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Abstract: This paper is concerned with the co-existence of different synchronization types for
fractional-order discrete-time chaotic systems with different dimensions. In particular, we show that
through appropriate nonlinear control, projective synchronization (PS), full state hybrid projective
synchronization (FSHPS), and generalized synchronization (GS) can be achieved simultaneously.
A second nonlinear control scheme is developed whereby inverse full state hybrid projective
synchronization (IFSHPS) and inverse generalized synchronization (IGS) are shown to co-exist.
Numerical examples are presented to confirm the findings.
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1. Introduction

Discrete-time chaotic systems have been the center of attention in the fields of control [1,2] and
secure communications in the last few years [3–6]. This attention can be attributed to two main
characteristics. First, the chaotic nature of the dynamical systems, which seems random-like but is in
fact completely determined and can be predicted once the initial conditions are known. For instance,
this allows for the generation of pseudo–random sequences in secret or private-key encryption.
The second interesting property is their discrete nature, which allows for simple implementation and
reduced computational complexity. Among the well known discrete-time chaotic systems proposed
throughout the years are the Hénon map [7], the Lozi system [8], the generalized Hénon map [9] and
the Baier–Klein system [10].

In recent years, researchers have picked an interest in fractional discrete-time chaotic systems.
These involve fractional calculus, where the differences in the system’s dynamics are fractional.
Numerous studies have been dedicated to establishing a framework for fractional discrete calculus
such as [11–14]. A good summary of the subject is given in [15].
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In general, chaotic systems became of interest in science and engineering in the early
1990s after synchronization was demonstrated. The earliest studies include [16–19]. Since then,
various types of synchronization have been proposed in the literature including projective
synchronization (PS) [20], generalized synchronization (GS) [21], full state hybrid projective
synchronization (FSHPS) [22], and many more. Some modification have also been made to these
synchronization types leading, for instance, to inverse generalized synchronization (IGS) [23] and
inverse FSHPS (IFSHPS) [24]. With the emergence of fractional chaotic maps such as the fractional
Hénon map [25] and the fractional generalized Hénon map [26], the synchronization of such maps
became of interest. Very few studies can be found on the subject including [27–32].

Naturally, curiosity grew as to the possibility of multiple synchronization types being achieved
simultaneously for the states of the response system. This phenomenon is commonly referred to as
the co-existence of synchronization types. Many studies can be found in the literature proposing
linear and nonlinear control laws that give rise to the co-existence phenomenon for continuous-time
integer-order systems [33], continuous-time fractional systems [34–38], and discrete-time integer-order
systems [39–41]. However, to the best of the authors’ knowledge, no such studies have been made
for fractional-order discrete-time systems. This has motivated us to examine the phenomenon and
develop suitable control laws for various types co-existing.

The next section of this paper describes the model for the drive and response systems and defines
the necessary notation and synchronization types. Section 3 presents the control law that guarantees
the co-existence of PS, FSHPS, and GS as the control laws that establish the co-existence of IFSHPS and
IGS. Section 4 presents numerical examples that confirm the validity of the findings. Finally, Section 6
summarizes the work carried out in this paper.

2. System Model

In order to establish the co-existence of different synchronization types in fractional order
discrete-time chaotic systems, we consider the generic n-dimensional drive and response pair of
the form {

C∆υ
a xi (t) = Fi(X (t + α− 1)),

C∆υ
a yi (t) = Gi(Y (t + β− 1)) + ui,

t ∈ Na+1−υ (1)

where X (t) = (x1 (t) , ..., xn (t))
T , Y (t) = (y1 (t) , ..., yn (t))

T represent the states of the drive and
response systems, respectively, Fi, Gi are functions from Rn to R for 1 ≤ i ≤ n, and ui, 1 ≤ i ≤ n,
denote control parameters to be identified by means of the synchronization strategy.

