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Abstract: The maximum entropy principle introduced by Jaynes proposes that a data distribution
should maximize the entropy subject to constraints imposed by the available knowledge.
Jaynes provided a solution for the case when constraints were imposed on the expected value of a
set of scalar functions of the data. These expected values are typically moments of the distribution.
This paper describes how the method of maximum entropy PDF projection can be used to generalize
the maximum entropy principle to constraints on the joint distribution of this set of functions.
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1. Introduction

1.1. Jaynes’ Maximum Entropy Principle

The estimation of probability density functions (PDF) is the cornerstone of classical decision
theory as applied to real-world problems. The maximum entropy principle of Jaynes [1] proposes that
the PDF should have maximum entropy subject to constraints imposed by the knowledge one has about
the density. Let x be a set of N random variables x = [x1, x2 . . . xN ]. The entropy of the distribution
p(x) is given by

H{p(x)} = −
∫

x
p(x) log(p(x))dx. (1)

Jaynes worked out the case when the knowledge about p(x) consists of the expected value of a set
of K measurements. More precisely, he considered the K scalar functions φ1(x), φ2(x) . . . φK(x) and
constrained the expected values: ∫

x
φk(x) p(x) dx = dk, 1 ≤ k ≤ K. (2)

If φk(x) = ∑N
i=1 xk

i , then (2) are moment constraints.
The distribution maximizing (1) subject to (2) is:

p(x) = e−[λ0+λ1φ1(x)+λ2φ2(x)+...λKφK(x)],

where λ0 is the log of the partition function:

Z(λ1, λ2 . . . λK) =
∫

x
e−[λ1φ1(x)+λ2φ2(x)+...λKφK(x)].

The constants λk are determined by solving

dk =
∂

∂λk
log Z, 1 ≤ k ≤ K.
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1.2. Feature Distribution Constraints

Jaynes’ results had initial applications in statistical mechanics and thermodynamics [2], and have
found more applications in a wide range of disciplines [2–5]. However, we would like to extend the
results by replacing constraints (2) with constraints that are more meaningful in real-world inference
problems. Instead of knowing just the average values of φk(x), suppose we knew the joint distribution of
z = Φ(x) = [φ1(x), φ2(x), . . . φK(x)], denoted by pz(z). This carries more information than the average
values of each measurement φk(x). Because the number of parameters K is small compared with the
dimension of x, it is feasible to estimate pz(z) from a set of training samples using kernel-based PDF
estimation methods, for example. This constraint is more general and can be adapted to produce
something similar to Jaynes’ constraints (2) if the marginal measurement distributions are assumed
independent, and Gaussian with mean dk. This has immediate applications in a wide range of fields,
for example in speech analysis and recognition where z could be MEL frequency cepstrum coefficients
(MFCC) [6] extracted from the time-series data x, or in neural networks, where z could be the output
of a network.

Note that the distribution pz(z) can be obtained from p(x) by marginalization:

pz(z) =
∫

x∈M(z)
p(x) dx, (3)

where the integral is carried out on the level set or manifold given by

M(z) = {x : φ1(x) = z1, φ2(x) = z2, . . . φK(x) = zK}. (4)

The constraint problem can then be re-stated as follows:

Problem 1. Given a known distribution pz(z), maximize the entropy of p(x) subject to∫
x∈M(z)

p(x) dx = pz(z), ∀z. (5)

The solution to this problem is called maximum entropy PDF projection [7–9].

1.3. Significance

The main significance of maximum entropy PDF projection is the de facto creation of a statistical
model through the extraction of features. Once a feature extraction z = Φ(x) has been identified, and it
meets some mild requirements given below, a statistical model has been determined. This has a number
of advantages, not the least of which is that the “art” of extracting features, i.e., signal processing, is well
established, and many good methods exist to extract meaningful information from data. For example,
the extraction MFCC features for processing speech signals has been developed to approximate human
hearing [6], and, therefore, with maximum entropy PDF projection, should lead to statistical data
models which share some qualities with human perception. Before maximum entropy PDF projection,
comparing feature extraction methods had to be done based on secondary factors such as classification
results. Maximum entropy PDF projection allows a feature extraction method to be evaluated based
its corresponding statistical model.

