000 3000 4000 5000

0
.6

0
0

.6
5

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

Iteration

E
rg

o
d

ic
 m

e
a

n

(b) β1 by A1.

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(c) φ by A1.

Figure 2. Cont.

Entropy 2018, 20, 642 14 of 21

0 1000 2000 3000 4000 5000

0
.4

0
.6

0
.8

1
.0

1
.2

Iterations

S
a
m

p
le

d
 v

a
lu

e
s

(d) α1 by A2.

0 1000 2000 3000 4000 5000

0
.6

0
0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5

Iteration

E
rg

o
d
ic

 m
e

a
n

(e) β1 by A2.

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(f) φ by A2.

0 1000 2000 3000 4000 5000

0
.4

0
.6

0
.8

1
.0

1
.2

Iterations

S
a
m

p
le

d
 v

a
lu

e
s

(g) α1 by A3.

0 1000 2000 3000 4000 5000

0
.6

0
0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5

Iteration

E
rg

o
d
ic

 m
e

a
n

(h) β1 by A3.

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(i) φ by A3.

Figure 2. Traceplot, ergodic mean and autocorrelation for sequences produced by algorithms A1, A2

and A3 for α1.

It can be observed in these graphs that the α1 values generated by the IMH (algorithm A1) has
poor mixing, does not show satisfactory stability for the ergodic mean, and the autocorrelation is
high for long lags. On the other hand, the values generated by the RWM (algorithm A2) and SS
(algorithm A3) are better mixed and present satisfactory stability for the ergodic mean. However, the
sequence produced by the SS presents the steepest decreasing autocorrelation. Figure 3 shows the
same graphs for parameter β1. As can be seen, for β1 the performances of the three algorithms are
satisfactory. These results, together with those presented by the RMSE, show that for the data set
analyzed here SS provides a better performance than IMH or RWM.

Figure 4 shows the Gelman plot for the simulated values for α1, β1 and φ in two chains by each
algorithm. As can be seen, the number of iterations was sufficient for algorithms A2 and A3 to reach
the convergence, but not sufficient for algorithm A1 (Figure 4a,b). The scale reduction factor for each
parameter in algorithms A2 and A3 are all less than 1.1, while for algorithm A1 only φ presents a scale
reduction factor less than 1.1.

0 1000 2000 3000 4000 5000

0
.0

1
0

.0
2

0
.0

3
0

.0
4

0
.0

5
0

.0
6

0
.0

7

Iterations

S
a

m
p

le
d

 v
a

lu
e

s

(a) A1.

0 1000 2000 3000 4000 5000

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

Iteration

E
rg

o
d

ic
 m

e
a

n

(b) A1.

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(c) A1.

Figure 3. Cont.

Entropy 2018, 20, 642 15 of 21

0 1000 2000 3000 4000 5000

0
.0

1
0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6
0

.0
7

Iterations

S
a
m

p
le

d
 v

a
lu

e
s

(d) A2.

0 1000 2000 3000 4000 5000

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

Iteration

E
rg

o
d
ic

 m
e

a
n

(e) A2.

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(f) A2.

0 1000 2000 3000 4000 5000

0
.0

1
0

.0
2

0
.0

3
0
.0

4
0

.0
5

0
.0

6
0

.0
7

Iterations

S
a

m
p
le

d
 v

a
lu

e
s

(g) A3.

0 1000 2000 3000 4000 5000

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

Iteration

E
rg

o
d

ic
 m

e
a

n

(h) A3.

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(i) A3.

Figure 3. Traceplot, ergodic mean and autocorrelation for sequences produced by algorithms A1, A2

and A3 for β1.

0 1000 2000 3000 4000 5000

0
5
0

1
0
0

1
5
0

2
0
0

last iteration in chain

s
h
r
in

k

f
a
c
t
o
r

(a) α1 by A1.

0 1000 2000 3000 4000 5000

2
4

6
8

1
0

1
4

last iteration in chain

s
h
r
in

k

f
a
c
t
o
r

median

97.5%

(b) β1 by A1.