The notation C∆υ
a X (t) denotes the υ–Caputo type delta difference of a function X (t) : Na → R

with Na = {a, a + 1, a + 2, ...} [12], which is of the form

C∆υ
a X (t) = ∆−(n−υ)

a ∆nX (t) =
1

Γ (n− υ)

t−(n−υ)

∑
s=a

(t− σ (s))(n−υ−1) ∆nX (s) , (2)

for υ 6∈ N is the fractional order, t ∈ Na+n−υ, and n = [υ] + 1. In (2), the υ–th fractional sum of ∆n
s X (t)

is defined similar to [11] as

∆−υ
a X (t) =

1
Γ (υ)

t−υ

∑
s=a

(t− σ (s))(υ−1) X (s) , (3)

with υ > 0, σ(s) = s + 1. The term t(υ) denotes the falling function defined in terms of the Gamma
function Γ as

t(υ) =
Γ (t + 1)

Γ (t + 1− υ)
. (4)
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Let us, now, define the types of synchronization with which we are interested in our study.
The idea is to show that multiple types of synchronization may exist simultaneously for a pair of
fractional-order discrete-time chaotic systems.

Definition 1. If there exists a controller U = (ui)1≤i≤n and either constants γ ∈ R∗, a matrix Φ, a map
φ : Rn −→ Rn, a matrix Θ, or a map ϕ : Rn −→ Rn such that

lim
t→+∞

‖Y (t)− γX (t)‖ = 0 =⇒ Pair (1) is projective synchronized (PS).

lim
t→+∞

‖Y (t)−ΦX (t)‖ = 0 =⇒ Pair (1) is full state hybrid projective synchronized (FSHPS).

lim
t→+∞

‖Y (t)− φ (Y (t))‖ = 0 =⇒ Pair (1) is generalized synchronized (GS).

lim
t→+∞

‖X (t)−ΘY (t)‖ = 0 =⇒ Pair (1) is inverse full state hybrid projective synchronized (IFSHPS).

lim
t→+∞

‖X (t)− ϕ (Y (t))‖ = 0 =⇒ Pair (1) is inverse generalized synchronized (IGS).

Note that in Definition 1 above, γ is a constant used to scale the master state vector. Matrices
Φ and Θ represent linear transformation of the master and slave state vectors, respectively, and are
usually referred to as scaling matrices. The terms φ and ϕ denote some arbitrary maps from Rn

towards Rn. In general, these are nonlinear maps that represent scaling functions. We are now ready
to present the main findings of our study.

3. Results

3.1. Co-existence of PS, FSHPS and GS

Let us consider the 2-dimensional drive system and a 3-dimensional response system given,
respectively, by

C∆υ
a xi (t) = fi (X (t + υ− 1)) , i = 1, 2, (5)

and
C∆υ

a yi (t) =
3

∑
j=1

bijyj (t + υ− 1) + gi (Y (t + υ− 1)) + ui, i = 1, 2, 3, (6)

where t ∈ Na+1−υ, 0 < υ ≤ 1, fi : R2 −→ R, 1 ≤ i ≤ 2,
(
bij
)
∈ R3×3 is the linear part of the drive

system, gi : R3 −→ R, 1 ≤ i ≤ 3, are nonlinear functions, and ui, i = 1, 2, 3, are controllers to be
designed. Based on Definition 1, we may define the co-existence of PS, FSHPS and GS for the coupled
systems (5) and (6) as follows.

Definition 2. It is said that PS, FSHPS and GS co-exist in the synchronization of the drive system (5) and
the response systems (6) if there exist a controller U = (ui)1≤i≤3, a constant γ ∈ R∗, a constant matrix
Φ =

(
Φij
)

1×2, and nonlinear map φ : R2 −→ R such that the synchronization errors
e1 (t) = y1 (t)− γx1 (t) ,
e2 (t) = y2 (t)−Φ× (x1 (t) , x2 (t))

T ,
e3 (t) = y3 (t)− φ (x1 (t) , x2 (t)) ,

(7)

all satisfy the asymptotic rule
lim

t→+∞
‖ei (t)‖ = 0 for i = 1, 2, 3. (8)

Remark 1. From the error system (7), it is obvious that states y1 and x1 are projective synchronized, y2 is full
state hybrid projective synchronized with x1 and x2, and y3 is generalized synchronized with x1 and x2.

