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Abstract: The time evolution of stochastic reaction networks can be modeled with the chemical master
equation of the probability distribution. Alternatively, the numerical problem can be reformulated in
terms of probability moment equations. Herein we present a new alternative method for numerically
solving the time evolution of stochastic reaction networks. Based on the assumption that the entropy
of the reaction network is maximum, Lagrange multipliers are introduced. The proposed method
derives equations that model the time derivatives of these Lagrange multipliers. We present detailed
steps to transform moment equations to Lagrange multiplier equations. In order to demonstrate
the method, we present examples of non-linear stochastic reaction networks of varying degrees
of complexity, including multistable and oscillatory systems. We find that the new approach is as
accurate and significantly more efficient than Gillespie’s original exact algorithm for systems with
small number of interacting species. This work is a step towards solving stochastic reaction networks
accurately and efficiently.

Keywords: stochastic chemical reactions; probability distributions; maximum entropy; lagrange
multipliers

1. Introduction

The traditional approach to describe chemically reacting systems involves the use of deterministic
rate laws. This macroscopic, continuous-deterministic modeling formalism is appropriate at the
thermodynamic limit, when the volume of the system and the numbers of molecules of reactants
and products all tend to very large values [1]. However, this approach fails to describe molecular
populations that are small, finite and countable [2]. Such populations must be described by variables
that can only change stochastically and by discrete amounts [3–8].

Markov chain models can be used to describe chemical reactions away from the thermodynamic
limit [9]. When the system evolves stochastically, the all-encompassing chemical master equation
(CME) can model the probability distribution of the system being at a particular state at time t [3,4].

The historical difficulties in solving the CME are well documented in the literature [5,9–11].
The CME is not a single equation but an infinite set of coupled equations. As a result the CME is
analytically unsolvable for the majority of systems, with only few exceptions [12,13]. An established
way to sample the master probability distribution is to use Gillespie’s Stochastic Simulation Algorithm
(SSA) [6]. Despite the accuracy of SSA, the method is a kinetic Monte Carlo algorithm and hence
computationally expensive, especially for systems with large numbers of molecules, or with reaction
kinetics that span multiple time scales [14,15].

A proposed alternative to solve the CME is by calculating the probability moments [3].
Moments are expected values, e.g., the mean and the variance of the number of molecules [5,16–18].

Entropy 2018, 20, 700; doi:10.3390/e20090700 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e20090700
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/20/9/700?type=check_update&version=2


Entropy 2018, 20, 700 2 of 16

This approach is based on the concept that any probability distribution can be completely described by
its moments [19]. The starting point of moment equations is to rewrite the CME in terms of moments
describing the master probability distribution [18,20]. Instead of a master equation that governs the
probability distribution in time, one can then write a set of ordinary differential equations evolving
the moments of the probability distribution [15,21]. Efficient algorithms have been developed to
generate these moment equations for arbitrary networks [10,15,17,18,21]. Yet, because the dynamics
of lower-order moments depend on the higher ones for non-linear reaction networks, the system of
ODEs needs to be closed or somehow truncated in order to be solved [18,22].

A common approach to tackle the moment equation closure challenge is to a priori assume a
specific form of the species behavior. By assuming a molecular component’s behavior one can relate
the higher order moments to the lower order ones [19,23,24]. An important subset of the literature
approaches the issue by assuming a specific form of the system’s probability distribution, such as
normal, Poison, lognormal, Gamma etc. [10,21,24–26]. In cases when the molecular components
behave in a known fashion, such distribution assumptions may produce reasonably accurate results.
However, in most systems, there is a lack of knowledge of the species time evolution and thus such
assumptions may break down or become impractical.

Recent advances in probability moment equation closure schemes have made it possible to
efficiently calculate the stationary probability distribution [22]. These methods may quite accurately
calculate the stationary behavior, however, they still face significant numerical challenges calculating
the time evolution of the moments [15,19,27].

To circumvent the challenges of solving moment equations in time, we propose the use of
Lagrange multipliers [22,28,29]. The connection between moments and Lagrange multipliers relies
on the maximum entropy principle, which states the system attains a probability distribution that
maximizes its entropy [20,22,28,30,31].

By Shannon’s definition entropy is given by S = −∑X P(X)logP(X) [30], where X is the number
of molecules for each component and P the probability function. Using this definition and assuming
that S is maximum, the system of moment equations can be transformed into a system of equations that
depend only on the Lagrange multipliers [20,22]. We refer to the new system as “Lagrange multiplier
equations (LMEs)”. The LMEs set, unlike moment equations [3,18], is a closed system, i.e., it has the
same number of unknowns with equations. Thus, an intial value problem numerical technique, like
Runge-Kutta [32], can be used to solve the system in time.

Herein, we unpack in full mathematical detail the derivation of a general system of LMEs
in the next section. We then apply the LMEs method to multiple examples of non-linear reaction
networks, including the bistable Schlögl model [33], the multistable Wilhelm model [34], the oscillatory
Brusselator system [35,36] and the viral infection model [37,38]. After presenting a numerical procedure
for the implementation of the method, we present results comparing the accuracy of LMEs solutions to
SSA simulations. We conclude that the significance of this new method is that LMEs can solve reaction
networks as accurate as SSA with significantly less computational cost. SSA has been used widely in
the past two decades to capture the stochastic nature of chemical and biological systems away from
the thermodynamic limit. LMEs may offer a potentially more efficient alternative to SSA, enabling
practitioners to model stochastic reacting networks.

2. Materials and Methods/Theory

2.1. Lagrange Multiplier Equations

2.1.1. Connect Moments to Lagrange Multipliers

The general form of the moment equations for any arbitrary chemical reaction network is:

∂µ

∂t
= Aµ + A′µ′ + µc (1)
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where µ is the lower-order moment vector (not including the zeroth-order moment, which is always
equal to 1), µ′ is the higher-order moment vector, µc is a vector of constants and t represents time.
A and A′ are constant matrices that represent the linear and non-linear components of the network,
respectively. In most cases, the vectors µ and µ′ have different dimensions [20]. For non-linear reaction
networks, the µ′ vector is nonempty.

For a chemical reaction network with N reactants and products, the moment µi is connected to
the probability function P through the following expression:

µi = ∑
Ω

fµi (X)P(X) (2)

where fµi is the functional form of the ith moment µi. For example, for a one component
system the functional form of the 3rd polynomial moment is fµ3 = Y3, where Y is the system’s
component. The number of molecules of each component is contained in the matrix X = (X1 . . . XN)

and Ω corresponds to the N-dimensional state space for all the possible values of (X1 . . . XN).
The differences between X and Ω becomes clear if one compares Equation (2) and the definition of
entropy (S = −∑X P(X)logP(X)).

