
entropy

Article

The Impact of Entropy and Solution Density on
Selected SAT Heuristics

Dor Cohen and Ofer Strichman *

Information Systems Engineering, IE, Technion, Haifa 3200003, Israel; dor.coh@gmail.com
* Correspondence: ofers@ie.technion.ac.il; Tel.: +972-4-829-4433

Received: 1 May 2018; Accepted: 14 September 2018; Published: 17 September 2018
����������
�������

Abstract: We present a new characterization of propositional formulas called entropy, which approximates
the freedom we have in assigning the variables. Like several other such measures (e.g., back-door and
back-door-key variables), it is computationally expensive to compute. Nevertheless, for small and
medium-size satisfiable formulas, it enables us to study the effect of this freedom on the impact of
various SAT heuristics, following up on a recent study by C. Oh (Oh, SAT’15, LNCS 9340, 307–323).
Oh’s findings were that the expected success of various heuristics depends on whether the input
formula is satisfiable or not. With entropy, and also with the measure of solution density, we are able
to refine these findings for the case of satisfiable formulas. Specifically, we found empirically that
satisfiable formulas with small entropy “behave” similarly to unsatisfiable formulas.

Keywords: SAT; entropy; solution-density

1. Introduction

In [1], Oh examined the impact of various key heuristics in competitive SAT solvers (i.e., solvers
of the propositional satisfiability problem). His key findings were that the average success of those
heuristics depends on whether the input formula is satisfiable or not. In particular the effect of
the deletion strategy, restart policy, decay factor, and database reduction is different, on average, between
satisfiable and unsatisfiable formulas. This observation can be used for designing solvers that specialize
in one of them, and for designing a hybrid solver that alternates between SAT/UNSAT “modes”.
Indeed certain variants of COMINISATPS [1] work this way.

We do not see an a priori reason to believe that the SAT/UNSAT divide—corresponding to the
distinction between zero or more solutions—explains best the differences in the effect of the various
heuristics (we note that while proving Unsat and Sat belong to separate complexity classes, there is
no known connection of this fact to effectiveness of heuristics). In this work we investigate further
his findings, and show empirically that there are more refined measures (i.e., properties of the input
formula) than the satisfiability of the formula, that predict better the effectiveness of these heuristics.
In particular, we checked how it correlates with two measures of satisfiable formulas: the entropy of the
formula (to be defined below), which approximates the freedom we have in assigning the variables, and
the solution density (henceforth density), which is the number of solutions divided by the search space.
Our experiments show that both are correlated with the effectiveness of the heuristics, but the entropy
measure seems to be more consistent: in all experiments, with both random and industrial-like benchmarks,
heuristics that are better for unsat formulas are also better for formulas with low entropy. The results for
density are less consistent.

Like several other measures that were proposed in the past (e.g., back-door variables and
back-door key variables [2]), both measures are hard to compute. They require solving a #p problem
over a SAT formula, and hence at least for now we cannot see a direct application of these results for

Entropy 2018, 20, 713; doi:10.3390/e20090713 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/1099-4300/20/9/713?type=check_update&version=1
http://dx.doi.org/10.3390/e20090713
http://www.mdpi.com/journal/entropy

Entropy 2018, 20, 713 2 of 11

faster SAT solving of industrial formulas. This does not mean that these results are useless in the long
run, however. In particular our contributions are:

1. Suggesting the concept of entropy as a new proxy to the freedom of variables,
2. Showing evidence that for satisfiable formulas there are better predictors of the effectiveness of

various SAT heuristics than the sat/unsat dichotomy suggested by Oh, and in particular that
entropy predicts hardness consistently across all those heuristics (albeit not in all cases with strong
statistical significance), and

3. Setting the foundations for future research into approximating entropy fast, which may eventually
indeed lead to constructing faster portfolios based on entropy-based hardness prediction.

We continue in the next section by describing the concept of entropy and its relevance to SAT
formulas. In Section 3 we explain the statistical methods that we used in this research. Section 4 is the
main section of this article. It describes in detail our experimental setting and our empirical findings.
Our conclusions from this research appear in Section 5.