We also need to state the following theorems, which are necessary for the proofs to come.
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Theorem 1 ([42]). The zero equilibrium of the linear fractional-order discrete-time system

C∆υ
a e (t) = De (t + υ− 1) , (9)

where e(t) = (e1(t), ..., en(t))
T , 0 < υ ≤ 1, D ∈ Rn×n and ∀t ∈ Na+1−υ, is asymptotically stable if

λ ∈
{

z ∈ C : |z| <
(

2 cos
|arg z| − π

2− υ

)υ

and |arg z| > υπ

2

}
, (10)

for all the eigenvalues λ of D.

Next, we propose control laws that achieve the co-existence rule (7). Let us define the matrix
B =

(
bij
)

3×3.

Theorem 2. PS, FSHPS and GS co-exist for the pair (5)–(6) subject to
u1 = ∑3

j=1
(
c1j − b1j

)
ej (t)−∑3

j=1 b1jyj (t)− g1 (Y (t + υ− 1)) + γ f1 (X (t + υ− 1)) ,
u2 = ∑3

j=1
(
c2j − b2j

)
ej (t)−∑3

j=1 b2jyj (t)− g2 (Y (t + υ− 1)) + Φ1 f1 (X (t + υ− 1))
+Φ1 f2 (X (t + υ− 1)) ,

u3 = ∑3
j=1
(
c3j − b3j

)
ej (t)−∑3

j=1 b3jyj(t)− g3 (Y (t + υ− 1)) + C∆βφ (x1 (t) , x2 (t)) ,

(11)

where C =
(
cij
)

3×3 is a constant matrix chosen such that all the eigenvalues λi of B− C satisfy

− 2υ < λi < 0, i = 1, 2, 3. (12)

Proof. The difference equations corresponding to the error system (7) are given by
C∆υ

a e1 (t) = C∆υ
a y1 (t)− γ C∆υ

a x1 (t) ,
C∆υ

a e2 (t) = C∆υ
a y2 (t)−Φ C∆υ

a (x1 (t) , x2 (t))
T ,

C∆υ
a e3 (t) = C∆υ

a y3 (t)− C∆υ
a φ (x1 (t) , x2 (t)) .

(13)

Substituting the system nonlinearities yields
C∆υ

a e1 (t) = ∑3
j=1 b1jyj (t + υ− 1) + g1 (Y (t + υ− 1)) + u1 − γ f1 (X (t + υ− 1)) ,

C∆υ
a e2 (t) = ∑3

j=1 b2jyj (t + υ− 1) + g2 (Y (t + υ− 1)) + u2 −Φ1 f1 (X (t + υ− 1))
−Φ1 f2 (X (t + υ− 1)) ,

C∆υ
a e3 (t) = ∑3

j=1 b3jyj (t + υ− 1) + g3 (Y (t + υ− 1)) + u3 − C∆υ
a φ (x1 (t) , x2 (t)) .

(14)

Substituting the proposed control law (11) in (14) yields
C∆υ

a e1 (t) = ∑3
j=1
(
b1j − c1j

)
ej (t + υ− 1) ,

C∆υ
a e2 (t) = ∑3

j=1
(
b2j − c2j

)
ej (t + υ− 1) ,

C∆υ
a e3 (t) = ∑3

j=1
(
b3j − c3j

)
ej (t + υ− 1) .