One can connect the probability distribution to Lagrange multipliers λ by maximizing the
entropy [22]:

P(X) = exp

[
−

M

∑
j=0

λj fµj(X)

]
(3)

where λj is the jth Lagrange multiplier and M is the number of lower-order moments and
also the size of vector µ. Thus, moments can be related to Lagrange multipliers by combing
Equations (2) and (3):

µi = ∑
Ω

{
fµi (X) exp

[
−

M

∑
j=0

λj fµj(X)

]}
(4)

2.1.2. Time Derivatives

In Equation (3), only the Lagrange multipliers depend on time; the state space and the
functional form of the moments are time-independent. Hence, the time derivative of the probability
distribution is:

∂P(X)
∂t

=
∂ exp

[
−∑M

j=0 λj fµj(X)
]

∂t

= − exp

[
−

M

∑
j=0

λj fµj(X)

] [
M

∑
j=0

∂λj

∂t
fµj(X)

] (5)

This equation and the definition of moments (Equation (2)) connect the time derivative of the
moments to the time derivative of the Lagrange multipliers:

∂µi
∂t

=
∂ ∑Ω fµi (X)P(X)

∂t

= ∑
Ω

fµi (X)
∂P(X)

∂t

= −∑
Ω

{
fµi (X) exp

[
−

M

∑
j=0

λj fµj(X)

] [
M

∑
j=0

∂λj

∂t
fµj(X)

]}

= −
M

∑
j=0

(
∑
Ω

{
fµi fµj(X) exp

[
−

M

∑
j=0

λj fµj(X)

]}
∂λj

∂t

)
(6)
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Thus, the moments’ time derivative is transformed to:

∂µi
∂t

= −
M

∑
j=0

(
µi,j

∂λj

∂t

)
(7)

where µi,j is the combined moment of fµi and fµj , given by

µi,j = ∑
Ω

{
fµi fµj(X) exp

[
−

M

∑
j=0

λj fµj(X)

]}
(8)

The sum of the probabilities across the whole state space is always 1 by definition. As a result, the
zeroth-order moment is 1 (µ0 = 1) and its time derivative is zero ( ∂µ0

∂t = 1). This results in the zeroth
Lagrange multiplier λ0 to be dependent on the rest of Lagrange multipliers

0 =
∂µ0

∂t

= −
M

∑
j=0

(
µj

∂λj

∂t

)

= −µ0
∂λ0

∂t
−

M

∑
j=1

(
µj

∂λj

∂t

)

= −∂λ0

∂t
−

M

∑
j=1

(
µj

∂λj

∂t

)
(9)

Hence, the time derivative of the zeroth Lagrange multiplier depends on the rest of the time
derivatives as follows:

∂λ0

∂t
= −

M

∑
j=1

(
µj

∂λj

∂t

)
(10)

Based on this relation, Equation (7) can be modified as:

∂µi
∂t

= −
M

∑
j=0

(
µi,j

∂λj

∂t

)

= −µi
∂λ0

∂t
−

M

∑
j=1

(
µi,j

∂λj

∂t

)

= µi

M

∑
j=1

(
µj

∂λj

∂t

)
−

M

∑
j=1

(
µi,j

∂λj

∂t

)

=
M

∑
j=1

(
−µi,j + µiµj

) ∂λj

∂t

(11)

We have previously proved [39] that:

− µi,j + µiµj =
∂µi
∂λj

(12)

Hence, the time derivative of one moment is given by (Equations (11) and (12)):

∂µi
∂t

=
M

∑
j=1

∂µi
∂λj

∂λj

∂t
(13)
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or in matrix form:

∂µ

∂t
=

∂µ

∂λ

∂λ

∂t
= J

∂λ

∂t
(14)

J represents the Jacobian matrix of the system. Equation (14) also represents the chain rule of
differentiation. There is now a way to connect the moment equations to equations that involve the
Lagrange multipliers. The Lagrange multiplier equations can be derived by Equation (14) and the
moment equations (Equation (1)):

∂λ

∂t
= J−1 ∂µ

∂t
= J(λ)−1 [Aµ(λ)+ A′µ′(λ)+ µc

]
(15)

where J−1 is the inverse of the Jacobian matrix. In the Appendix A, we discuss a computationally
efficient way to calculate it. Even though the above equation also includes the moments of the
probability distribution, it only depends on the Lagrange multipliers since the moments are directly
correlated with Lagrange multipliers (Equation (4)).

All the Lagrange multipliers can be calculated through Equation (15) except the zeroth-order one
λ0. As discussed earlier, λ0 depends on the rest of the Lagrange multipliers through the relation [39]:

λ0 = log

{
∑
Ω

[
exp

(
−

M

∑
j=1

λj fµj(X)

)]}
(16)

We refer to Equation (15) as the “Lagrange multiplier equations (LMEs)”. To our knowledge,
this is the first time that LMEs are being discussed and derived in the literature. Through this step,
the problem of calculating the probability for each point of the state space of stochastic networks
has been transformed into a problem of calculating a finite set of Lagrange multipliers. The system
is closed, it has the same number of equations and unknowns, and it is an initial value problem.
An iterative numerical method can be used to solve this system. Appendix B outlines a proposed
numerical approach to solve LMEs based on the Dormand-Prince Runge-Kutta RK5(4)7M method [32].

2.2. Initial Value from Moments to Lagrange Multipliers

The LMEs problem is an initial value problem; the values of the Lagrange multipliers for the
initial state are required. However, Lagrange multipliers are numerical variables with no physical
meaning and as a result an initial value is unknown. What is known is either the initial probability
distribution or the values of its moments. Hence, a way to calculate Lagrange multipliers from
moments is required. It should be noted that there is not a universally acceptable way to back calculate
probability distributions from moments and the problem is not trivial [40].

Let’s assume that the moments, µ (t = 0) of the initial distribution, P (t = 0) are known. If only
the initial distribution is known, its moments can be calculated from Equation (2). The moments are
related to the Lagrange multipliers by Equation (4). Hence:

µ (t = 0) =

 µ1 (t = 0)
µ2 (t = 0)

...