2. Entropy

Let ϕ be a propositional CNF formula, var(ϕ) its set of variables and lit(ϕ) its set of literals. In the
following we will use v, v̄ to denote the literals corresponding to a variable v when the distinction
between variables and literals is clear from the context. If ϕ is satisfiable, we denote by r(l), for
l ∈ lit(ϕ), the ratio of solutions to ϕ that satisfy l. Hence for all v ∈ var(ϕ), it holds that r(v) + r(v̄) = 1.
We now define:

Definition 1 (variable entropy). For a satisfiable formula ϕ, the entropy of a variable v ∈ var(ϕ) is
defined by

e(v) .
= −r(v) log2 r(v)− r(v̄) log2 r(v̄) . (1)

where 0 · log2 0 is taken as being equal to 0.

This definition is inspired by Shannon’s definition of entropy in the context of information theory [3].
Figure 1 (left) depicts (1).

Figure 1. (Left) Depicting the entropy function (1); (Right) The distribution of e(v) of a formula with
100 variables.

Intuitively, entropy reflects how “balanced” a variable is with respect to the solution space of the
formula. In particular e(v) = 0 when r(v) = 0 or r(v) = 1, which means that ϕ =⇒ v̄ or ϕ =⇒ v,
respectively. In other words, e(v) = 0 implies that v is a backbone variable, since its value is implied by
the formula. The other extreme is e(v) = 1; this happens when r(v) = r(v̄) = 0.5, which means that v
and v̄ appear an equal number of times in the solution space.

Entropy 2018, 20, 713 3 of 11

Definition 2 (formula entropy). The entropy of a satisfiable formula is the average entropy of its variables.

As an example, Figure 1 (right) is a histogram of e(v) for a particular formula ϕ, where for 24 out
of the 100 variables r(v) = 0.

Entropy is hard to compute: Let #SAT(ϕ) denote the number of solutions a formula ϕ has. Then it is
easy to see that

r(v) =
#(ϕ ∧ v)

#ϕ
and r(v̄) = 1− r(v) . (2)

Hence computing e(v) amounts to two calls to a model counter. However, since the denominator #ϕ is
fixed for ϕ, computing e(ϕ) amounts to |var(ϕ)|+ 1 calls to a model counter. Since model counting is
a #P problem, we can only compute this value for relatively small formulas.

3. A Preliminary: Standardized Linear Regression

We assume the reader is somewhat familiar with linear regression. It is a standard technique for
building a linear model ŷ = β̂0 + β̂1x, where ŷ in our case is a predictor of the number of conflicts,
and x is either the entropy or the density of the formula. We will focus on two results of linear
regression: the value of β̂1 and the p-value. The latter is computed with respect to a null hypothesis,
denoted H0, that β̂1 = 0, and an alternative hypothesis H1. H1 can be either the complement of H0

(β̂1 6= 0) or a “one-sided hypothesis”, e.g., H1 : β̂1 > 0. In the former case, p = 2Pr(Z ≤ z | H0),

where Z ∼ N(0, 1) and z = β̂1−0
std(β̂1)

. The ‘0’ in the numerator comes from the specific value in H0.

In other words, assuming H0 is correct, the p-value indicates the probability that a random value from
a standard normal distribution N(0, 1), is less than z, the standardized value of β̂1. In the latter case
p = Pr(Z ≤ z | H0).

We list below several important points about the analysis that we applied.

• Standardization of the data: given data points X .
= x1, . . . , xn, their standardization X′ .

=

x′1, . . . , x′n is defined for 1 ≤ i ≤ n by

x′i =
xi − x̄

σ
,

where x̄ is the average value of X and σ is its standard deviation. Now X′ has no units, and
hence two standardized sets of data are comparable even if they originated from different types of
measures (in our case, entropy and density). All the data in our experiments was standardized.