0 1000 2000 3000 4000 5000

1
.
0

1
.
2

1
.
4

1
.
6

1
.
8

last iteration in chain

s
h
r
in

k

f
a
c
t
o
r

median

97.5%

(c) φ by A1.

0 1000 2000 3000 4000 5000

1
2

3
4

5
6

7
8

last iteration in chain

s
h
r
in

k

f
a
c
t
o
r

median

97.5%

(d) α1 by A2.

0 1000 2000 3000 4000 5000

1
2

3
4

5
6

7

last iteration in chain

s
h
r
in

k

f
a
c
t
o
r

median

97.5%

(e) β1 by A2.

0 1000 2000 3000 4000 5000

1
.
0

1
.
1

1
.
2

1
.
3

1
.
4

last iteration in chain

s
h
r
in

k

f
a
c
t
o
r

median

97.5%

(f) φ by A2.

Figure 4. Cont.

Entropy 2018, 20, 642 16 of 21

0 1000 2000 3000 4000 5000

2
4

6
8

1
0

1
2

last iteration in chain

s
h
r
in

k

f
a
c
t
o
r

median

97.5%

(g) α1 by A3.

0 1000 2000 3000 4000 5000

1
2

3
4

5
6

last iteration in chain

s
h
r
in

k

f
a
c
t
o
r

median

97.5%

(h) β1 by A3.

0 1000 2000 3000 4000 5000

1
.
0

1
.
2

1
.
4

1
.
6

1
.
8

last iteration in chain

s
h
r
in

k

f
a
c
t
o
r

median

97.5%

(i) φ by A3.

Figure 4. Gelman plot for two sequences produced by algorithms A1, A2 and A3 for α1, β1 and φ.

6. Final Remarks

We investigated the performances of three Bayesian computational methods to estimate
parameters of a bivariate survival model based on the Ali–Mikhail–Haq copula with marginal Weibull
distributions. The performances of the MCMC algorithms were compared using the RMSE criterion.
The RMSE values were calculated for different sample sizes and different percentages of censures.

The results obtained from the simulated data sets showed that the RWM and SS algorithms
outperformed the IMH algorithm, and that the SS algorithm performed better for lower sample sizes.
The results show evidence that MCMC sequences obtained with SS with the same number of iterations
L, burn in B and thinning value, have better properties (i.e., higher ESS and lower IAT values) than for
IMH and RWM, which are standard methods to sample from the joint posterior distribution.

We also illustrate the application of the algorithms using a real data set, available in the literature.
The algorithm A3 (with SS generating the αj’s) presented a better performance when applied to
this data set. The criteria used to reach this conclusion were the stability for the ergodic mean,
the autocorrelation, the minimum RMSE value, the maximum ESS value, and the minimum IAT value.
In addition, the algorithm using SS presented a satisfactory performance in relation to scale factor
reduction, and the Gelman plot of the Gelman–Rubin convergence diagnostic.

Our results show that algorithm A3, which is composed by a mixing of SS for generating αj, MH for
β j and IMH for φ, is an effective algorithm to simulate values from the joint posterior distribution of an
AMH copula with Weibull marginal distributions. Moreover, two advantages of SS are that it is easy
to implement and it does not need to specify a candidate generating density. A disadvantage in our
specific case is that it took longer to perform the simulation when compared with IMH and RWM. The
reason for this longer time is that we needed an iterative method to obtain the inverse of the function
κ(αj). This was because an analytical solution is not available. All calculations were implemented
using the software R and can be obtained from the authors.

An extension of the results obtained here for other Arquimedian copulas as well other marginal
distributions and a possible generalization would be a fruitful area for future work.

Author Contributions: The authors E.F.S. and A.K.S. developed the theoretical part of the research. The authors
E.F.S., A.K.S. and L.A.M. developed the simulation studies and real data application.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. ESS and IAT Values for Simulated Data Sets

In this section, we present the average of ESS and IAT values for each algorithm by parameter for
data set D1. As discussed in Section 4, Algorithm A3 presented a better performance than algorithms
A1 and A2. The results for data sets D2, D3 and D4 are similar.