=


∑Ω

{
fµ1(t=0)(X) exp

[
−∑M

j=0 λj (t = 0) fµj(t=0)(t=0)(X)
]}

∑Ω

{
fµ2(t=0)(X) exp

[
−∑M

j=0 λj (t = 0) fµj(t=0)(t=0)(X)
]}

...


= G [λ (t = 0)]

(17)
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G denotes the functional form of the matrix with dependences of the Lagrange multipliers.
To calculate the Lagrange multipliers at the initial time from the moments, one has to solve a
problem of the form: G (λ)− µ = 0. This is an infinite set and in order to be numerically solvable
the user should decide the necessary number of lower-order moments (i.e., to specify the closure
order [22]). When closure order is specified, the system has the same number of equations
and unknowns (the Lagrange multipliers) and a root-finding method such as Newton-Rapshon
can be used. The residual of the method is R = G (λ) − µ and the Jacobian matrix
is Ji,j = ∂Fi

∂λj
= ∂µi

∂λj
= −µi,j + µiµj [39]. With this approach all the Lagrange multipliers can be

calculated other than the zeroth one. The zeroth one can be calculated from Equation (16).
The knowledge of moments is used here to calculate the Lagrange multipliers, which then can

be used to calculate the probability distribution based on Equation (3). This approach allows to
calculate probability distributions from its moments. The novelty of the method is the connection of
the probability distribution with Lagrange multipliers by maximizing the entropy of the system.

3. Results

To demonstrate the proposed Lagrange multiplier equations (LMEs) approach, we employ four
different example networks: the bistable Schlögl model [33], the multistable Wilhelm’s system [34], the
oscillatory Brusselator [35,36] and the viral infection [37,38]. The reaction networks and kinetic constants
for each model are reported in Table 1. To assess the accuracy and computational efficiency of this
method, the results are compared to SSA results using the same initial condition and kinetic constants.

Table 1. The table shows the reaction networks with their kinetic constants for the bistable Schlögl,
multistable Wilhelm, oscillatory Brusselator and viral infection networks. The kinetic constants values
and initial condition for each system are also presented. For the third order reactions the kinetic
constants are in (molecules2 · s)−1 units, for the second order in (molecules · s)−1, for the first order
in s−1 and for the zeroth order in molecules · s−1. For the Schlögl model the initial distribution is
bimodal. All the other systems have a unimodal initial distribution. The first and second-order factorial
moments of the initial distribution is reported for each network.

Initial Moments

Models Reactions Kinetic Constants First-Order Second-Order

Schlögl

3X k1−→ 2X k1 = 1.5× 10−3

{X} = 38.01 {X2} = 2.10× 1032X k2−→ 3X k2 = 1.5× 10−1

X k3−→ ∅ k3 = 3.5

∅
k4−→ X k4 = 22

Wilhelm

Y k1−→ 2X k1 = 35

{X} = 15.94
{Y} = 7.14

{X2} = 2.55× 102

{XY} = 1.24× 102

{Y2} = 50.93

2X k2−→ X + Y k2 = 1

X + Y k3−→ Y k3 = 1

X k4−→ ∅ k4 = 9.74

∅
k5−→ X k5 = 30

Brusselator

∅
k1−→ X k1 = 10

{X} = 10.68
{Y} = 23.40

{X2} = 1.46× 102

{XY} = 2.11× 102

{Y2} = 5.79× 102

2X + Y k2−→ 3X k2 = 9× 10−3

X k3−→ Y k3 = 3

X k4−→ ∅ k4 = 1

Viral Infection*

D = DNA
P = Protein
R = RNA

D + P k1−→ ∅ k1 = 1

{D} = 15.41
{P} = 25.53
{R} = 49.56

{D2} = 2.37× 102

{DP} = 3.89× 102

{DR} = 7.65× 102

{P2} = 6.42× 102

{PR} = 1.26× 103

{R2} = 2.41× 103

D k2−→ R + D k2 = 3

R k3−→ ∅ k3 = 1

R k4−→ D + R k4 = 10

R k5−→ P + R k5 = 110

P k6−→ ∅ k6 = 200
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For all the systems the initial condition is a distribution generated with SSA, away from the steady
state. The first and second-order factorial moments [17] of each initial distribution can be found in
Table 1. Using the algorithm in Section 2.2, the initial distribution was transformed into an initial set of
Lagrange multipliers. Based on the initial Lagrange multipliers and the Prince-Dormant algorithm
outlined in Appendix B, the Lagrange multipliers for every time point were calculated until steady
state was reached. Equations (3) and (4) were then used to calculate the probability distribution and
factorial moments for each time point based on the calculated Lagrange multipliers.

All the LMEs results obtained with RK5(4)M are compared with SSA results on Table 2, in order
to draw conclusions about the accuracy and the time efficiency of the method. The solution for each
time point was compared to the one obtained from SSA simulations with 500,000 trajectories. The
average difference among all time points between the two methods can be found in Table 2. Results for
both the probability distribution and the first two orders of factorial moments are presented. For the
system with more than one components (i.e., Wilhelm’s, Brusselator and viral infection models), the
moments of the same order are averaged. The difference between LMEs results and the SSA probability
distribution is calculated with the Kullbalck-Leiber divergence [41], whereas the second norm is used
to calculate the errors in the moments.

Table 2. The table presents the results of the LMEs solved with RK5(4)M compared to the ones obtained
from SSA alongside the required computational time for each reaction network of Table 1. Each SSA
simulation used 500,000 trajectories. This number of trajectories is sufficient for the errors for the
mean and variance to be at most O(1) molecules and O(1) molecules2, respectively. The first three
columns show the average error between the two methods, which is calculated for each time point
until steady state is reached and then averaged across all of them. For the probability distribution
(P(X)), the Kullback-Leibler divergence [41] is used. For the first and second-order moments the
second norm is used. The last three columns present the time that is required for each method.
Each system has different initial and final time as well as different step size. To take into
account these differences, we report the solving time per each method’s time step in CPU seconds.
The last column presents the ratio of SSA time required over the RK5(4)M time.

Average Error (%) of Time per Step (CPU s)

Network P(X) 1st-Order
Moments

2nd-Order
Moments LMEs SSA Time

Ratio

Schlögl 0.05 0.22 0.22 0.02 419.2 20,960
Wilhelm 0.61 0.56 0.71 0.15 732.75 4,885

Brusselator 9.90 2.81 6.07 0.74 68.05 92
Viral Infection 0.43 0.01 0.02 8.97 64.96 7

3.1. Multistable Systems: The Schlögl and Wilhelm Models

The Schlögl model is one of the most commonly used theoretical bistable systems and is the
simplest single-component system that can exhibit bistability [9,34]. Biological systems exhibiting
bistability, both natural and synthetic, have gained an increasing interest recently [42–44], and the
Schlögl model is a simple prototypical bistable model.