The use of the maximum entropy principle assures the fairest means of comparing two statistical
models derived from competing feature extraction methods. In most real-world applications, we cannot
know p(x), and must be satisfied with estimating it from some training data. Suppose that we
have a set of K training samples x1, x2, . . . , xK, and have a number of proposed PDFs computed
using (6) for various feature transformations zi = Φi(x). Let these projected PDFs be denoted by
pi(x). We would like to determine which projected PDF (i.e., which feature vector) provides a “better”
fit to the data. One approach would be to compare the PDFs based on the average log-likelihood
Li =

1
K ∑K

n=1 log pi(xn), choosing the feature transformation that results in the largest value. However,
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likelihood comparison by itself is misleading, so one must also consider the entropy of the distribution,
Qi = −

∫
x{log pi(x)} pi(x)dx, which is the negative of the theoretical value of Li. Distributions

that spread the probability mass over a wider area have higher entropy since the average value of
log p(x) is lower. The two concepts of Q and L are compared in Figure 1 in which we show three
competing distributions: p1(x), p2(x), and p3(x). The vertical lines represent the location of the K
training samples. If Li is the average value of log pi(x) at the training sample locations, then clearly
L1 � L3 � L2. However, choosing p2(x) is very risky because it is over-adapted to the training
samples. Clearly, p2(x) has lower entropy since most of the probability mass is at places with higher
likelihood. Therefore, it has achieved higher L at the cost of lower Q, a suspicious situation. On the
other hand, Q1 = Q3, but L3 > L1. Therefore, p3(x) has achieved higher L than p1(x) without suffering
lower Q, so choosing p3(x) over p1(x) is not risky. If we always choose among models that have
maximum possible entropy for the given choice of features, we are likely to obtain better features and
better generative models.

x

p (x)

p (x)

3

2

p (x)
1

Figure 1. Comparison of entropy Q and average log-likelihood L for three distributions. The vertical
lines are the locations of training samples.

2. Main Results

2.1. MaxEnt PDF Projection

The solution to Problem 1 is based on PDF projection [10]. In PDF projection, one is given a
feature distribution pz(z) and constructs a PDF as follows:

pp(x; p0, Φ, pz) =
p0(x)

p0,z(z)
pz(Φ(x)), (6)

where p0(x) is a reference distribution meeting some mild constraints [10], and p0,z(z) is the
corresponding distribution imposed by p0(x) on the measurements z, i.e., p0,z(z) is Equation (3)
applied to p0(x). It can be shown that

• Equation (6) is a PDF, so
∫

x pp(x; p0, Φ, pz)dx = 1.
• pp(x; p0, Φ, pz) meets (5), so it is consistent with pz(z).
• All distributions meeting (5) can be written in the form (6) for some p0(x).

The last item in the list indicates that, to solve Problem 1, it is only necessary to select the reference
distribution p0(x) for maximum entropy (MaxEnt).

To understand the solution to this problem, it is useful to consider the sampling procedure for (6).
To sample from distribution (6), one draws a sample z∗ from PDF pz(z); then, x is drawn from the set
M(z∗), defined in (4). Note, however, that to conform to (6), it is necessary to draw sample x from
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M(z∗) with probability proportional to the value of p0(x). The distribution of x on the manifoldM(z∗)
may be thought of the conditional distribution p(x|z∗), and it is proportional to p0(x). It is in fact

p(x|z∗) = p0(x)
p0,z(z)

. (7)

It can be verified that (7) integrates to 1 on the manifoldM(z∗). The entropy of (6) can be decomposed
as the entropy of pz(z) plus the expected value of the entropy of the p(x|z) (see Equation (8) in [8]):

H{pp(x; p0, Φ, pz)} = H{pz(z)} +
∫

z
H{p(x|z)} pz(z) dz.

Maximizing this quantity seems daunting, but there is one condition under which H{p(x|z)} has the
maximum entropy for all z, and that is when p(x|z) is the uniform distribution for all z. This, in turn,
is achieved when p0(x) has a constant value on any manifoldM(z).