(15)

In order to show that the zero solution of (16) is globally asymptotically stable, we use the
linearization method as described in Theorem 1. The error system (15) can be written in the
compact form

C∆υ
a e (t) = (B− C) e (t + υ− 1) . (16)

where e (t) = (e1 (t) , e2 (t) , e3 (t))
T . According to condition (12), it is easy to see that all the eigenvalues

of the matrix B− C satisfy |arg λi| = π > υπ
2 and |λi| <

(
2 cos |arg λi |−π

2−υ

)υ
, for i = 1, 2, 3. It, then,

follows immediately from Theorem 1 that the zero solution of (16) is globally asymptotically stable
and consequently, systems (5) and (6) are synchronized in 3–dimensions according to Definition 2.
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3.2. Co-existence of IFSHPS and IGS

We, now, would like to achieve similar results for the inverse synchronization types listed in
Definition 1. Consider the drive and response pair of the form{

C∆υ
a xi (t) = ∑2

j=1 aijxj (t + υ− 1) + fi (X (t + υ− 1)) , i = 1, 2,
C∆υ

a yi (t) = gi (Y (t + υ− 1)) + ui, i = 1, 2, 3,
(17)

where t ∈ Na+1−υ, A = (aij) ∈ R2×2 and fi : R2 → R, 1 ≤ i ≤ 2, are nonlinear functions, and
gi : R3 → R, 1 ≤ i ≤ 3. Based on Definition 1, we can state what is meant by the co-existence of
IFSHPS and IGS for (17) as summarized in the following definition.

Definition 3. IFSHPS and IGS are said to co-exist in the synchronization of the pair (17) if there exist controllers
ui, i = 1, 2, 3, a constant matrix Θ =

(
Θij
)

1×3, and a map ϕ : R3 −→ R such that the synchronization errors{
e1 (t) = x1 (t)−Θ× (y1 (t) , y2 (t) , y3 (t))

T ,
e2 (t) = x2 (t)− ϕ (y1 (t) , y2 (t) , y3 (t)) ,

(18)

all satisfy the asymptotic rule
lim

t→+∞
ei (t) = 0 for i = 1, 2. (19)

Remark 2. From the error system (18), it is apparent that x1 is inverse full state hybrid projective synchronized
with y1 (t), y2 (t) and y3 (t), and that x2(t) is inverse generalized synchronized with y1 (t), y2 (t) and y3 (t).

Suppose that the function ϕ can be factorized in the form

ϕ (y1 (t) , y2 (t) , y3 (t)) =
3

∑
j=1

θjyj (t) + ψ (y1 (t) , y2 (t) , y3 (t)) , (20)

where θj, j = 1, 2, 3, are real numbers and ψ : R3 → R is a nonlinear function. The error dynamics (18)
yield the difference equations

C∆υ
a e1 (t) = C∆υ

a x1 (t)−Θ1
C∆υ

a y1 (t)−Θ2
C∆υ

a y2 (t)
−Θ3

C∆υ
a y3 (t) ,

C∆υ
a e2 (t) = C∆υ

a x2 (t)− θ1
C∆υ

a y1 (t)− θ2
C∆υ

a y2 (t)
−θ3

C∆υ
a y3 (t)− C∆υ

a ψ (y1 (t) , y2 (t) , y3 (t)) .

(21)

To simplify the equations, we can define

R1 =
2

∑
j=1

a1jxj (t) + f1 (X (t))−
3

∑
j=1

Θjgi (Y (t)) , (22)

and

R2 =
2

∑
j=1

a2jxj (t + υ− 1) + f2 (X (t))−
3

∑
j=1

θjgi (Y (t))− C∆υ
a ψ (y1 (t) , y2 (t) , y3 (t)) . (23)

Using (22) and (23), (21) may be written in the reduced form{
C∆υ

a e1 (t) = R1 −∑3
j=1 Θjuj,

C∆υ
a e2 (t) = R2 −∑3

j=1 θjuj,
(24)
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or more compactly as
C∆υ

a e (t) = R−M× (u1, u2)
T − (Θ3u3, θ3u3)

T , (25)

where R = (R1, R2)
T and

M =

(
Θ1 Θ2

θ1 θ2

)
. (26)

To establish the co-existence of IFSHPS and IGS, we assume that M is invertible and denote its
inverse by M−1. The control law is, then, given by

(u1, u2)
T = M−1 × [(L− A) e (t) + R] and u3 = 0, (27)

where L ∈ R2×2 is a control matrix to be determined. Substituting (27) into Equation (25), we get

C∆υ
a e (t) = (A− L) e (t + υ− 1) . (28)

The following result follows in a similar manner to Theorem 2. The proof has been omitted as it
can be inferred directly from that of Theorem 2.