For different kinetic constants, the model has either a unimodal or a bimodal distribution.
The kinetic constants selected in Table 1 result in a bimodal network. Results for the bistable model are
reported on Figure 1. The probability distribution of the model is a bimodal distribution that changes
form with time.

Another example of a theoretical system that can exhibit bistability is Wilhelm’s network.
The network is a non-linear two-component model and it was created by Wilhelm as the smallest
known bistable chemical reaction system [34]. Depending on the kinetic constants, both components
can exhibit bistability simultaneously which results in a multistable system overall. This is the case
for the kinetic constants reported in Table 1. The probability distribution for different time points



Entropy 2018, 20, 700 8 of 16

for the two component of the network can be found in Figure 2. The system starts with a unimodal
distribution for both components. As the time progresses, both components have a different bimodal
distribution resulting in a mutlistable network. Close to the steady state, both components still have
bimodal distributions but different than before.

For these two example systems, the LMEs solutions are as accurate as the SSA results (Table 2).
All the probability and moments errors are lower than 1%. The accuracy of the LMEs approach does
not seem to be affected by the number of stability points of the system. There is also no significant
difference between the first and second-order moment errors.
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Figure 1. The probability distribution and the third-order moment of the bistable Schlögl model.
The first row presents the probability distribution of the single component for two different time points
(13 s after the initial condition the left and 33 s the right one). The second row presents the time
evolution of the third moment. The solid lines are solutions calculated based on LMEs with tenth-order
closure (M = 10). The closure order is chosen based on the findings of [29]. The dots represent results
from 500,000 SSA trajectories.
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Figure 2. The probability distributions of the multistable Wilhelm’s model. The first row presents
results for component X and the second row for component Y. The first column presents the time close
to the initial condition (0.1 s), the second a mid-time point (4 s) and the last column a time point close
to steady-state (10 s). The solid lines are solutions calculated based on LMEs and the dots/diamonds
SSA solutions. The LMEs are calculated with up to sixth-order moments (M = 27). The closure order is
chosen based on the findings of [39,45]. For SSA, 500,000 trajectories were used.
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3.2. Oscillatory System: The Brusselator Model

Oscillatory behaviors are particularly challenging to capture with stochastic models [46]. We have
reported earlier how methods that can capture multistable behaviors fail to appropriately capture
oscillatory ones [39].

We used the LMEs to investigated the Brusselator as a simple example of a theoretical oscillatory
network [36]. We study the network in its oscillatory region as shown in Figure 3. Both network’s
first-order moments oscillate with respect to time.

As observed, the LMEs can capture the damped oscillatory behavior of the Brusselator. However,
the method exhibits limited accuracy for solving this model (Table 2). The solution by LMEs of the
Brusselator network has an increased error in all categories compared to the other networks. The error
in both probability and moments reaches up to 10%. In this case, unlike in the other networks, there is
a significant increase in the error of the second-order moments compared to the first-order ones.
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t  o
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n
ts
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RK5(4)7M for X

SSA for X

RK5(4)7M for Y

SSA for Y

Figure 3. Time evolution of the first-order probability moments for the oscillatory Brusselator model.
The solid-line upper green line presents the moment for Y component calculated based on LMEs.
The solid-line lower orange line represents the moment for X. SSA results are also included from
500,000 trajectories; dots represent component X and diamonds component Y. The results are calculated
with up to fourth-order moments (M = 14).

The difference in the accuracy can be associated with the order of closure that is used to generate
the LMEs (in this case 4 or M = 14, Figure 3). The accuracy of the Lagrange multipliers approach
depends on the number of lower-order moments, M [29]. The higher the value of M, the more
accurate results the method can produce. After, a certain value of M, the improvement in accuracy is
insignificant. For more information on how the lower-order moments affects probability distributions
the reader is directed to the literature [29]. It has been reported that the Brusselator requires more than
fourth-order moments for accurate results [46].

A low order is used for this system due to the numerical difficulties of the algorithm that generates
the initial condition (Section 2.2). In the LMEs approach, the closure order is specified through the
initial condition. This is the number of Lagrange multipliers with known values at the initial time.
For the rest of the time points, the number of Lagrange multipliers is the same as the initial time.
For this system, the initial probability distribution was created with SSA and then, based on the
algorithm described in Section 2.2, it was translated into the initial Lagrange multipliers. However,
the algorithm in Section 2.2 faced significant numerical issues for moment orders higher than 4 and
we were not able to generate initial conditions for higher lower-order moments. Thus, we did not
provide the LMEs approach with the necessary number of lower-order moments that produce accurate
results. The high error was generated by the algorithm that calculates the initial condition and not
the Runge-Kutta algorithm of the LMEs. The Brusselator results are not ideal; however, given the
difficulties of current methods to solve oscillatory systems, this is a step in the right direction.
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3.3. Multicomponent System: The Viral Infection Model

The LMEs approach is only limited to theoretical systems with complex behavior but can also be
applied to natural and synthetic biological networks. One example is the viral infection model.
The model was first created by Haseltine [37] as a general model of a cell infection by a virus.
The model was then revised and simplified by Goutsias [38]. The network in Table 1 reflects the
revised version of Goutsias. Results for the mixed first-order moments (moments than depend on more
than one component) are reported in Figure 4. The LMEs approach accurately captures the different
dynamics of all components and their combinations throughout the entire simulated time (Table 2).
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Figure 4. Time evolution of the first-order mixed probability moments for the Viral infection model.
The solid-lines present results calculated based on LMEs and the doted points present SSA results.
The results are calculated with up to second-order moment closure (M = 9) and 500,000 SSA trajectories.
The upper blue line with triangles present the {DNA Protein} mixed moment, the mid green line with
diamonds corresponds to the {DNA RNA}mixed moment and the lower orange line with dots the
{RNA Protein}mixed moment.

3.4. Computational Cost of LMEs

Aside from the accuracy of the approach, Table 2 also includes the computational time that is
required for RK5(4)M to solve the LMEs. In all the systems, the LMEs approach is significantly faster
than SSA. Each model has different computational time steps that are used; in order to take this
difference into account, the table shows the time required for one time point per system. For each
system, at least 10,000 time steps were used. As observed, the total amount of time that is required for
LMEs approach is significantly lower than for SSA.