This process of selecting p0(x) for maximum entropy is called maximum entropy PDF
projection [8,9]. The maximizing reference distribution is written p∗0 = arg maxp0 H{pp(x; p0, Φ, pz)},
and the MaxEnt distribution is written

p∗p(x; Φ, pz) =
p∗0(x)

p∗0,z(z)
pz(Φ(x)), (8)

which is the unique distribution that solves Problem 1.
In order that it is possible to select p0(x) for MaxEnt, the feature transformation Φ(x) must be

such that the uniform distribution can be defined onM(z) for any z. Thus,M(z) must be bounded
and integrable. This condition is easily met if the feature z contains information about the size of x
so that when z is fixed to a finite value, the x has a fixed norm. To say this formally, let there exist a
function f (z) such that f (Φ(x)) = ‖x‖ for some valid norm ‖x‖ on the range of x.

Once this condition is met, then p∗0(x) is any distribution that is constant on any level setM(z).
This happens if there exists a function c such that

p∗0(x) = c(Φ(x)).

Interestingly, any p∗0(x) meeting these constraints results in the same distribution (6) [8]. This means that,
although p∗0(x) is not unique, p∗p(x; Φ, pz) is unique—it must be unique if it is the maximum entropy PDF.

The above conditions can be easily met by inserting an energy statistic into the feature set Φ(x),
and defining a reference distribution that depends on x only through this energy statistic. The energy
statistic is a scalar statistic from which it is possible to compute a valid norm on the range of x, denoted
by X . In summary, the simplest way to solve for the MaxEnt projected PDF given the range of x,
denoted by X , involves these three steps:

1. Identify a norm ‖x‖ valid in X A norm ‖x‖must meet the properties of scalability ‖ax‖ = |a|‖x‖,
triangle inequality ‖x + y‖ ≤ ‖x‖+ ‖y‖, and ‖0‖ = 0.

2. Identify a scalar statistic (energy statistic) t(x) from which it is possible to compute ‖x‖:

‖x‖ = f (t(x)).

3. Use a reference hypothesis depending only on t(x).

The above will be demonstrated for three cases of X in Sections 3.1–3.3.
The data generation process for MaxEnt PDF projection, corresponding to distribution (8) does

not depend on X and is the following:

1. From the known distribution pz(z), draw a sample denoted by z∗ = [z∗1 , z∗2 . . . z∗K].
2. Now identify the set of all samples x mapping to z∗, denoted byM(z∗).
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3. Draw a sample x from this set, uniformly, so that no member ofM(z∗) is more likely to be chosen
than another.

The maximum entropy nature of the solution can be recognized in the uniform sampling on
the level setM(z∗). The last item above is called uniform manifold sampling (UMS) [9]. The data
generation process for three cases of X are provided in Sections 3.1–3.3.

3. Examples

The implementation of MaxEnt PDF projection depends strongly on the range of the input data x,
denoted by X . In this section, examples are provided for three important cases of X .

3.1. Unbounded Data X = RN

Let x range everywhere in RN . The 2-norm ‖x‖2 is valid in RN and can be computed from the
total energy

t2(x) =
N

∑
n=1

x2
n.

The Gaussian reference hypothesis can be written in terms of t2(x):

p0(x) =
N

∏
i=1

1√
2π

e−x2
i /2 = (2π)−N/2 e−t2(x)/2, (9)

so naturally p0(x) will have a constant value on any manifoldM(z). Naturally, it is not necessary to
include t2(x) explicitly in the feature set—it is only necessary that the 2-norm can be computed from z.

The distribution p∗0,z(z) can be determined in closed form for some feature transformations [11,12].
For others, the moment generating function can be written in closed form, which allows the saddle
point approximation to be used to compute p∗0,z(z) [11]. More on this will be presented in Section 4.1.

An important case where a closed-form solution exists is the linear transformation combined with
total energy:

z = [A′x, x′x].