Entropy 2018, 20, 642 17 of 21

Table A1. ESS by algorithm for data sets D1.

Sample
Size

% of
Censures

Algorithm A1 Algorithm A2 Algorithm A3
α1 β1 α2 β2 φ α1 β1 α2 β2 φ α1 β1 α2 β2 φ

n = 25

0% 25.4 1149.9 26.0 1168.4 105.9 1741.7 3493.7 1816.3 3511.8 111.2 4547.7 4110.0 4540.0 4136.9 112.2
5% 26.4 1360.4 27.4 1311.1 100.6 1758.1 3530.2 1823.3 3563.4 106.8 4569.7 4118.5 4622.4 4125.7 112.0
10% 27.9 1570.5 28.2 1422.5 97.6 1783.3 3543.0 1827.7 3598.9 99.9 4604.9 4220.7 4672.7 4191.9 105.2
20% 31.8 2178.7 30.1 1988.6 95.6 1869.0 3943.1 1822.2 3738.9 93.9 4681.8 4275.1 4726.5 4182.3 97.9
30% 32.9 2293.8 32.7 2146.3 88.5 1931.0 4018.4 1772.0 3885.7 88.1 4782.5 4350.3 4744.4 4329.9 89.6

n = 50

0% 19.4 860.7 19.5 1049.2 173.0 1415.2 3259.1 1774.8 3450.9 172.7 4607.70 4132.9 4610.4 4129.5 176.9
5% 19.6 1061.1 18.7 968.2 167.2 1475.8 3456.2 1796.2 3517.1 167.3 4680.2 4226.3 4698.9 4187.6 169.3
10% 21.1 1331.7 20.6 1168.2 163.2 1565.6 3662.3 1861.4 3700.1 155.8 4706.1 4237.6 4698.8 4148.0 171.4
20% 22.5 2134.5 23.1 2005.2 141.6 1668.8 3926.3 1922.5 3804.2 140.0 4825.1 4374.9 4792.8 4299.3 143.6
30% 24.3 2604.9 24.5 2241.4 127.0 1770.5 4188.2 1989.0 4047.5 132.2 4817.7 4504.1 4819.8 4364.1 133.8

n = 100

0% 14.3 817.5 14.8 826.7 316.7 1107.5 3258.6 1518.9 3429.5 323.9 4609.3 4244.3 4668.7 4169.3 325.2
5% 14.5 899.7 14.5 807.8 304.1 1136.7 3393.6 1549.6 3522.7 290.0 4639.9 4238.7 4689.2 4222.8 311.4
10% 15.6 1157.9 15.0 938.3 276.9 1199.2 3617.4 1598.7 3698.5 272.9 4729.9 4311.9 4800.5 4295.0 277.3
20% 16.3 1846.4 16.4 1540.7 260.7 1297.1 3886.4 1706.2 3834.2 265.2 4833.4 4465.1 4827.2 4399.4 271.4
30% 17.6 3127.3 17.7 2337.1 224.4 1414.1 4292.0 1831.9 4128.8 211.1 4857.6 4475.2 4862.9 4410.8 226.3

n = 250

0% 10.3 655.3 10.0 662.7 672.9 712.3 2856.1 1055.4 3236.4 687.8 4588.1 4210.6 4655.5 4275.5 698.8
5% 10.7 800.5 10.5 816.3 672.3 742.5 3106.1 1083.3 3343.3 640.0 4664.5 4333.8 4734.3 4277.8 693.9
10% 10.7 1024.2 10.8 951.7 602.3 786.7 3369.7 1128.4 3519.9 607.5 4728.8 4362.8 4757.3 4338.3 620.0
20% 10.7 1735.2 11.8 1494.5 549.7 863.0 3890.0 1226.9 3845.6 539.6 4741.7 4440.4 4805.1 4451.7 550.0
30% 12.2 3259.7 12.1 2271.8 466.2 936.6 4279.2 1308.9 4147.7 477.2 4872.7 4625.0 4858.4 4552.6 481.6

Entropy 2018, 20, 642 18 of 21

Table A2. IAT by algorithm for data sets D1.