• Bootstrapping: Bootstrapping, parameterized by a value k, is a well-known technique for
improving the precision of various statistics, such as the confidence interval. Technically, bootstrap
is applied as follows: Given the original n samples, uniformly sample it n times with replacement
(i.e., without taking the sampled points out, which implies that the same point can be selected more
than once); repeat this process k times. Hence we now have n · k data points. For our experiments
we took k = 1000, which is a rather standard value when using this technique. In each of the
experiments that will be reported later on n = 5000, hence we have a total of 5× 106 data points
for each experiment.

• Two regression tests: The entropy and density data consists of pairs of the form
〈entropy, con f licts[i]〉, and 〈density, con f licts[i]〉, respectively, where i ∈ {1, 2} is the index of
the heuristic (e.g., in Section 4.3 we will compare the effectiveness of two restart strategies, so the
indices 1 and 2 refer to those strategies). Hence the corresponding data is four series of points
(e1, c1[i]), . . . , (en, cn[i]), and (d1, c1[i]), . . . , (dn, cn[i]), where i ∈ {1, 2}. To compare the predictive
power of entropy, density and Oh’s criterion of SAT/UNSAT, we performed two statistical tests
(recall that the data is standardized, and hence comparable):

– The ∆ test: A linear regression test over the series (e1, c1[1]− c1[2]) . . . (en, cn[1]− cn[2]), and
the series (d1, c1[1]− c1[2]) . . . (dn, cn[1]− cn[2]).

Entropy 2018, 20, 713 4 of 11

– The ∆β̂1
test: A linear regression test over the series (e1, c1[1]) . . . (en, cn[1]) and

(e1, c1[2]) . . . (en, cn[2]), and similarly for density (i.e., four tests all together). We then checked
the significance of β̂1 for each of these 4 tests. In addition, we checked the hypothesis
H0 : β̂1[1]− β̂1[2] = 0 for each of the measures. The result of this last test appears in the
Appendix A.

Intuitively, the two models tell us slightly different things: the first tells us whether the gap
between the two heuristics is correlated with the measure, and the second tells us whether there is
a significant difference in the value of β̂1 (the slope of the linear model) between the two heuristics.
As we will see in the results, the p-value obtained by these models can be very different.

• Plots: The plots are based on the original (non-standardized) data. To reduce the clutter (from
5000 points), we rounded all values to 2 decimal points and then aggregated them. Aggregation
means that points (x, y1) . . . (x, yn) (i.e., n points with an equal x value) are replaced with a single
point (x, avg(y1 . . . yn)). However the trend-lines in the various plots are depicted according to
the original data, before rounding and aggregation. The statistical significance of these trend-lines
appears in the Appendix A.

4. Empirical Findings

4.1. The Benchmark Set

All the results that we report below are based on experiments with 10,000 CNF formulas, divided
to two equally sized subsets described below. For each such formula, we calculated the exact
entropy and solution density, using a combination of the SAT-based model-counters CACHET [4]
and SHARPSAT [5]. To the best of our knowledge currently these are the most powerful exact
model-counters. We note that in addition to SAT-based model-counters, there is also an option of
building an Ordered Binary Decision Diagram (OBDD) from the input formula, and then the counting
is polynomial in the size of the BDD. The problem is that the BDD itself can become exponential in the
number of variables. Some recent examples of applying BDD-based counting include [6–8].

The first subset of benchmarks is comprised of 5000 3-SAT random formulas with 100 variables
and 400 clauses. These are formulas taken from SAT-lib, in which the number of backbone variables is
known. Specifically, there is an equal number of formulas in this set with 10, 30, 50, 70 and 90 backbone
variables (i.e., a 1000 formulas of each number of backbone variables), which gave us a near-uniform
distribution of entropy among the formulas.