Theorem 3. If the control matrix L is chosen such that all the eigenvalues of A− L such that −2υ < λi < 0,
i = 1, 2, then IFSHPS and IGS co-exist for (17) as described in (18) subject to control law (27).

4. Numerical Examples

We will now put the theoretical results presented in Section 3 to the test. We consider the 2D
fractional Hénon map proposed in [25] as the drive system and the 2D fractional-order generalized
Hénon map [26] as the response system. The pair is described as{

C∆υ
a x1 (t) = x2 (t + υ− 1)− x1 (t + υ− 1) + 1− a1x2

1 (t + υ− 1) ,
C∆υ

a x2 (t) = b1x1 (t + υ− 1)− x2 (t + υ− 1) ,
(29)

and


C∆υ

a y1 (t) = −y1 (t + υ− 1)− b2y3 (t + υ− 1) + u1 (t + υ− 1) ,
C∆υ

a y2 (t) = b2y3 (t + υ− 1) + y1 (t + υ− 1)− y2 (t + υ− 1) + u2 (t + υ− 1) ,
C∆υ

a y3 (t) = 1 + y2 (t + υ− 1)− a2y2
3 (t + υ− 1)− y3 (t + υ− 1) + u3 (t + υ− 1) .

(30)

The linear and nonlinear parts of the drive system (29) and the response system (30) are given by,
respectively,

A =

(
−1 1
b1 −1

)
, f =

(
−a1x2

1 (t) + 1
0

)
,

and

B =

 −1 0 −b2

1 −1 b2

0 1 −1

 , g =

 0
0

1− a2y2
3 (t)

 .

These two systems were proposed in the literature and shown to exhibit chaotic behaviors.
For instance, when (a1, b1) = (1.4, 0.3), (a2, b2) = (0.99, 0.2), a = 0 and υ = 0.984. Figures 1 and 2
show the chaotic trajectories of the drive system (29) and response system (29), respectively.

Previous research in information theory has established that entropy quantifies the rate of transfer
or generation of information in a particular system. In general, Kolmogorov–Sinai (KS) entropy
is applied to measure dynamical systems. A direct time–series approximation of the KS entropy
was proposed in [43] named ER entropy, which indicates the level of chaos in a particular system.
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Because calculating the exact ER entropy experimentally is difficult, an approximate entropy (ApEn)
measure was introduced in [44,45]. Approximate entropy has been used to investigate chaotic systems
recently [46,47].

In our work, the approximate entropy values of the drive and response systems have been
calculated by using the reported scheme in [44,45]. As a brief summary of the approximation scheme,
consider N data samples generated by our fractional map x (1) , x (2) , . . . , x (N). The data is arranged
in a sequence of vectors with an embedding dimension m of the form

X (i) = [x (i) , x (i + 1) , ..., x (i + m− 1)] with 1 ≤ i ≤ N −m + 1. (31)

The distance between two distinct vectors X (i) and X (j) is denoted by d (X (i) , X (j)). We also
define a threshold for our entropy calculation similar to [44,45] as

r = 0.2std (x) , (32)

with std(x) being the standard deviation of x. We, then, iterate over the regresser vectors and calculate
the number of vectors K that yield a distance d (X (i) , X (j)) ≤ r. The approximate entropy is, then,
given by

ApEn = φm (r)− φm+1 (r) , (33)

where

φm (r) =
1

N −m− 1

N−m+1

∑
i=1

log
(

Ki
N −m + 1

)
. (34)