Sample
Size

% of
Censures

Data Set A1 Data Set A2 Data Set A3
α1 β1 α2 β2 φ α1 β1 α2 β2 φ α1 β1 α2 β2 φ

n = 25

0% 162.7 2.4 162.4 2.3 50.6 3.0 1.5 2.9 1.5 50.2 1.1 1.3 1.1 1.2 50.0
5% 162.3 2.2 154.0 2.3 52.5 2.9 1.5 2.8 1.5 50.2 1.1 1.2 1.1 1.2 50.0
10% 152.7 2.0 150.9 2.3 54.1 2.9 1.5 2.8 1.5 54.8 1.1 1.2 1.1 1.2 51.3
20% 136.8 1.7 136.6 1.9 55.4 2.7 1.3 2.8 1.4 55.8 1.1 1.2 1.1 1.2 54.5
30% 132.2 1.7 130.4 1.7 59.9 2.6 1.3 3.0 1.4 59.8 1.1 1.2 1.1 1.2 57.6

n = 50

0% 208.9 2.3 213.5 2.2 33.2 3.7 1.6 2.9 1.5 32.8 1.1 1.2 1.1 1.2 32.5
5% 208.7 2.0 233.6 2.2 34.8 3.5 1.5 2.9 1.5 34.5 1.1 1.2 1.1 1.2 34.2
10% 198.6 1.9 206.5 2.2 35.6 3.3 1.4 2.7 1.4 36.0 1.1 1.2 1.1 1.2 35.2
20% 183.6 1.6 179.4 1.6 39.5 3.1 1.3 2.7 1.4 39.2 1.1 1.2 1.1 1.2 39.0
30% 170.5 1.5 170.0 1.6 43.2 2.9 1.2 2.5 1.3 41.9 1.1 1.1 1.1 1.2 40.3

n = 100

0% 288.1 2.1 278.2 2.2 17.9 4.6 1.6 3.4 1.5 18.1 1.1 1.2 1.1 1.2 17.2
5% 284.7 2.2 287.2 2.2 19.7 4.5 1.5 3.3 1.5 20.3 1.1 1.2 1.1 1.2 18.9
10% 266.8 1.9 271.9 1.9 21.3 4.2 1.4 3.2 1.4 20.5 1.1 1.2 1.1 1.2 20.3
20% 250.0 1.6 252.8 1.7 22.8 3.9 1.4 3.0 1.4 22.4 1.1 1.1 1.1 1.2 22.3
30% 233.4 1.3 227.1 1.5 26.5 3.6 1.2 2.8 1.2 27.0 1.1 1.1 1.1 1.2 26.2

n = 250

0% 417.9 2.0 418.8 2.0 7.9 7.1 1.8 4.8 1.6 7.9 1.1 1.2 1.1 1.2 7.6
5% 400.6 1.9 399.7 2.0 8.2 6.8 1.7 4.7 1.6 8.4 1.1 1.2 1.1 1.2 8.1
10% 391.7 1.8 366.7 1.8 9.1 6.5 1.5 4.5 1.5 9.0 1.1 1.2 1.1 1.2 8.8
20% 374.6 1.5 355.9 1.6 10.2 5.9 1.3 4.1 1.4 10.3 1.1 1.2 1.1 1.2 10.1
30% 358.9 1.3 339.2 1.4 11.8 5.5. 1.5 3.9 2.1 11.7 1.1 1.1 1.1 1.1 11.1

Appendix B. Empirical Illustration of the Convergence

We present here an empirical illustration of the convergence of the simulated sequences for
parameters α1 and β1. We randomly selected a data set from one of the M = 200 generated data sets
D1 with n = 100 and %cens = 5 and present the traceplot, graphs showing of the ergodic mean and
autocorrelation of the sampled values by algorithm and the Gelman plot.