This case is covered in detail in ([8], Section IV.C, p. 2821), and in ([9], Section III.B, p. 2459).
The following simple example demonstrates the main points of this case. Assume input data

dimension N = 3 and a feature transformation consisting of the sample mean and sample variance:

z = [µ̂, v̂] ,

where

µ̂ =
1
N

N

∑
i=1

xi, v̂ =
1

N − 1

N

∑
i=1

(xi − µ̂)2.

Note that t2(x) can be computed from (µ̂, v̂),

t2(x) = (N − 1)v̂ + Nµ̂2,

which satisfies the requirement that the 2-norm of x can be computed from z.
Under the assumption that x is distributed according to the standard Normal distribution (9),

µ̂ will have mean 0 and variance 1/N,

p0(µ) =

(
2π

N

)−1/2
e−Nµ2/2,
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and v̂ will have the chi-square distribution with N − 1 degrees of freedom and scaling 1
N−1 , which is

given by

p0(v) =
k

2k/2 Γ−1
(

k
2

)
[kv]k/2−1 e−

vk
2 ,

where k = N− 1. Furthermore, µ̂ and v̂ are statistically independent. Therefore, p∗0,z(z) = p0(µ) · p0(v).
For the given feature distribution, we assume components of z are independent and Gaussian

pz(zi) = (2πvi)
−1/2e−(zi−µi)

2/(2vi)

with given mean µi and variance vi, where z0 = µ̂, z1 = v̂. The MaxEnt projected PDF, given by

p∗p(x; Φ, pz) =
p∗0(x)

p∗0,z(z)
pz(z) is plotted on the left of Figure 2 for slice of x2, x3 at x1 = 0.0. The density

values shown in the figure, summed over all three axes and properly scaled added to a value
0.9999999998, which validates with numerical integration that p∗p(x; Φ, pz) is a density. Notice that
the probability is concentrated on a circular region. This can be understood in terms of the sampling
procedure given below.
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Figure 2. (Left) illustration of projected PDF for µ0 = 0.15, v0 = 0.3, µ1 = 1.85, v1 = 0.025, on a slice of
x2, x3 at x1 = 0; (Right) samples drawn from the sampling procedure (see text).

To sample from p∗p(x; Φ, pz), we first draw a sample of z from p∗0,z(z), denoted by z∗,
which provides values for the sample mean value µ∗ and variance v∗. Then, x must be drawn
uniformly from the manifold {x : µ̂ = µ∗, v̂ = v∗} , which are conditions on the sample mean and
variance. This is easily accomplished if we note that the sample mean condition is met for any x of
the form

x = [1, 1 . . . 1]′µ∗ + Bu, (10)

where B is the N× (N− 1) ortho-normal matrix spanning the space orthogonal to the vector [1, 1 . . . 1]′.
To meet the second (variance) condition, it is necessary that

‖u‖2 = (N − 1)v∗.

This condition defines a hypersphere in (N − 1) dimensions, which explains the circular region in
Figure 2. This hypersphere is sampled uniformly by drawing N − 1 independent Gaussian random
variables, denoted by u, then scaling u so that ‖u‖2 = (N − 1)v∗. Then, x is constructed using (10).
Samples drawn in this manner are shown on the right side of Figure 2. To agree with the left side of
the figure, only samples with |x1| < 0.01 are plotted.

Please see the above-cited references for using general linear transformations.
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3.2. Positive Data X = PN

Let x have positive-valued elements, so x ranges in the positive quadrant of RN , denoted by PN .
This holds whenever spectral or intensity data is processed. The appropriate norm in this space is
the 1-norm

‖x‖ = 1
N

N

∑
n=1

xn.

To satisfy conditions for maximum entropy, it must be possible to compute the statistic t1(x) = ∑N
n=1 xn

from the features. The exponential reference hypothesis can be written in terms of t1(x):

p0(x) =
N

∏
i=1

e−xi = e−t1(x), (11)

so naturally p0(x) will have a constant value on any manifoldM(z), and is the appropriate reference
hypothesis for maximum entropy. The inclusion of t1(x) explicitly in the feature set is only one way to
insure thatM(z) is compact—it is only necessary that the 1-norm can be computed from z.