The second subset of benchmarks is comprised of 3296 CNF formulas that are generated with
the modularity-based CNF generator MODULARITYGEN [9], which generates random formulas that
have characteristics of real-world problems (out of the 5000 formulas that we generated, this is the
number of formulas for which we were able to compute entropy and solution density within the
timeout that we set). To understand the structure of these formulas, note first that a CNF formula can
be represented by the variable incidence graph, which is an undirected graph in which variables are
nodes and two nodes are connected if they share a clause. Such a graph can be partitioned into sets of
nodes, and each partition is called a community. Given a partition we can measure the ratio between
the number of edges within communities (in contrast to edges between communities) and the number
of such edges that we would have gotten had we distributed the same number of edges between the
same nodes but in a uniformly random fashion. Between all possible partitions, we take the one that
drives this ratio to maximum: this is called the modularity of the graph, and is typically denoted by
Q [10]. It has been recognised in [11] and later in [12] that industrial CNF formulas have high values
of Q (a “good community structure”), and moreover that heuristics used by modern SAT solvers
(unknowingly) exploit this fact for faster solving. In an impressive series of experiments reported
in [9], they generated hundreds of formulas with a varying value of Q. They then took two solvers,
MARCH [13] and GLUCOSE [14], which specialize in random and industrial formulas, respectively, and

Entropy 2018, 20, 713 5 of 11

ran them with those benchmarks as input. Exactly as expected, MARCH was far better with formulas
having low values of Q and GLUCOSE was much better with formulas having high values of Q.

MODULARITYGEN gives the user the ability to control, among other things, the modularity Q,
the number of neighborhoods n, and the size of the formula. For our experiments we chose Q = 0.7
(based on measurements made in [9], that showed that most industrial formulas have at least this
value of modularity, whereas random formulas have values smaller than Q = 0.3), n = 5, 400 variables
and 1600 clauses.

To distinguish between the random and modularity-based benchmarks sets, we will call them
respectively B-Rand and B-Mod from hereon.

4.2. Entropy and Density Predict Hardness

We checked the correlation between hardness, as measured by the number of conflicts, and the
two measures described above, namely entropy and density. We use the number of conflicts as a proxy
of the run-time, because these are all easy formulas for SAT, and hence the differences in run-time are
rather meaningless. The two plots in Figure 2 depict this data based on our experiments with the solver
MINISAT-HACK-999ED. It is apparent that higher entropy and higher density imply a smaller number
of conflicts. It turns out that this is not a characteristic that is unique to this solver. We performed a
detailed statistical analysis of seven different solvers, and witnessed a similar phenomenon, as we
now describe.

Figure 2. Entropy (left) and density (right) as predictors of the number of conflicts (based on
MiniSat-HACK-999ED). It is apparent that higher entropy and higher density imply a smaller number
of conflicts.

Denote by β̂E
1 and β̂S

1 the β̂1-value of the linear models for entropy vs. conflicts and density vs.
conflicts, respectively. Table 1 shows strong correlation between both measures to the number of
conflicts (the p-value in both cases, for all engines, is practically 0). The last two columns show the gap
β̂E

1 − β̂S
1 and the corresponding p-value for H0 : β̂E

1 − β̂S
1 = 0, H1 : β̂E

1 − β̂S
1 6= 0, when measured across

the k = 1000 iterations of the bootstrap method that was described in Section 3. For engines with high
p-value we cannot reject H0 with confidence.

Entropy 2018, 20, 713 6 of 11

Table 1. For each solver, we list the 95% confidence interval of its β̂E
1 (entropy) and β̂S

1 (solutions).
For all engines the corresponding p-value is practically 0 (i.e., ≤10−100). The last two columns refer to
the gap between these measures.

Solver β̂E
1 β̂S

1 β̂E
1 − β̂S

1 p-Value

MiniSat-HACK-999ED (−84.29, −72.58) (−84.93, −73.56) (5.37, 16.96) 0.716

MiniSat-HACK-999ED
(modified to luby) (−86.31, −75.36) (−82.97, −72.64) (−7.51, 1.44) 0.200

MiniSat-HACK-999ED
(modified for 2 phases) (−72.84, −63.61) (−72.31, −62.91) (−4.80, 3.57) 0.738