Figure A1 shows the performance of the algorithms for sampled α1 values. It can be observed
that the IMH (algorithm A1) does not mix well, it does not have stability for the ergodic mean, and
the estimated autocorrelation does not decrease as fast as the other algorithms. The sequences of α1’s
generated by RWM and SS are well mixed and present satisfactory stability for the ergodic mean, and
the autocorrelation decreases faster, with a clear advantage for algorithm A3. The Gelman plot indicates
that the number of iterations used was sufficient for algorithms A2 and A3 to reach the convergence.

Figure A2 presents the performances of each algorithm for the sequence generated for β1. As can
be observed, the three algorithms present satisfactory properties. The satisfactory performance of the
three algorithms is mainly due to the fact that β1 has a natural candidate generating density with
parameters depending on the observed data and values of hyperparameters.

0 1000 2000 3000 4000 5000

1
.4

1
.6

1
.8

2
.0

2
.2

Iterations

S
a

m
p

le
d

 v
a

lu
e

s

(a) A1.

0 1000 2000 3000 4000 5000

1
.4

1
.6

1
.8

2
.0

2
.2

Iterations

S
a

m
p

le
d

 v
a

lu
e

s

(b) A1.

0 1000 2000 3000 4000 5000

1
.4

1
.6

1
.8

2
.0

2
.2

Iterations

S
a

m
p

le
d

 v
a

lu
e

s

(c) A1.

Figure A1. Cont.

Entropy 2018, 20, 642 19 of 21

0 1000 2000 3000 4000 5000

1
.8

0
1

.8
5

1
.9

0
1

.9
5

Iteration

E
rg

o
d

ic
 m

e
a

n

(d) A2.

0 1000 2000 3000 4000 5000

1
.8

0
1

.8
5

1
.9

0
1

.9
5

Iteration

E
rg

o
d

ic
 m

e
a

n

(e) A2.

0 1000 2000 3000 4000 5000

1
.8

0
1

.8
5

1
.9

0
1

.9
5

Iteration

E
rg

o
d

ic
 m

e
a

n

(f) A2.

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(g) A3.

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(h) A3.

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(i) A3.

0 1000 2000 3000 4000 5000

1
.
0

1
.
4

1
.
8

2
.
2

last iteration in chain

s
h

r
i
n

k

f
a

c
t
o

r

median

97.5%

(j) A3.

0 1000 2000 3000 4000 5000

1
.
0

1
.
2

1
.
4

1
.
6

last iteration in chain

s
h

r
i
n

k

f
a

c
t
o

r

median

97.5%

(k) A3.

0 1000 2000 3000 4000 5000

1
.
0

0
1

.
0

5
1

.
1

0

last iteration in chain

s
h

r
i
n

k

f
a

c
t
o

r

median

97.5%

(l) A3.

Figure A1. Traceplot, ergodic mean and autocorrelation for sequences produced by algorithms A1, A2

and A3 for α1.

0 1000 2000 3000 4000 5000

0
.8

1
.0

1
.2

1
.4

1
.6

Iterations

S
a
m

p
le

d
 v

a
lu

e
s

(a) A1.

0 1000 2000 3000 4000 5000

0
.8

1
.0

1
.2

1
.4

1
.6

Iterations

S
a
m

p
le

d
 v

a
lu

e
s

(b) A2.

0 1000 2000 3000 4000 5000

0
.8

1
.0

1
.2

1
.4

1
.6

Iterations

S
a
m

p
le

d
 v

a
lu

e
s

(c) A3.

Figure A2. Cont.

Entropy 2018, 20, 642 20 of 21

0 1000 2000 3000 4000 5000

1
.0

5
1
.1

0
1
.1

5
1
.2

0
1
.2

5

Iteration

E
rg

o
d
ic

 m
e
a
n

(d) A1.

0 1000 2000 3000 4000 5000

1
.0

5
1
.1

0
1
.1

5
1
.2

0
1
.2

5

Iteration

E
rg

o
d
ic

 m
e
a
n

(e) A2.

0 1000 2000 3000 4000 5000

1
.0

5
1
.1

0
1
.1

5
1
.2

0
1
.2

5

Iteration

E
rg

o
d
ic

 m
e
a
n

(f) A3.