Among all systems, the LMEs approach requires less computational time to solve the two
multistable systems (the Schlögl and the Wilhelm’s models). The LMEs approach is significantly
faster than SSA (at least 4000 times faster, Table 2) and advantageous especially for multistable systems.
As for oscillatory dynamics, they do not seem to affect the computational time of the LMEs approach.

The number of components, on the other hand, affects significantly the computational time
of the LMEs approach. The Wilhelm’s and Brusselator models (both two-component systems) are
slower than the Schlögl model (one-component system) and faster that the viral infection model
(three-component system).

3.5. Dependence on State Space Size

The proposed method is a numerical method to solve stochastic reaction networks. The LMEs
include summations across all the possible values of the state space. The state space needs to be
specified and be finite in order for the algorithm to perform numerical calculations. This is a known
case with numerical methods [22,47] and it can raise concerns about the accuracy of a method, especially
in the case of systems with unknown state space. Some ways to calculate the appropriate state space of
stochastic networks have been discussed in the literature [11,47].
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To evaluate the stability of the Lagrange multipliers approach with the state space size, we
use the Schlögl model as an example. The model has one component and thus the connection
between state space size and solution accuracy can be drawn easily; yet it has a complex enough
bistable behavior. Figure 5 shows results of the LMEs approach for different state space sizes.
The solutions are also compared with the SSA results. The accuracy of the method is not affected by
the state space size in this example. All different state space lengths provide the same value for the
moments of the probability.
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Figure 5. Time evolution of the third-order moment for the Schögl model. The plot is similar to
the bottom plot of Figure 1. Here, four different state space lengths are plotted. All the cases have
zero as the lower bound of the state space. The coloring in this picture is reverse than the rest of
them. The solid orange line is the SSA solution for 500,000 trajectories. The black dots are results with
tenth-closure LMEs (M = 10). The triangles represent the solution with 150 molecules as the upper
bound of the state space, diamonds use 200 molecules limit, circles 250 molecules and the squares
300 molecules.

4. Discussion

Stochasticity governs reaction networks away from the thermodynamic limit. A common
approach to solve stochastic chemically reacting systems is through moment equations. However,
moment equation systems are not closed for non-linear chemical reactions, and require important
assumptions about the form of the probability function.

Here, we present an alternative method to solve stochastic reaction networks by using Lagrange
multipliers. An approach to transform moment equations into a closed system of Lagrange
multiplier equations (LMEs) is described. Since, LMEs is a closed system, Runge-Kutta methods
(e.g., Durmand-Prince RK5(4)7M) can be employed to solve the transient problem and calculate the
Lagrange multipliers for different time points. With the knowledge of the Lagrange multipliers, one
then can calculate the probability distribution and its moments at any given time.

We show that this is a novel approach to bypass numerical challenges with chemical master
equations and moment equations. The only assumption used is that the entropy of the system is
maximum at all times. The LMEs solutions are as accurate as alternative methods, such as SSA, with
significant computational advantages. Four different non-linear reaction networks are employed to
demonstrate the advantages of the new LMEs approach. The networks vary in numbers of components
(from one to three) and complexity in behavior (including multistability and oscillations). The number
of stable solutions of the network does not affect the accuracy of the LMEs approach. On the other
hand, the number of the network’s components can affect the method’s computational requirements.
Future studies may be required to assess how the method scales with the size of the reaction network.

For all of the examples studied, the LMEs approach is faster than SSA. Notably, the method is
computationally efficient for multistable systems, which are of interest to a large community [42–44].
The method also appears unaffected by the size of the system’s state space; the method is stable
and accurate for multiple state space sizes. On the other hand, oscillatory behaviors can reduce the
method’s accuracy.
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Appendix A. Inverse of Jacobian

The Jacobian matrix J of the moment equations for a stochastic reaction network is calculated as:

Ji,j =
∂µi
∂λj

= −µi,j + µiµj (A1)

By the definition (Equation (8)), it is true that:

µi,j = ∑
Ω

{
fµi fµj(X) exp

[
−

M

∑
j=0

λj fµj(X)

]}
(A2)

Thus, µi,j = µj,i. It is then apparent that the Jacobian matrix is symmetric since:

Ji,j = −µi,j + µiµj = −µj,i + µjµi = Jj,i (A3)

As a symmetric matrix, J can be calculated as [48]:

J = QTΛQ (A4)

where Λ is a diagonal matrix with the diagonal elements being the eigenvalues of J and Q the associated
eigenvector matrix. Q is also real orthogonal [48], i.e., Q−1 = QT . The inverse of the Jacobian matrix,
J−1 can be calculated as:

J−1 =
(

QTΛQ
)−1

= (Q)−1 (Λ)−1
(

QT
)−1

= QT (Λ)−1 Q (A5)

Since Λ is diagonal, (Λ)−1 is also diagonal with elements the reciprocal elements of
Λ (
(
Λi,j
)−1

= 1
Λi,j

). Additionally, each element of Λ, Λi,j, represents each eigenvalue of the Jacobian J.
Based on Equation (A5), in order to calculate the inverse of the Jacobian matrix, one only needs to

solve the eigenproblem of the Jacobian.

Appendix B. Runge-Kutta

As mentioned, the LMEs problem is an initial value problem. A proposed way to solve the system
is the Dormand-Prince RKF5(4)7M Runge-Kutta method [32]. RKF5(4)7M is an explicit numerical
method with adaptive step size. Dormand and Prince formulated the method in order to create a
stable approach for local extrapolations; this is the reason it is chosen in this work as it will help to
create more stable solution for time calculations by extrapolating the knowledge of past time solutions.
A table that includes all the constants of the RKF5(4)7M method (often called “Butcher tableau" [49] or
simply “tableau") can be found in the Appendix B.1.