SWDiA5BY (−91.61, −79.17) (−90.97, −78.77) (−5.95, 4.92) 0.84

COMiniSatPS (−74.68, −64.58) (−75.41, −65.43) (−3.79, 5.37) 0.76

lingeling-ayv (−76.19, −66.61) (−71.70, −61.76) (−8.99, −0.35) 0.029

Glucose (−91.24, −79.34) (−90.56, −78.88) (−6.00, 4.85) 0.845

4.3. A Refinement of Oh’s Results

In this section we describe each of the experiments of Oh [1], and our own version of the
experiment based on entropy and density, when applied to the 10,000 benchmarks mentioned above.
We omit the details of one experiment, in which Oh examined the effect of canceling database reduction,
the reason being that this heuristic is only activated after 2000 conflicts, and most of our benchmarks
are solved before that point (we note that our attempt to use an approximate model-counter with
larger formulas failed: the inaccuracies were large enough to make the analysis show results that are
senseless). Raw data as well as charts and regression analysis of our full set of experiments can be
found online in [15].

1. Deletion strategy: Different solvers use different criteria for selecting the learned clauses for
deletion. It was shown in [1] that for SAT instances learned clauses with low Literal Block Distance
(LBD) [14] value can help, whereas others have no apparent effect. In one of the experiments, whose
results are copied here at the top part of Figure 3, Oh compared the criterion of “core LBD-cut” 5 and
clause size 12 (an LBD-cut is the lowest value of LBD a learned clause had so far, assuming this value
is recalculated periodically). In other words, either save (i.e., do not delete) clauses with an LBD-cut of
5 and lower, or clauses with size 12 or lower. It shows that for UNSAT instances the former is better,
whereas the opposite conclusion is reached for the SAT instances. The results of our own experiments
are depicted at the bottom of the figure. They show that the latter is indeed slightly better with our
benchmarks (all satisfiable, recall). However, what is more important, is that the difference becomes
smaller with lower entropy—hence the decline of the trend-lines and the negative β1 values (recall that
the trend-lines are based on the raw data, whereas the diagram itself is computed after rounding and
aggregation to improve visibility. Hence occasionally the two do not seem to be perfectly matching).
Hence it is evident that formulas with small entropy “behave” more similar to unsat formulas. More
information appears in the caption of Figure 3, and in the Appendix A.

2. Deletion with different LBD-cut value Related to the previous heuristic, in [1] it was found
that deletion based on larger LBD-cut values, up to a point, improve the performance of the solver with
unsat formulas, but not with SAT ones. Figure 4 (top) is an excerpt from his results for various LBD-cut
values. We repeated his experiment with LBD-cut 1 and LBD-cut 5. The plots show that lower values
of entropy yield a bigger advantage to LBD-cut 5, which again demonstrates that satisfiable formulas
with these values ‘behave’ similarly to unsat formulas. The results for density are inconsistent, in the
sense that we see the same phenomenon with B-Rand but not with B-Mod.

Entropy 2018, 20, 713 7 of 11

Figure 3. The effect of the deletion criterion. The results of [1] appear in the table at the top, where the
numbers indicate the number of solved instances. It shows that for SAT instances keeping everything
with clause size 12 is better than keeping everything with LBD 5, whereas the result is opposite for the
UNSAT instances. Our own results (bottom) are separated by measure (entropy/density) and by the
benchmark set. The y-axis corresponds to the difference in the # of conflicts, and hence a positive value
shows that the clause-based deletion creates more conflicts. Hence a declining regression line, which is
the case in the two entropy experiments (left) and in the B-Mod density experiments, shows that with
a higher value of entropy (or density), clause-based deletion produces less conflicts in comparison to
LBD-based. Hence we see that the effectiveness of the deletion strategy is similar in satisfiable formulas
with small entropy and unsatisfiable formulas.

Figure 4. The results of [1] (top) show that unsat formulas are solved faster with high LBD-cut.
Our results (bottom) show that low-entropy and low-density formulas behave more similarly to
unsat formulas.

3. Restarts policy: The Luby restart strategy [16] is based on a fixed sequence of time intervals,
whereas the GLUCOSE restarts are more rapid and dynamic. It initiates a restart when the solver
identifies that learned clauses have higher LBD than average. According to the competitions’ results
this is generally better in unsat instances. Oh confirmed the hypothesis that this is related to the restart
strategy: indeed his results show that for satisfiable instances Luby restart is better.