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(g) A1.

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(h) A2.

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(i) A3.

0 1000 2000 3000 4000 5000

1
.
0

1
.
4

1
.
8

2
.
2

last iteration in chain

s
h

r
i
n

k

f
a

c
t
o

r

median

97.5%

(j) A1.

0 1000 2000 3000 4000 5000

1
.
0

0
1

.
0

5
1

.
1

0
1

.
1

5
1

.
2

0

last iteration in chain

s
h

r
i
n

k

f
a

c
t
o

r

median

97.5%

(k) A2.

0 1000 2000 3000 4000 5000

1
.
0

0
1

.
0

5
1

.
1

0
1

.
1

5

last iteration in chain

s
h

r
i
n

k

f
a

c
t
o

r

median

97.5%

(l) A3.

Figure A2. Traceplot, ergodic mean and autocorrelation for sequences produced by algorithms A1, A2

and A3 for β1.

References

1. Sahu, S.K.; Dey, D.K. A comparison of frailty and other models for bivariate survival data. Lifetime Data Anal.
2000, 6, 207–228. [CrossRef] [PubMed]

2. Zhang, S.; Zhang, Y.; Chaloner, K.; Stapleton, J.T. A copula model for bivariate hybrid censored survival data
with application to the MACS study. Lifetime Data Anal. 2010, 16, 231–249. [CrossRef] [PubMed]

3. Shih, J.H.; Louis, T.A. Inferences on the association parameter in copula models for bivariate survival data.
Biometrics 1995, 51, 1384–1399. [CrossRef] [PubMed]

4. Othus, M.; Li, Y. A Gaussian copula model for multivariate survival data. Stat. Biosci. 2010, 2, 154–179.
[CrossRef] [PubMed]

5. Nelsen, R.B. An Introduction to Copulas; Springer: New York, NY, USA, 2006.
6. Durante, F.; Sempi, C. Principles of Copula Theory; CRC/Chapman and Hall: London, UK, 2015.
7. Romeo, J.S.; Tanaka, N.I.; Pedroso-de-Lima, A.C. Bivariate survival modeling: A Bayesian approach based

on copulas. Lifetime Data Anal. 2006, 12, 205–222. [CrossRef] [PubMed]

http://dx.doi.org/10.1023/A:1009633524403
http://www.ncbi.nlm.nih.gov/pubmed/10949859
http://dx.doi.org/10.1007/s10985-009-9139-z
http://www.ncbi.nlm.nih.gov/pubmed/19921432
http://dx.doi.org/10.2307/2533269
http://www.ncbi.nlm.nih.gov/pubmed/8589230
http://dx.doi.org/10.1007/s12561-010-9026-x
http://www.ncbi.nlm.nih.gov/pubmed/22162742
http://dx.doi.org/10.1007/s10985-006-9001-5
http://www.ncbi.nlm.nih.gov/pubmed/16868839

Entropy 2018, 20, 642 21 of 21

8. Da Cruz, J.N.; Ortega, E.M.M.; Cordeiro, G.M.; Suzuki, A.K.; Mialhe, F.L. Bivariate odd-log-logistic-Weibull
regression model for oral health-related quality of life. Commun. Stat. Appl. Methods 2017, 24, 271–290.
[CrossRef]

9. Louzada, F.; Suzuki, A.K.; Cancho, V.G. The FGM long-term bivariate survival copula model: Modeling,
Bayesian estimation, and case influence diagnostics. Commun. Stat. Theory Methods 2013, 42, 673–691.
[CrossRef]

10. Suzuki, A.K.; Louzada, F.; Cancho, V.G. On estimation and influence diagnostics for a bivariate promotion
lifetime model based on the FGM copula: A fully Bayesian computation. TEMA 2013, 14, 441–461. [CrossRef]

11. Romeo, J.S.; Meyer, R.; Gallardo, D.I. Bayesian bivariate survival analysis using the power variance function
copula. Lifetime Data Anal. 2018, 24, 355–383. [CrossRef] [PubMed]