The approximate entropy of the 2D fractional-order Hénon map is ApEn = 0.4159. The approximate
entropy of the 2D fractional-order generalized Hénon map is ApEn = 0.0114. The results agree with
trajectories illustrated in Figures 1 and 2.

x1

-1.5 -1 -0.5 0 0.5 1 1.5

x
2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 1. Phase space plot for the fractional Hénon map with (a1, b1) = (1.4, 0.3), υ = 0.984, and
(x1(0), x2(0)) = (0, 0).
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0.2
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0
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-1

0

1
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0.5

y 3

Figure 2. Phase portraits for the fractional generalized Hénon map with (a2, b2) = (0.99, 0.2),
υ = 0.984, and (y1(0), y2(0), y3(0)) = (0.1, 0.2, 0.5).

Example 1. The error system for the PS-FSHPS-GS synchronization scheme was described in Definition 2.
We let

γ = 3, Φ = (1, 3) and φ (x1 (t) , x2 (t)) = (x1(t)x2 (t)) . (35)

Theorem 2 requires the selection of a control matrix C such that all the eigenvalues of B − C satisfy
condition (12). For instance, the control matrix C can be chosen as

C =

 0 0 0
1 0 0
0 1 0

 . (36)

Simply, we can show that all eigenvalues of B− C are: λ1 = λ2 = λ3 = −1 and therefor condition of
Theorem 2 is satisfied. We can use the matrix C to construct the following controllers

u1 (t) = −e1 (t)− b2e3 (t) + y1 (t) + b2y3 (t) + 3x2 (t)
−3x1 (t) + 3− 3a1x2

1 (t) ,
u2 (t) = −e2 (t) + b2e3 (t)− b2y3 (t)− y1 (t) + y2 (t)− 2x2 (t)

+ (3b1 − 1) x1 (t) + 1− a1x2
1 (t)

u3 (t) = −e3 (t)− 1− y2 (t) + a2y2
3 (t) + y3 (t)

+ C∆υ
a x1(t)x2 (t) .

(37)
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These controllers leads to the simplified error system
C∆υ

a e1 (t) = −e1 (t + υ− 1)− b2e3 (t + υ− 1) ,
C∆υ

a e2 (t) = −e2 (t + υ− 1) + b2e3 (t + υ− 1) ,
C∆υ

a e3 (t) = −e3 (t + υ− 1) .
(38)

Figure 3 shows the errors as functions of time for parameter sets (a1, b1) = (1.4, 0.3) and (a2, b2) =

(0.99, 0.2), starting point a = 0, fractional order υ = 0.984, and initial errors (e1 (0) , e2 (0) , e3 (0)) =

(0.1, 0.2, 0.5). Clearly, the errors converge towards the zero solution implying that the three slave states are
PS–FSHPS–GS synchronized.

n
0 10 20 30

e 1
(n

)

-0.05

0

0.05

0.1

n
0 10 20 30

e 2
(n

)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

n
0 10 20 30

e 3
(n

)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 3. The evolution of errors over time for Example 1.

Example 2. The second case is concerned with the co-existence of IFSHPS and IGS in 2D. The error system is
defined according to Definition 3 where

Θ = (1, 0, 3) and ϕ (y1 (t) , y2 (t) , y3 (t)) = y1 (t) + y2 (t) + y2
3 (t) . (39)

Following the approach of Theorem 3, we start with a factorization of ϕ as

ϕ (y1 (t) , y2 (t) , y3 (t)) =
3

∑
j=1

θjyj (t) + ψ (y1 (t) , y2 (t) , y3 (t)) . (40)

It can be easily shown that

(θ1, θ2, θ3) = (1, 2, 0) and ψ (y1 (t) , y2 (t) , y3 (t)) = y2
3 (t) , (41)

are sufficient. The proposed synchronization scheme rearranges Θ and (θ1, θ2, θ3) into the matrix