An important feature extraction is the linear transformation

z = A′x.

Note that is necessary that statistic t1(x) can be computed from z, which can be accomplished,
for example, to making the first column of A constant. This case is covered in detail in ([8], Section
IV.B, p. 2820), and in ([9], Section IV, p. 2460). Sampling x is accomplished by drawing a sample z∗

from pz(z) and then drawing a sample x uniformly from the set {x : A′x = z∗}.
The following simple example demonstrates the main theoretical concepts. We assume a data

dimension of N = 2 so that the distribution can be visualized as an image. The feature transformation
is simply the sum of the samples:

z = T(x1, x2) = x1 + x2.

Under the exponential reference hypothesis, the feature distribution is chi-square with 2N degrees of
freedom and scaling 1/2:

p∗0,z(z) =
2

Γ(k/2)
2−k/2 (2z)(k/2−1)e−z,

where k = 2N. For the given feature distribution, we assume Gaussian

pz(z) = (2πvz)
−1/2e−(z−µz)2/(2vz)

with a given mean µz and variance vz. The MaxEnt projected PDF, given by p∗p(x; Φ, pz) =
p∗0(x)

p∗0,z(z)
pz(z)

is plotted in Figure 3. The density values shown in the figure, when properly scaled, summed to a
value 0.9998, which validates with numerical integration that p∗p(x; Φ, pz) is a density. Note that the
distribution is concentrated on the line x1 + x2 = µz = 2, and is flat on this line, as would be expected
for maximum entropy. To sample from this distribution, we first draw a sample z∗ from pz(z) and
then draw a sample x on the line given by x1 + x2 = z∗. This can be done by sampling x1 uniformly in
[0, z∗], then letting x2 = z∗ − x1. Samples drawn in this way are shown on the right side of Figure 3.

This example generalizes to higher dimension and to arbitrary linear transformations z = A′x
for full-rank N × M matrix A. In this case, p∗0,z(z) is not chi-square, and in fact is not available in
closed-form. However, the moment-generating function is available in closed-form so the saddle point
approximation may be used (See Section IV.A, p. 2245 in [11]). Samples of x are drawn by drawing a
sample z∗ from pz(z) and then sampling uniformly in the set {x : A′x = z∗}. At high dimensions,
this requires a form of Gibbs sampling called hit and run (see Section IV, p. 2460 in [9]).
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Figure 3. (Left) illustration of projected PDF for µz = 2.0, vz = 0.04; (Right) samples drawn from the
sampling procedure (see text).

3.3. Unit Hypercube, X = UN

Let x have elements limited to 0 ≤ xi ≤ 1. This case is common when working with neural
networks. This is called the unit hypercube, denoted by UN . The uniform reference hypothesis

p0(x) = 1. (12)

produces maximum entropy. No norm-producing energy statistic is needed. Naturally, p0(x) will have
a constant value on any manifoldM(z).

The following simple example demonstrates the main theoretical concepts. We assume a data
dimension of N = 2 so that the distribution can be visualized as an image. The feature transformation
is simple the sum of the samples:

z = T(x1, x2) = x1 + x2.

For this case, the uniform distribution brings maximum entropy, p∗0(x) = 1. Under the reference
hypothesis, the feature distribution is Irwin-Hall, given by

p∗0,z(z) =
1

2(N − 1)!

N

∑
k=0

(−1)k
(

N
k

)
(z− k)N−1sign(z− k),

where sign(0) = 0. For N = 2, this is a triangular distribution

p∗0,z(z) = {z, 0 ≤ z ≤ 1; 2− z, 1 ≤ z ≤ 2}.

For the given feature distribution, we assume Gaussian

pz(z) = (2πvz)
−1/2e−(z−µz)2/(2vz)

with a given mean µz and variance vz. The MaxEnt projected PDF, given by p∗p(x; Φ, pz) =
p∗0(x)

p∗0,z(z)
pz(z)

is plotted in Figure 4. The density values shown in the figure, when properly scaled, summed to a
value 0.999, which validates with numerical integration that p∗p(x; Φ, pz) is a density. Note that the
distribution is concentrated on the line x1 + x2 = µz, and is flat on this line, as would be expected
for maximum entropy. To sample from this distribution, we first draw a sample z∗ from pz(z) and
then draw a sample x on the line given by x1 + x2 = z∗. This can be done by finding where the line
that intercepts the axes, and sampling uniformly in the interval between the intercepts. Note that this
sampling differs from the previous example as a result of the upper bound at 1.