12. Kumar, P. Probability Distributions and Estimation of Ali–Mikhail–Haq Copula. Appl. Math. Sci.
2010, 14, 657–666.

13. Neal, R.M. Slice sampling. Ann. Stat. 2003, 31, 705–767. [CrossRef]
14. Kass, R.E.; Carlin, B.P.; Gelman, A.; Neal, R.M. Markov Chain Monte Carlo in Pratice: A Roundtable

Discussion. Am. Statist. 1998, 52, 93–100.
15. The Diabetic Retinopathy Study Research Group. Preliminary report on the effect of photocoagulation

therapy. Am. J. Ophthalmol. 1976, 81, 383–396. [CrossRef]
16. Therneau, T.M. A Package for Survival Analysis in S, Version 2.38. 2015. Available online: https://CRAN.R-

project.org/package=survival (accessed on 4 July 2018).
17. R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for

Statistical Computing: Vienna, Austria, 2012; ISBN 3-900051-07-0.
18. Ali, M.M.; Mikhail, N.N.; Haq, M.S. A class of bivariate distributions including the bivariate logistic.

J. Multivar. Anal. 1978, 8, 405–412. [CrossRef]
19. Lawless, J.F. Statistical Models and Methods for Life Time Data; John Wiley and Sons: New York, NY, USA, 1974.
20. Weibull, W. A statistical distribution function of wide applicability. AMSE J. Appl. Mech. 1951, 18, 292–297.
21. Collett, D. Modelling Survival Data in Medical Research, 3rd ed.; Chapman and Hall/CRC:

Boca Raton, FL, USA, 2015.
22. Hastings, W.K. Monte Carlo sampling methods using Markov Chains and their applications. Biometrika

1970, 57, 97–109. [CrossRef]
23. Chib, S.; Greenberg, E. Understanding the Metropolis–Hastings algorithm. Am. Stat. 1995, 49, 327–335.
24. Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis; Chapman and Hall: London, UK, 1995.
25. Gilks, W.R.; Richardson, S.; Spiegelhalter, D.J. Markov Chain Monte Carlo in Practice; Chapman and Hall:

London, UK, 1996.
26. Roberts, G.; Gelman, A.; Gilks, W. Weak convergence and optimal scaling of Random Walk Metropolis

algorithms. Ann. Appl. Probab. 1997, 7, 110–120. [CrossRef]
27. Bedard, M. Weak convergence of Metropolis algorithms for non-i.i.d. target distributions. Ann. Appl. Probab.

2007, 17, 1222–1244. [CrossRef]
28. Mattingly, J.C.; Pillai, N.S.; Stuart, A.M. Diffusion limits of the random walk Metropolis algorithm in high

dimensions. Ann. Appl. Probab. 2011, 22, 881–930. [CrossRef]
29. Gelman, A., Rubin, D.B. Inference from Iterative Simulation using Multiple Sequences. Stat. Sci. 1992, 7, 457–511.

[CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5351/CSAM.2017.24.3.271
http://dx.doi.org/10.1080/03610926.2012.725147
http://dx.doi.org/10.5540/tema.2013.014.03.0441
http://dx.doi.org/10.1007/s10985-017-9396-1
http://www.ncbi.nlm.nih.gov/pubmed/28536818
http://dx.doi.org/10.1214/aos/1056562461
http://dx.doi.org/10.1016/0002-9394(76)90292-0
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
http://dx.doi.org/10.1016/0047-259X(78)90063-5
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1214/aoap/1034625254
http://dx.doi.org/10.1214/105051607000000096
http://dx.doi.org/10.1214/10-AAP754
http://dx.doi.org/10.1214/ss/1177011136
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Bivariate Survival Model and Observed Data
	Bayesian Approach
	MCMC for j
	Two Common Choices for q[]
	Slice Sampling Algorithm

	MCMC for j and
	MCMC Algorithms

	Simulation Study
	Application to a Real Data Set
	Final Remarks
	ESS and IAT Values for Simulated Data Sets
	Empirical Illustration of the Convergence
	References