As derived in Equation (15), the LMEs are:

∂λ

∂t
= J(λ)−1 [Aµ(λ)+ A′µ′(λ)+ µc

]
= F(λ) (A6)

where F denotes the functional form of the LMEs.
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The calculation of Lagrange multipliers, λ, is desired for multiple time points. To calculate the
multipliers at the time point n+ 1, the knowledge of the multipliers at time n is required. The Lagrange
multipliers at time n + 1, λn+1, are calculated as:

λn+1 = λn +
7

∑
i=1

b̂iki (A7)

where λn+1 are the Lagrange multipliers at time n, b̂i are constants of RKF5(4)7M and ki are the
Runge-Kutta coefficients:

ki = hF

(
λn +

i−1

∑
j=1

aijkj

)
(A8)

h is the adaptive step size and aij are RKF5(4)7M constants.
In RKF5(4)7M, a lower-order solution, λ∗, is used to evaluate the error of the solution λ and change

accordingly the adaptive step size h. The lower-order solution at time n + 1, λ∗n+1, are calculated as:

λ∗n+1 = λ∗n +
7

∑
i=1

biki (A9)

where bi’s are another set of RKF5(4)7M constants. All the constants (aij,b̂i & bi) can be found
in the Appendix B.1.

More details about the algorithm of RKF5(4)7M used in this work can be found
in the Appendix B.2.

Appendix B.1. Runge-Kutta Tableau

In this section we list the Runge-Kutta RK5(4)7M tableau. The method was first described by
Dormand and Prince [32] and we just list it here for the convenience of the reader. The Runge-Kutta
tableau of the method is:

j =1 2 3 4 5 6
i ci aij b̂i bi
1 0 35

384
5179

57600
2 1

5
1
5 0 0

3 3
10

3
40

9
40

500
1113

7571
16695

4 4
5

44
45 − 56

15
32
9

125
192

393
640

5 8
9

19372
6561 − 25360

2187
64448
6561 − 212

729 − 2187
6784 − 92097

339200
6 1 9017

3168 − 355
33

46732
5247

49
176 − 5103

18656
11
84

187
2100

7 1 35
384 0 500

1113
125
192 − 2187

6784
11
84 0 1

40

Appendix B.2. Runge-Kutta Algorithm

The proposed algorithm to solve LMEs based on the Dormand-Prince RKF5(4)M method is:

1. Calculate vector µc and matrices A and A′ as in [17]. These matrices depend only on the kinetic
constants of the system and they are constant for all time points.

2. Introduce the time step size h. The time point of this iteration is tn+1 = tn + h, where tn is the
time point of the previous iteration.

3. Increase the iteration counter by 1. For the rest of the algorithm the iteration step will be denoted
by n + 1. At the first iteration, n = 0.

4. Introduce the previous step (iteration n) Lagrange multipliers λn. At the first iteration, introduce
the initial condition λ0. The subscripts here refers to the time step and are applied on the whole
Lagrange multiplier vector.
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5. Calculate the ki’s coefficients from equation ki = hF
(

λn + ∑i−1
j=1 aijkj

)
and the tableau

(Appendix B.1). Each coefficient ki depends on the functional form F of the Lagrange multiplier
equations (F(λ) = J(λ)−1 [Aµ(λ)+ A′µ′(λ)+ µc]) and on different set of Lagrange multipliers
(λn + ∑i−1

j=1 aijkj). To account for the change of the Lagrange multipliers, there is a need for a
subroutine to calculate ki.

6. This is a proposed subroutine for ki

(a) Calculate the augmented Lagrange multipliers for the specific ki, λn,ki = λn + ∑i−1
j=1 aijkj.

The values of aij can be found in the tableau in Appendix B.1.
(b) Calculate the lower (µ(λn,ki)) and higher-order moments (µ′(λn,ki)) for the augmented

Lagrange multipliers based on equation µi = ∑Ω fµi (X) exp
(
−1−∑j λj fµj(X)

)
.

(c) Calculate the inverse of the Jacobian, J(λn,ki
)−1 for the augmented multipliers as described

in Appendix A.
(d) Calculate the functional form F(λn,ki) of the Lagrange multiplier equations (F(λ) =

J(λ)−1 [Aµ(λ)+ A′µ′(λ)+ µc]).
(e) Calculate ki based on equations ki = hF(λn,ki).

7. Repeat step 6 for all seven ki coefficients, i = 1, . . . , 7. Its coefficient ki depends on all the previous
coefficients, thus the calculation of each one needs to be in sequence and include the subroutine.
For example, the calculations of step 6 should first performed for i = 1, then based on k1 to be
performed for i = 2, then based on k2 to be performed for i = 3 etc.

8. Calculate the Lagrange multipliers for the current iteration n + 1, λn+1, based on equation
λn+1 = λn + ∑7

i=1 b̂iki and the tableau (Appendix B.1).
9. Calculate the lower-order solution for the current iteration n + 1, λ∗n+1, based on equation

λ∗n+1 = λn + ∑7
i=1 biki and the tableau (Appendix B.1).

10. Check the accuracy of the solution by calculating the error ε:

ε =

∣∣∣∣λn+1 − λ∗n+1

λn+1

∣∣∣∣
2

(A10)

11. If the error ε is smaller than the wanted tolerance accept the solution and proceed to the next step.
Otherwise, set a new time step size h = h · s and go back to step 5 and re-perform the calculation
with the new step size. s is used to adjust the step size based on the accuracy of the solution and
is given by:

s =

(
tolerance · h

2 · |λ∗n+1 − λn+1|2

) 1
4

(A11)

12. Accept the solution of Lagrange multipliers for the current iteration (n + 1) and current time point
(tn+1) as calculated at step 8.

13. Set the new step size to h = h · s and proceed to step 3 to calculate the solution for the rest of the
time points until the final is reached.

14. For any given time t, the probability distribution and its moments can be calculated based
on the Lagrange multipliers (λ(t)) and equations P(X) = exp

[
−1−∑j λj fµj(X)

]
& µi =

∑Ω fµi (X) exp
(
−1−∑j λj fµj(X)

)
.

References

1. Folger, H. Elements of Chemical Reaction Engineering, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2016.
2. Schnoerr, D.; Sanguinetti, G.; Grima, R. Approximation and inference methods for stochastic biochemical

kinetics-A tutorial review. J. Phys. A 2017, 50, 093001. [CrossRef]
3. McQuarrie, D.A. Stochastic approach to chemical kinetics. J. Appl. Probab. 1967, 4, 413–478. [CrossRef]
4. Oppenheim, I.; Shuler, K.E. Master Equations and Markov Processes. Phys. Rev. 1965, 138, B1007. [CrossRef]

http://dx.doi.org/10.1088/1751-8121/aa54d9
http://dx.doi.org/10.2307/3212214
http://dx.doi.org/10.1103/PhysRev.138.B1007


Entropy 2018, 20, 700 15 of 16

5. Kampen, N.V. Stochastic Processes in Physics and Chemistry, 5th ed.; Elsevier: Amsterdam, The Netherlands,
2004; ISBN 978-0-444-89349-0.