Entropy 2018, 20, 713 8 of 11

Our own results can be seen in Figure 5. The fact that the gap in the number of conflicts between
Luby and Glucose-style restarts is negative, implies that the former is generally better, which is
consistent with Oh’s results for satisfiable formulas. Observe that the trend-line declines with entropy
(β̂1 = −15 and β̂1 = −164 for the two benchmark sets), which implies that Glucose restarts are
statistically better with low entropy. So again we observe that low entropy formulas ‘behave’ more
similar to UNSAT formulas than those that have high entropy. We speculate that with high-entropy
instances, the solver hits more branches that can be extended to a solution, hence Glucose’s rapid
restarts can be detrimental. Density again seems to have an inconsistent effect between the two
benchmark sets.

Figure 5. The effect of the restart strategy, comparing Luby and Glucose-style restarts. The results of [1]
(top) show that the Glucose strategy (rapid restarts) has an advantage in unsat formulas. Our results
(bottom) show that the same phenomenon is apparent in formulas with low entropy. Indeed observe
the decline in the gap: with lower-entropy formulas the number of conflicts is smaller with the Glucose
restart strategy.

4. The variable decay factor: This experiment shows the most consistent and the most statistically
significant results. The well-known VSIDS branching heuristic is based on an activity score of literals,
which decay over time, hence giving higher priority to literals that appear in recently learned clauses.
In the solver MINISAT_HACK_999ED, there is a different decay factor for each of the two restart phases:
this solver alternates between a Glucose-style (G) restart policy phase and a no-restart (NR) phase
(these two phases correspond to good heuristics for SAT and UNSAT formulas, respectively). In [1] Oh
compares different decay factors for each of these restart phases on top of MINISAT_HACK_999ED.
His results show that for UNSAT instances slower decay gives better performance, while for SAT
instances it is unclear. His results appear at the top of Figure 6. We experimented with the two extreme
decay factors in that table: 0.95 and 0.6. Please note that since our benchmarks are relatively easy,
the solver never reaches the NR phase. The plot shows the gap in the number of conflicts between
these two values. A higher value means that with strong decay (0.6) the results are worse. We can see
that the results are worse with strong decay when the entropy is low, which demonstrates again that
the effect of the variable decay factor is similar for unsat formulas and satisfiable formulas with low
entropy. A similar phenomenon happens with small density in both benchmark sets.

Entropy 2018, 20, 713 9 of 11

Figure 6. The effect of variable decay: the results of [1] (top) generally show that unsat formulas are
better solved with a high decay factor. The restart policy in his solver is hybrid: it alternates between a
“no-restart” (NR) phase and a “Glucose” (G) phase. The “NR” and “G” columns hold the decay factor
during these phases. The plots at the bottom show the gap in the number of conflicts between G = 0.6
and G = 0.95. It shows that with low entropy, strong decay (i.e., G = 0.6) is worse, similar to the effect
that it has on unsat formulas. With low density (right) a similar effect is visible.

5. Conclusions

We defined the entropy property of satisfiable formulas, and used it, together with solution density,
to further refine and investigate the results achieved by Oh in [1]. We began by showing a clear
correlation between these two measures and the number of conflicts in Section 4.2, based on an
analysis of seven different solvers. We then showed that both measures predict better the effect of
various SAT heuristics than Oh’s sat/unsat divide, and that satisfiable formulas with small entropy
‘behave’ similarly to unsatisfiable formulas. In that respect the entropy measure is more consistent
than density across benchmarks types. Since both measures are hard to compute we do not expect
these results to be applied directly (e.g., in a portfolio), but perhaps future research will find ways to
cheaply approximate them and lead to improved heuristics.

Author Contributions: Conceptualization, Methodology, Supervision, Writing: O.S.; Software, Validation,
Visualization, Formal Analysis: D.C.

Funding: This research was supported by the ISRAEL SCIENCE FOUNDATION (grant No. 31/1831).