This example generalizes to higher dimension and to arbitrary linear transformations z = A′x for
full-rank N ×M matrix A. In this case, p∗0,z(z) is no longer Irwin-Hall and in fact is not available in
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closed-form. However, the moment-generating function is available in closed-form so the saddle point
approximation may be used (see Appendix in [13]). Samples of x are drawn by drawing a sample z∗

from pz(z) and then sampling uniformly in the set {x : A′x = z∗}. At high dimensions, this requires
a form of Gibbs sampling called hit and run (see p. 2465 in [9]).
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Figure 4. Illustration of projected PDF for µz = 1.3, vz = 0.002.

4. Advanced Concepts

4.1. Implementation Issues

Implementing (8) seems like a daunting numerical task, since p∗0(x) is some canonical distribution,
for which a real data sample x normally lies in the far tails of both p∗0(x) and p∗0,z(z). However, if the
distributions are known exactly, and are represented in the log domain, then the difference

log p∗0(x)− log p∗0,z(z) (13)

typically remains within very reasonable limits. In some cases, terms in log p∗0(x) and log p∗0,z(z) cancel,
leaving (13) only weakly dependent on x (for example, see Section IV.A, p. 2820 in [8]).

Evaluating log p∗0(x) is mostly trivial since it is normally a canonical distribution, such as Gaussian,
exponential, or uniform. Calculating log p∗0,z(z), however, remains the primary challenge in maximum
entropy PDF projection. However, when evaluating p∗0,z(z) seems daunting, there are several ways to
overcome the problem.

1. Saddle Point Approximation. If p∗0,z(z) is not available in closed form, the moment-generating
function (MGF) might be tractable. This allows the saddle point approximation (SPA) to be
used (see Section III in [11]). Note that the term “approximation” is misleading because the
SPA approximates the shape of the MGF on a contour, not the absolute value, so the SPA
expression for log p∗0,z(z) remains very accurate, in the far tails, even when p∗0,z(z) itself cannot
be evaluated in machine precision. Examples of this include general linear transformations of
exponential and chi-squared random variables (see Section III.C and Section IV in [11]), general
linear transformations of uniform random variables (Appendix in [13]), a set of linear-quadratic
forms [14], and order statistics [15].

2. Floating reference hypothesis. There are conditions under which the MaxEnt reference hypothesis
p∗0(x) is not unique, so it can depend on a parameter θ, so we write p∗0(x; θ). An example is
when the feature z contains the sample mean and sample variance (see example in Section 3.1).
In this case, a Gaussian reference hypothesis p∗0(x; θ) can be modified to have any mean and
variance θ = [µ0, σ2

0 ], and can serve as the MaxEnt reference hypothesis with no change at all
in the resulting projected PDF. In other words, (13) is independent of θ—this can be verified by
cancelling terms. Therefore, there is no reason that θ cannot be made to track the data—that is,
let µ0 = µ̂(x), σ2

0 = σ̂2(x). By doing this, p∗0,z(z) will track z, allowing simple approximations
based on central limit theorem to be used to approximate p∗0,z(z).
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3. Chain Rule. When p∗0,z(z) cannot be derived for a feature transformation, it may be possible to
break the feature transformation into stages, where each stage can be easily analyzed. The next
section is devoted to this.