M =

(
1 0
1 2

)
, (42)

which is invertible with inverse

M−1 =

(
1 0
− 1

2
1
2

)
. (43)
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Theorem 3 requires the choice of a matrix L. This may be achieved with

L =

(
1 13

4
b1 − 1 −2

)
. (44)

The controllers can, thus, be constructed according to (27) based on R1 and R2 defined in (22) and (23),
respectively. We end up with

u1 (t) = −2e1 − 9
4 e2 + x2 (t)− x1 (t)− a1x2

1 (t) + y1 (t)
+ (b2 + 3) y3 (t)− 2− 3y2 (t) + 3a2y2

3 (t) ,

u2 (t) = 3
2 e1 +

13
8 e2 − y1 (t) + 5

2 y2 (t)−
( 3

2 + b2
)

y3 (t)

−x2 (t) +
(b1+1)

2 x1 (t) + 1
2 a1x2

1 (t)

− 3a2
2 y2

3 (t)−
1
2

C
∆βy2

3 (t) + 1,
u3 (t) = 0.

(45)

and {
C∆υ

a e1 (t) = −2e1 (t + υ− 1)− 9
4 e2 (t + υ− 1) ,

C∆υ
a e2 (t) = e1 (t + υ− 1) + e2 (t + υ− 1) .

(46)

Figure 4 depicts the stabilized states subject to parameter sets (a1, b1) = (1.4, 0.3) and (a2, b2) =

(0.99, 0.2), starting point a = 0, fractional order υ = 0.984, and initial errors (e1 (0) , e2 (0)) =

(−1.6,−0.325). It is easy to from Figure 4 that the errors converge towards zero in sufficient time proving that
the controllers (45) in fact achieve IFSHPS–IGS synchronization for the pair (29).

n
0 10 20 30 40 50

e 1
(n

)

-3

-2

-1

0

1

2

3

n
0 10 20 30 40 50

e 2
(n

)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Figure 4. The evolution of errors over time for Example 2.

5. Discussion

In this paper, we have presented novel results concerning the co-existence of multiple
synchronization types in Caputo-type fractional chaotic maps. To the best of our knowledge, the topic
of co-existence has not been considered before for this type of system, which motivated this research.
The synchronization types considered are rather general, which allows for multiple applications,
especially in the fields of secure communications and data encryption. In fact, as we mentioned before,
very few studies can be found in the literature concerning the synchronization of fractional chaotic
maps, which makes this work all the more interesting.
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Perhaps the most interesting studies related to the subject are [27–32]. In [27], the authors merely
consider a pair of identical fractional logistic maps and propose a simple direct synchronization
controller. In [28], an identical synchronization scheme is proposed based on the results of [48,49].
The authors of [29], again, consider the synchronization of identical fractional Hénon maps. The same
can be said regarding [32]. As for [31], the authors propose a simple linear feedback controller suitable
for a variety of maps. However, it is only shown to achieve complete synchronization, which is the
most basic form of synchronization. In [30], the fractional difference operator used is different from
the one used here and thus comparison is difficult.

Generally speaking, it is difficult to compare our results to those reported in the above mentioned
studies as the scope of our work is much wider. In addition, we are mainly concerned with co-existence,
which has not been considered before for this type of systems.

6. Concluding Remarks

In this work, we have shown that different types of synchronization can co-exist for
fractional-order discrete-time chaotic systems. We assumed a two dimensional drive system and
a three dimensional response system. The main results of the study were two fold. First, we presented
a nonlinear control scheme whereby PS, FSHPS, and GS are achieved simultaneously for the three
states of the response system. The stability of the zero solution, and consequently the convergence of
the synchronization error, was established by means of the stability theory of linear fractional-order
discrete-time systems. The second main result concerns the co-existence of IFSHPS and IGS for the
same drive-response pair. The three response states are simultaneously IFSHPS synchronized with the
first drive state and IGS synchronized with the second drive state. Numerical results have confirmed
the findings of the study. Simulations were carried out on Matlab to ensure that the errors converge to
zero subject to the proposed control laws.
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