
entropy

Article

Harmonic Sierpinski Gasket and Applications

Emanuel Guariglia 1,2 ID

1 Department of Mathematics and Applications “R.Caccioppoli”, University of Naples Federico II,
80126 Naples, Italy; emanuel.guariglia@gmail.com

2 Department of Mathematics, University of Trento, 38123 Trento, Italy

Received: 14 August 2018; Accepted: 14 September 2018; Published: 17 September 2018
����������
�������

Abstract: The aim of this paper is to investigate the generalization of the Sierpinski gasket through
the harmonic metric. In particular, this work presents an antenna based on such a generalization.
In fact, the harmonic Sierpinski gasket is used as a geometric configuration of small antennas. As with
fractal antennas and Rényi entropy, their performance is characterized by the associated entropy that
is studied and discussed here.
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1. Introduction

In recent years, entropic theories have given rise to considerable interest in mathematics, physics,
engineering and applied science. On the other side, chaotic motions and attractors are often modeled
by iterative maps, that is fundamental methods of fractal geometry. Chaos, entropy and fractals have
drawn the interest of many researchers due to their mathematical modeling ability to solve a wide
variety of real problems. In particular, Kolmogorov generalized the concept of entropy in order to
define a fundamental measure for chaotic evolution [1]. This definition allows the classification of
dynamical systems as regular, chaotic and purely random.

Fractal sets are characterized by their self-similarity property, that is each part of the set has the
same or approximate shape of the whole set. However, fractal sets as each mathematical abstraction are
unable to provide a model for real-world applications. This issue can be overcome with the introduction
of the notion of pre-fractals, which are fractals built with a finite number of iterations. In recent
times, pre-fractal modeling has provided huge versatility in engineering and applied science [2,3].
In particular, pre-fractals are used to design the geometric configuration of small antennas called
fractal antennas. A pre-fractal structure makes these antennas multiband with efficient miniaturization.
In fact, fractal geometry entails two main advantages supplied by self-similarity and space-filling
properties [2]. In the class of fractal antennas, the Sierpinski gasket antenna plays a fundamental role in
research due to its high broadband performance. In fact, it is widely used in wireless communication
systems (UMTS, WLAN, etc.), spatial communication (RF MEMS probes) and ANN [4,5]. Taking
into account the link between the Rényi entropy and the Rényi dimension [6], the entropy of fractal
antennas can easily be defined and computed [1]. Consequently, the entropy of such antennas results
in a direct link with their geometric configuration representing an antenna performance parameter.

In topological terms, the (Euclidean) Sierpinski gasket is a fractal set, which cannot be seen as
a smooth or topological manifold. Nevertheless, it turns out that this fractal owns a natural metric
structure induced by the Euclidean metric in R2. In [7,8], Kigami generalized the Sierpinski gasket
through the theory of harmonic functions. The new metric space, homeomorphic to the Sierpinski
gasket, is called the harmonic gasket or the Sierpinski gasket in harmonic metric (cf. [9–11] and the
references given there). In this paper, it will simply be called the harmonic Sierpinski gasket for
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brevity and to avoid any confusion. The harmonic generalization of the ordinary Sierpinski gasket
immediately attracted considerable attention due to its applications in probability theory and harmonic
analysis [7,12–15]. In particular, this paper shows the main properties of the harmonic Sierpinski
gasket together with an application to antenna design.

The remainder of this paper is organized as follows. Section 2 presents some preliminaries on
fractal geometry and on Rényi entropy. Section 3 is intended to motivate our investigation of the
harmonic Sierpinski gasket. Section 4 is devoted to the study of the associated antenna. Finally,
Section 5 outlines the main results of this paper, open problems and possible future developments.

2. Preliminaries

This section contains some general remarks on fractal geometry and Rényi entropy. As a result,
the next sections will be rendered as self-contained as possible in order to facilitate access to the
individual topics. Excepting the notation herein introduced, we refer the reader to [1].

2.1. Fractal Geometry and Sierpinski Gasket

Fractal sets are mainly described by the fractal dimension, an index of complexity introduced
by Mandelbrot and based on his 1967 paper on fractional dimensions ([2], p. xxvii). Fractal sets with
the same fractal dimension can be extremely different. As a result, the fractal dimension does not
uniquely characterize self-similar sets. Nevertheless, it remains the most important parameter in fractal
modeling. Unlike topological dimensions, the fractal dimension is a non-integer value, which indicates
how a set fills the space. This lack makes the traditional geometries ill-suited for the characterization
of several sets, currently known as fractals. The fractal dimension has been studied extensively in a
variety of literature [2]. The fractal dimension can be theoretically defined and empirically measured
in many ways. However, the only introduction of the Besicovitch measure has allowed the definition
of dimension for extremely irregular sets. This value, called the Hausdorff–Besicovitch dimension
(Hausdorff dimension for short), raised the fractal modeling to the role of mathematical theory. In
fact, Mandelbrot defined “a fractal as a set for which the Hausdorff-Besicovitch dimension strictly
exceeds the topological dimension”. Despite this central role in fractal geometry, it can turn out to be
unsuitable for real-world applications. However, there are other definitions in widespread use due
to both their ease in mathematical computation and empirical estimation. It is not our purpose to
study in detail the Hausdorff–Besicovitch dimension ([2], Chapter 2), and we restrict our attention to
another definition of fractal dimension called the box-counting dimension. It has several applications
in mathematics, science and engineering and is reported ([2], p. 41) below.