Acknowledgments: We thank David Azriel for his guidance regarding statistical techniques.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Regression-Tests Results

Table A1 lists the confidence interval and corresponding p-value, for the two regression tests
∆ and ∆β̂1

(in the latter we also list the results for β̂0) that were explained in Section 3, and the four
experiments described in Section 4. H1 is one-sided.

Table A1. Regression-tests results for the four experiments in Section 4. p-value ≤ 10−10 are rounded
to 0.

Exp. Bench. Measure Confidence p-Val Confidence p-Val Confidence p-ValInterval (∆) interval (∆β̂1
) Interval (∆β̂0

)

1 B-Rand Entropy (−17.207, 16.04) 0.48 (−17.878, 16.155) 0.05 (−15.836, −2.328) 0
B-Mod Entropy (−806.83, 675.0) 0.46 (−779.3, 699.96) 0.44 (−387.3, 164.9) 0.003
B-Rand Density (−21.39, 108.65) 0.09 (−19.30, 111.97) 0.39 (−25.01, −5.53) 0
B-Mod Density (−6829, 2647) 0.2 (−6663, 2883) 0.16 (−519.4, 758.4) 0.003

Entropy 2018, 20, 713 10 of 11

Table A1. Cont.

Exp. Bench. Measure Confidence p-Val Confidence p-Val Confidence p-ValInterval (∆) interval (∆β̂1
) Interval (∆β̂0

)

2 B-Rand Entropy (−24.16, 2.49) 0.04 (−24.59, 1.71) 0.39 (0.640, 11.138) 0.01
B-Mod Entropy (−651.6, 550.48) 0.44 (−622.03, 545.26) 0.49 (−190.64, 251.56) 0.33
B-Rand Density (−86.37, 17.50) 0.09 (−85.24, 16.11) 0.47 (−0.723, 14.450) 0.01
B-Mod Density (−2472, 5240) 0.23 (−2578, 5455) 0.13 (−717.8, 371.4) 0.33

3 B-Rand Entropy (−53.50, 22.17) 0.22 (−52.71, 23.33) 0.001 (−40.55, −10.27) 0
B-Mod Entropy (−938.9, 570.7) 0.33 (−921.4, 611.0) 0.48 (−4.2, 553.3) 2 × 10−6

B-Rand Density (−101.57, 183.8) 0.30 (−105.89, 183.08) 0.05 (−55.67, −13.35) 0
B-Mod Density (−9939, −937) 0.007 (−9991, −832) 0.16 (308.4, 1543.6) 2 × 10−6

4 B-Rand Entropy (−96.55, −68.38) 0 (−97.27, −69.05) 0.125 (42.11, 53.69) 0
B-Mod Entropy (−2042, −559) 0.0004 (−2091, −529) 0.38 (1127, 1717) 0
B-Rand Density (−340.3, −224.1) 0 (−343.9, −226.5) 0.47 (50.44, 67.76) 0
B-Mod Density (−21,540, −11,007) 0.003 (−21,474, −10,950) 0.46 (2357, 3788) 0

References

1. Oh, C. Between SAT and UNSAT: The Fundamental Difference in CDCL SAT. In Theory and Applications of
Satisfiability Testing (SAT 2015); Heule, M., Weaver, S., Eds.; Lecture Notes in Computer Science; Springer:
Cham, Switzerland, 2015; Volume 9340, pp. 307–323.

2. Williams, R.; Gomes, C.P.; Selman, B. Backdoors to Typical Case Complexity. In Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, 9–15 August 2003;
Gottlob, G.; Walsh, T., Eds.; Morgan Kaufmann: Burlington, MA, USA, 2003; pp. 1173–1178.

3. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
4. Sang, T.; Bacchus, F.; Beame, P.; Kautz, H.A.; Pitassi, T. Combining Component Caching and Clause

Learning for Effective Model Counting. In Proceedings of the Seventh International Conference on Theory
and Applications of Satisfiability Testing (SAT 2004), Vancouver, BC, Canada, 10–13 May 2004; Springer:
Berlin/Heidelberg, Germany, 2004.