6. Gillespie, D.T. A general method for numerically simulating the stochastic time evolution of coupled
chemical reactions. J. Comput. Phys. 1976, 22, 403–434. [CrossRef]

7. Gibson, M.A.; Bruck, J. Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and
Many Channels. J. Phys. Chem. A 2000, 104, 1876–1889. [CrossRef]

8. Cao, Y.; Li, H.; Petzold, L. Efficient formulation of the stochastic simulation algorithm for chemically reacting
systems. J. Chem. Phys. 2004, 121, 4059–4067. [CrossRef] [PubMed]

9. Gillespie, D.T. Markov Processes, An Introduction for Physical Scientists; Academic Press: San Diego, CA,
USA, 1992.

10. Lakatos, E.; Ale, A.; Kirk, P.D.W.; Stumpf, M.P.H. Multivariate moment closure techniques for stochastic
kinetic models. J. Chem. Phys. 2015, 143, 094107. [CrossRef] [PubMed]

11. Munsky, B.; Khammash, M. The finite state projection algorithm for the solution of the chemical master
equation. J. Chem. Phys. 2006, 124, 044104. [CrossRef] [PubMed]

12. Jahnke, T.; Huisinga, W. Solving the chemical master equation for monomolecular reaction systems
analytically. J. Math. Bio. 2006, 54, 1–26. [CrossRef] [PubMed]

13. Grima, R.; Schmidt, D.R.; Newman, T.J. Steady-state fluctuations of a genetic feedback loop: An exact
solution. J. Chem. Phys. 2012, 137, 035104. [CrossRef] [PubMed]

14. Sotiropoulos, V.; Kaznessis, Y.N. An adaptive time step scheme for a system of stochastic differential
equations with multiple multiplicative noise: Chemical Langevin equation, a proof of concept. J. Chem. Phys.
2008, 128, 014103. [CrossRef] [PubMed]

15. Ale, A.; Kirk, P.; Stumpf, M.P.H. A general moment expansion method for stochastic kinetic models.
J. Chem. Phys. 2013, 138, 174101. [CrossRef] [PubMed]

16. Sotiropoulos, V.; Kaznessis, Y.N. Analytical Derivation of Moment Equations in Stochastic Chemical Kinetics.
Chem. Eng. Sci. 2011, 66, 268–277. [CrossRef] [PubMed]

17. Smadbeck, P.; Kaznessis, Y.N. Efficient Moment Matrix Generation for Arbitrary Chemical Networks.
Chem. Eng. Sci. 2012, 84, 612–618. [CrossRef] [PubMed]

18. Gillespie, C. Moment-closure approximations for mass-action models. IET Syst. Biol. 2009, 3, 52–58.
[CrossRef] [PubMed]

19. Grima, R. A study of the accuracy of moment-closure approximations for stochastic chemical kinetics.
J. Chem. phys. 2012, 136, 154105. [CrossRef] [PubMed]

20. Constantino, P.H.; Vlysidis, M.; Smadbeck, P.; Kaznessis, Y.N. Modeling stochasticity in biochemical reaction
networks. J. Phys. D Appl. Phys. 2016, 49, 093001. [CrossRef]

21. Milner, P.; Gillespie, C.S.; Wilkinson, D.J. Moment closure based parameter inference of stochastic kinetic
models. Stat. Comput. 2013, 23, 287–295. [CrossRef]

22. Smadbeck, P.; Kaznessis, Y.N. A closure scheme for chemical master equations. Proc. Natl. Acad. Sci. USA
2013, 110, 14261–14265. [CrossRef] [PubMed]

23. Zechner, C.; Ruess, J.; Krenn, P.; Pelet, S.; Peter, M.; Lygeros, J.; Koeppl, H. Moment-based inference predicts
bimodality in transient gene expression. Proc. Natl. Acad. Sci. USA 2012, 109, 8340–8345. [CrossRef]
[PubMed]

24. Singh, A.; Hespanha, J. Moment closure techniques for stochastic models in population biology.
In Proceeding of the 2006 American Control Conference, Minneapolis, MN, USA, 14–16 June 2006.

25. Krishnarajah, I.; Cook, A.; Marion, G.; Gibson, G. Novel moment closure approximations in stochastic
epidemics. Bull. Math. Biol. 2005, 67, 855–873. [CrossRef] [PubMed]

26. Schnoerr, D.; Sanguinetti, G.; Grima, R. Comparison of different moment-closure approximations for
stochastic chemical kinetics. J. Chem. Phys. 2015. [CrossRef] [PubMed]

27. Goutsias, J.; Jenkinson, G. Markovian dynamics on complex reaction networks. Phys. Rep. 2013, 2, 199–264.
[CrossRef]

28. Kapur, J. Maximum-Entropy Models in Science and Engineering; Wiley Eastern Ltd.: Darya Ganj,
New Delhi, 1989.

http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1063/1.1778376
http://www.ncbi.nlm.nih.gov/pubmed/15332951
http://dx.doi.org/10.1063/1.4929837
http://www.ncbi.nlm.nih.gov/pubmed/26342359
http://dx.doi.org/10.1063/1.2145882
http://www.ncbi.nlm.nih.gov/pubmed/16460146
http://dx.doi.org/10.1007/s00285-006-0034-x
http://www.ncbi.nlm.nih.gov/pubmed/16953443
http://dx.doi.org/10.1063/1.4736721
http://www.ncbi.nlm.nih.gov/pubmed/22830733
http://dx.doi.org/10.1063/1.2812240
http://www.ncbi.nlm.nih.gov/pubmed/18190181
http://dx.doi.org/10.1063/1.4802475
http://www.ncbi.nlm.nih.gov/pubmed/23656108
http://dx.doi.org/10.1016/j.ces.2010.10.024
http://www.ncbi.nlm.nih.gov/pubmed/21949443
http://dx.doi.org/10.1016/j.ces.2012.08.031
http://www.ncbi.nlm.nih.gov/pubmed/23175571
http://dx.doi.org/10.1049/iet-syb:20070031
http://www.ncbi.nlm.nih.gov/pubmed/19154084
http://dx.doi.org/10.1063/1.3702848
http://www.ncbi.nlm.nih.gov/pubmed/22519313
http://dx.doi.org/10.1088/0022-3727/49/9/093001
http://dx.doi.org/10.1007/s11222-011-9310-8
http://dx.doi.org/10.1073/pnas.1306481110
http://www.ncbi.nlm.nih.gov/pubmed/23940327
http://dx.doi.org/10.1073/pnas.1200161109
http://www.ncbi.nlm.nih.gov/pubmed/22566653
http://dx.doi.org/10.1016/j.bulm.2004.11.002
http://www.ncbi.nlm.nih.gov/pubmed/15893556
http://dx.doi.org/10.1063/1.4934990
http://www.ncbi.nlm.nih.gov/pubmed/26567686
http://dx.doi.org/10.1016/j.physrep.2013.03.004