4.2. Chain Rule

The primary numerical difficulty in implementing (8) is the calculation of p∗0,z(z). Solutions for
many of the most useful feature transformations are available [9,11–13]. However, in many real-world
applications, such as neural networks, the feature transformations cannot be easily written in a compact
form z = [φ1(x), φ2(x), . . . φK(x)]. Instead, they consist of multi-stage transformations, for example,
y = T1(x), w = T2(y), and z = T3(w). The individual stages Tm(x) could be the layers of a neural
network. In this case, it is best to apply (8) recursively to each stage. This means that the distribution
of the first stage features p(y) is written using (6) with y taking the role of input data, and so forth.
This results in the chain-rule form:

p(x) =

[
p∗0,x(x)
p∗0,x(y)

] [
p∗0,y(y)

p∗0,y(w)

] [
p∗0,w(w)

p∗0,w(z)

]
p(z), (14)

where p∗0,x(x), p∗0,y(y), p∗0,w(w) are canonical reference hypotheses used at each stage, for example (9), (11),
and (12), depending on the range of x, y, and w, respectively.

To understand the importance of the chain-rule, consider how we would compute (6) without the
chain rule. Let T(x) be the combined transformation

T(x) = T3(T2(T1(x)))

and let p∗0(x) be one of the canonical reference distributions. Consider the difficulty in deriving p∗0,z(z).
At each stage, the distribution of the output feature becomes more and more intractable, and trying to
estimate p∗0,z(z) is futile because generally a canonical reference distribution is completely unrealistic as
PDF for real data. Furthermore, p∗0,z(z) is more often than not evaluated in the far tails of the distribution.
With the chain-rule, however, we can assume a suitable canonical reference hypothesis at the start of
each stage, and only need to derive the feature distribution imposed on the output of that stage.

As long as the reference hypothesis used at each stage meets the stated requirements given in
Section 2.1, then the chain as a whole will indeed produce the desired MaxEnt projected PDF, which is
the PDF with maximum entropy among all PDFs that generate the desired output feature distribution
p(z) through the combined transformation [8]!

An example of the application of the chain-rule is the computation of MEL frequency cepstral
coefficients (MFCC), commonly used in speech processing. Let us consider a frame of data of length N,
denoted by x. The processing is broken into the following stages:

1. The first step, denoted by y = T1(x) is to convert x into N/2 + 1 magnitude-squared discrete
Fourier transform (DFT) bins. Under the standard Gaussian assumption (9), the elements of y are
independent and have chi-squared statistics (see Section VI.D.1, pp. 47–48 in [12]).

2. The second step is to sum energy in a set of K MEL-spaced band functions. This results in a
set of K band energies. This can be written using the (N/2 − 1) × K matrix A as the linear
transformation w = A′y. This feature transformation is explained in Section 3.2 above so an
exponential reference distribution can be assumed for y. Care must be taken that the K band
functions add to a constant—this insures the energy statistic is “contained in the features”.

3. The next step is to compute the log of the K band energies, u = log(w). This is a 1:1 transformation
for which PDF projection simplifies to computing the determinant of the transformation’s Jacobian
matrix (see Section VI.A, p. 46 in [12]).
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4. The last step is the discrete cosine transform (DCT), which can be written as a linear
transformation z = C′u. If some DCT coefficients are discarded, then the transformation must be
analyzed as in Section 3.1 above by including the energy statistic t(u) = u′u.

This example illustrates that complex feature transformations can be easily analyzed if broken
into simple steps. More on the above example can be found in Sections V and VI in [8].

4.3. Large-N Conditional Distributions and Applications.

When the feature value z∗ is fixed, then sampling x on the manifoldM(z∗), called UMS, has some
interesting interpretations relative to maximum entropy. Let the conditional distribution be written
p(x|z∗). Notice that p(x|z∗) is not a proper distribution since all the probability mass exists on the
manifoldM(z∗) of zero volume. Writing down p(x|z∗) in closed form or determining its mean is
intractable. It is useful, however, to know p(x|z∗) because, for example, the mean of p(x|z∗) is a point
estimate of x based on z∗, a type of MaxEnt feature inversion. However, depending on the range of
x, as exemplified by the three cases in Sections 3.1–3.3, p(x|z∗) can be approximated by a surrogate
distribution (See p. 2461 in [9]). The surrogate distribution is a proper distribution that (a) has its
probability mass concentrated nearM(z∗), (b) has constant value onM(z∗), and (c) has mean value on
the manifold, so x̄ ∈ M(z∗). The surrogate distribution therefore meets the same conditions as p(x|z∗)
but is a proper distribution. The mean of the surrogate distribution is a very close approximation to the
mean of p(x|z∗), which can be called th centroid ofM(z∗), but can be computed. In Sections 3.1–3.3,
the surrogate distribution is Gaussian, exponential, and truncated exponential, respectively. These are
the MaxEnt distributions under applicable constraints. It was shown, for example, when the range of x
is the positive quadrant ofR, that the centroid corresponds to the classical Maximum Entropy feature
inversion approach for a dimension-reducing linear transformation of intensity data, for example to
sharpen images blurred by a point-spread function [9]. The method, however, is more general because
it can be adapted to different ranges of x [9].