5. Thurley, M. sharpSAT—Counting Models with Advanced Component Caching and Implicit BCP.
In Proceedings of the 9th International Conference on Theory and Applications of Satisfiability Testing—SAT 2006,
Seattle, WA, USA, 12–15 August 2006; Biere, A., Gomes, C.P., Eds.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2006; Volume 4121, pp. 424–429.

6. Heradio, R.; Fernández-Amorós, D.; Perez-Morago, H.; Adán, A. Speeding up Derivative Configuration
from Product Platforms. Entropy 2014, 16, 3329–3356. [CrossRef]

7. Perez-Morago, H.; Heradio, R.; Fernández-Amorós, D.; Bean, R.; Cerrada, C. Efficient Identification of Core
and Dead Features in Variability Models. IEEE Access 2015, 3, 2333–2340. [CrossRef]

8. Heradio, R.; Perez-Morago, H.; Fernández-Amorós, D.; Bean, R.; Cabrerizo, F.J.; Cerrada, C.; Herrera-Viedma, E.
Binary Decision Diagram Algorithms to Perform Hard Analysis Operations on Variability Models. In New
Trends in Software Methodologies, Tools and Techniques, Proceedings of the Fifteenth SoMeT_16, Larnaca, Cyprus,
12–14 September 2016; Fujita, H., Papadopoulos, G.A., Eds.; Frontiers in Artificial Intelligence and Applications;
IOS Press: Amsterdam, The Netherlands, 2016; Volume 286, pp. 139–154.

9. Giráldez-Cru, J.; Levy, J. A Modularity-Based Random SAT Instances Generator. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July
2015; Yang, Q., Wooldridge, M., Eds.; AAAI Press: Palo Alto, CA, USA, 2015; pp. 1952–1958.

10. Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004,
69, 026113. [CrossRef] [PubMed]

11. Ansótegui, C.; Giráldez-Cru, J.; Levy, J. The community structure of SAT formulas. In Proceedings of
the Theory and Applications of Satisfiability Testing—SAT 2012, Trento, Italy, 17–20 June 2012; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 410–423.

http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.3390/e16063329
http://dx.doi.org/10.1109/ACCESS.2015.2498764
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://www.ncbi.nlm.nih.gov/pubmed/14995526

Entropy 2018, 20, 713 11 of 11

12. Newsham, Z.; Ganesh, V.; Fischmeister, S.; Audemard, G.; Simon, L. Impact of Community Structure on
SAT Solver Performance. In Theory and Applications of Satisfiability Testing—SAT 2014, Proceedings of the 17th
International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, 14–17 July 2014;
Sinz, C., Egly, U., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014;
Volume 8561, pp. 252–268.

13. Heule, M.; Dufour, M.; van Zwieten, J.; van Maaren, H. March_eq: Implementing Additional Reasoning into
an Efficient Look-Ahead SAT Solver. In Theory and Applications of Satisfiability Testing, Proceedings of the 7th
International Conference, SAT 2004, Vancouver, BC, Canada, 10–13 May 2004; Hoos, H.H., Mitchell, D.G., Eds.;
Revised Selected Papers; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004;
Volume 3542, pp. 345–359.

14. Audemard, G.; Simon, L. Predicting Learnt Clauses Quality in Modern SAT Solvers. In Proceedings
of the 21st International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, 11–17 July 2009;
pp. 399–404.

15. Full Experimental Results. Available online: http://ie.technion.ac.il/~ofers/entropy/supp.tar.gz (accessed
on 15 September 2018).

16. Luby, M.; Sinclair, A.; Zuckerman, D. Optimal Speedup of Las Vegas Algorithms. Inf. Process. Lett. 1993,
47, 173–180. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://ie.technion.ac.il/~ofers/entropy/supp.tar.gz
http://dx.doi.org/10.1016/0020-0190(93)90029-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Entropy
	A Preliminary: Standardized Linear Regression
	Empirical Findings
	The Benchmark Set
	Entropy and Density Predict Hardness
	A Refinement of Oh's Results

	Conclusions
	Regression-Tests Results
	References