Entropy 2018, 20, 700 16 of 16

29. Vlysidis, M.; Constantino, P.H.; Kaznessis, Y.N. ZI-Closure Scheme: A Method to Solve and Study
Stochastic Reaction Networks. In Stochastic Processes, Multiscale Modeling, and Numerical Methods for
Computational Cellular Biology; Springer International Publishing: Cham, Switzerland, 2017; pp. 159–174,
ISBN: 978-3-319-62627-7.

30. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
31. Sutter, T.; Sutter, D.; Esfahani, P.M.; Lygeros, J. Generalized Maximum Entropy Estimation. arXiv 2004,

arXiv:1708.07311. Available online: https://arxiv.org/abs/1708.07311 (accessed on 6 September 2018).
32. Dormand, J.; Prince, P. A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 1980, 6, 19–26.

[CrossRef]
33. Schlogl, F. On Thermodynamics Near a Steady State. Z. Physik 1971, 458, 446–458. [CrossRef]
34. Wilhelm, T. The smallest chemical reaction system with bistability. BMC Syst. Biol. 2009, 3, 90. [CrossRef]

[PubMed]
35. Lefever, R.; Nicolis, G. Chemical instabilities and sustained oscillations. J. Theor. Biol. 1971, 30, 267–284.

[CrossRef]
36. Lavenda, B.; Nicolis, G.; Herschkowitz-Kaufman, M. Chemical instabilities and relaxation oscillations.

J. Theor. Biol. 1971, 32, 283–292. [CrossRef]
37. Haseltine, E.L.; Rawlings, J.B. Approximate simulation of coupled fast and slow reactions for stochastic

chemical kinetics. J. Chem. Phys. 2002, 117, 6959–6969. [CrossRef]
38. Goutsias, J. Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems.

J. Chem. Phys. 2005, 122, 184102. [CrossRef] [PubMed]
39. Vlysidis, M.; Kaznessis, Y.N. A linearization method for probability moment equations.

Comput. Chem. Eng. 2018, 112, 1–5. [CrossRef]
40. Munkhammar, J.; Mattsson, L.; Rydén, J. Polynomial probability distribution estimation using the method of

moments. PLoS ONE 2017, 12, e0174573. [CrossRef] [PubMed]
41. Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
42. Gardner, T.S.; Cantor, C.R.; Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature

2000, 403, 339–342. [CrossRef] [PubMed]
43. Angeli, D.; Ferrell, J.E.; Sontag, E.D.; Sontag, E.D. Detection of multistability, bifurcations, and hysteresis

in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA 2004, 101, 1822–1827.
[CrossRef] [PubMed]

44. Artyomov, M.N.; Das, J.; Kardar, M.; Chakraborty, A.K. Purely stochastic binary decisions in cell signaling
models without underlying deterministic bistabilities. Proc. Natl. Acad. Sci. USA 2007, 104, 18958–18963.
[CrossRef] [PubMed]

45. Vlysidis, M.; Schiek, A.C.; Kaznessis, Y.N. ZICS: An Application for Calculating the Stationary
Probability Distribution of Stochastic Reaction Networks. arXiv 2018, arXiv:1806.06428. Available online:
https://arxiv.org/abs/1806.06428 (accessed on 6 September 2018).

46. Constantino, P.H.; Kaznessis, Y.N. Maximum entropy prediction of non-equilibrium stationary distributions
for stochastic reaction networks with oscillatory dynamics. Chem. Eng. Sci. 2017, 171, 139–148. [CrossRef]

47. Peleš, S.; Munsky, B.; Khammash, M. Reduction and solution of the chemical master equation using time
scale separation and finite state projection. J. Chem. Phys. 2006, 125, 204104. [CrossRef] [PubMed]

48. Golub, G.H.; Van Loan, C.F. Matrix Computations, 4th ed.; The Johns Hopkins University Press: Baltimore,
MD, USA, 2013; ISBN 978-1-4214-0794-4.

49. Butcher, J.C. A stability property of implicit Runge-Kutta methods. BIT 1975, 15, 358–361. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1007/BF01395694
http://dx.doi.org/10.1186/1752-0509-3-90
http://www.ncbi.nlm.nih.gov/pubmed/19737387
http://dx.doi.org/10.1016/0022-5193(71)90054-3
http://dx.doi.org/10.1016/0022-5193(71)90166-4
http://dx.doi.org/10.1063/1.1505860
http://dx.doi.org/10.1063/1.1889434
http://www.ncbi.nlm.nih.gov/pubmed/15918689
http://dx.doi.org/10.1016/j.compchemeng.2018.01.015
http://dx.doi.org/10.1371/journal.pone.0174573
http://www.ncbi.nlm.nih.gov/pubmed/28394949
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1038/35002131
http://www.ncbi.nlm.nih.gov/pubmed/10659857
http://dx.doi.org/10.1073/pnas.0308265100
http://www.ncbi.nlm.nih.gov/pubmed/14766974
http://dx.doi.org/10.1073/pnas.0706110104
http://www.ncbi.nlm.nih.gov/pubmed/18025473
http://dx.doi.org/10.1016/j.ces.2017.05.029
http://dx.doi.org/10.1063/1.2397685
http://www.ncbi.nlm.nih.gov/pubmed/17144687
http://dx.doi.org/10.1007/BF01931672
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods/Theory
	Lagrange Multiplier Equations
	Connect Moments to Lagrange Multipliers
	Time Derivatives

	Initial Value from Moments to Lagrange Multipliers

	Results
	Multistable Systems: The Schlögl and Wilhelm Models
	Oscillatory System: The Brusselator Model
	Multicomponent System: The Viral Infection Model
	Computational Cost of LMEs
	Dependence on State Space Size

	Discussion
	Inverse of Jacobian
	Runge-Kutta
	Runge-Kutta Tableau
	Runge-Kutta Algorithm

	References