5. Applications

5.1. Classification

Assume there are M classes and the M class hypotheses are H1, H2 . . . HM. The general form of
the classifier by applying Bayes theorem and (8) is given by

m̂ = arg max
m

p(x|Hm) p(Hm), (15)

where p(Hm) is the prior class probability, and p(x|Hm) is a PDF estimate for class hypothesis Hm.
For the classification problem, there are many classifier topologies for using (8) to construct p(x|Hm).

1. Class-specific features. One can specify a different feature transformation per class, zm = Φm(x),

p(x|Hm) =
p∗0(x)

p∗0(z
m)

p(zm|Hm),

but the numerator is common, so the classifier rule becomes

m̂ = arg max
m

p(zm|Hm)

p∗0(z
m)

.

This amounts to just comparing the likelihood ratio between class hypothesis Hm and the reference
distribution, computed using a class-dependent feature [16].
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2. It is not necessary to use a common reference hypothesis. A class-dependent reference hypothesis
can be selected so that the feature is an approximately sufficient statistic to discriminate the given
class from the class-dependent reference hypothesis. Then,

p(x|Hm) =
p0,m(x)

p0,m(zm)
p(zm|Hm),

where p0,m(x) is the class-dependent reference hypothesis. Note that, when using the chain-
rule (14), there is not a single reference hypothesis associated with each class, but a series of
stage-wise reference hypotheses. Note that here we have relaxed the MaxEnt requirement for the
reference hypothesis.

3. Using a different feature to test each class hypothesis is not always a good idea. Some data can be
“contaminated” with noise or interference, so they may not be suitable to test a hypothesis with
just one feature. In this case, a class-specific feature mixture (CSFM) [17–19] may be appropriate.
For the CSFM, we define a set of feature transformations {Φ1(x), Φ2(x), . . . ΦM(x)}. (We assume
here that the number of feature transformations equals the number of classes, but this is not
necessary.) Then, p(x|Hm) is constructed as a mixture density using all the features:

p(x|Hm) =
M

∑
l=1

wm,l
p∗0,l(x)

p∗0,l(z
l)

p(zl |Hm),

where p∗0,l(x) is the MaxEnt reference hypothesis corresponding to each feature transformation
Φl(x).

4. To solve the classification problem (15), it is necessary to obtain a segment of data x that can be
classified into one of M classes. The problem is often not that simple, and the location of the
classifiable “event” may be unknown within a longer data recording, or the data recording may
contain multiple events from multiple classes. Using MaxEnt PDF projection, it is possible to
solve the data segmentation problem simultaneously with the classification problem [20,21].

5.2. Other Applications

MaxEnt PDF projection has applications in the analysis of networks and feature transformations.
For example in neural networks, it is possible to view a feed-forward neural network as a generative
network, a duality relationship between two opposing types of networks [22]. In addition, the restricted
Boltzmann machine (RBM) can be used as a PDF estimator with tractable distribution [13]. In feature
inversion, MaxEnt PDF projection can be used to find MaxEnt point-estimates of the input data x based
on fixed values of the feature [9].

6. Conclusions

In this short paper, the method of maximum entropy PDF projection was presented as a
generalization of Jaynes’ maximum entropy principle with moment constraints. The mathematical
basis of maximum entropy PDF projection was reviewed and practical considerations and applications
were presented.
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