Definition 1 (Box-counting dimension). Let A be a non-empty bounded subset of Rn, and let Nδ(A) be the
smallest number of δ-boxes needed to cover A. The lower and upper box-counting dimensions of A, denoted
respectively by Dim B(A) and Dim B(A), are defined as follows

Dim B(A) = lim inf
δ→0

log Nδ(A)

log(1/δ)
,

Dim B(A) = lim sup
δ→0

log Nδ(A)

log(1/δ)
.

If Dim B(A) = Dim B(A), this common value is called the box-counting dimension of A. Thus, the
box-counting dimension of A is given by

Dim B(A) := lim
δ→0

log Nδ(A)

log(1/δ)
, (1)

if the limit (1) exists.
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Therefore, the box-counting dimension of A is defined by the minimum number of δ-boxes (or any
other equivalent set of side δ) that cover the set A lying in an evenly-spaced grid. The box-counting
dimension can also differ from the Hausdorff–Besicovitch dimension. In fact, under the hypothesis
and notation of Definition 1, it is easy to show ([2], p. 46) that 0 ≤ Dim H(A) ≤ Dim B(A). Hence, the
box-counting dimension is an upper estimation of the Hausdorff–Besicovitch dimension. In fractal
geometry, fractal sets can be built by IFS. Based on the self-similarity, it has been at the heart of fractal
geometry almost from its origins.

Definition 2 (IFS). Let D be a closed subset of Rn. A family of contractive maps F1, . . . , Fm on D is called an
iterated function system (IFS). By IFS theory ([2], p. 123), a non-empty compact subset A of D is an attractor of
the IFS if

A :=
m⋃

i=1

Fi(A) . (2)

Furthermore, A is called a self–affine fractal (or self–affine set) if the Fi are affine transformations on Rn, that is

Fix = Tix + di , (1 ≤ i ≤ m)

where Ti are linear transformations on Rn and di ∈ Rn are translation vectors.

In Definition 2, often, D = Rn. The fundamental property of an IFS, pioneered by Hutchinson [16],
is that it determines a unique attractor. In the special case when Fi are all similarities, A is self-similar.
For our purposes, the class of self-affine fractals is of particular interest. Self-affine fractals are scaled
by different amounts in different directions. In the case of self-similarity, the fractal is scaled by the
same amount in all directions. Self-affine fractals are generally fractal, and it is natural to investigate
their applications in pure and applied mathematics ([2], Chapter 9). In particular, the self-affinity of
the harmonic Sierpinski gasket is shown in Section 3. The IFS plays a central role in fractal geometry
given that fractal sets are made up of parts that are similar, in some way, to the whole. Each self-similar
step can be seen as a contraction, that is the construction of the fractal set comes over from the iteration
of the Banach contraction mapping theorem. Consequently, many fractal sets can be characterized
by contraction factors c1, . . . , cm. However, a detailed description of the IFS exceeds the scope of this
paper. In addition to characterizing the construction of fractal sets, IFS often leads to a simple way to
compute dimensions. For several fractal sets, this value can be determined in a much easier way. For
instance, the Moran–Hutchinson theorem ([2], pp. 130–132) enables us to find the dimension of many
self-similar fractals. This theorem states that

m

∑
k=1

cs
k = 1 ,

where s is the fractal dimension. As a worthwhile example, we can consider the Sierpinski gasket. It
is simply denoted by K. This fractal is built from an equilateral triangle by the removal of inverted
equilateral triangles, as shown in Figure 1. Clearly, c1 = c2 = c3, which gives

3
(

1
2

)s
= 1 .

Therefore, the fractal dimension of K is given by

s =
log 3
log 2

≈ 1.584962 .

In Figure 1, the basic version of K is shown. In fact, equivalent definitions and generalizations of this
fractal are widely present in the current literature. In particular, the shape and topological model



Entropy 2018, 20, 714 4 of 12

can be adapted to the application sought. As a result, K has a broad range of applications (especially
in antenna theory). As mentioned in the Introduction, all the fractal applications in science and
engineering are based on pre-fractal models. Additionally, the main advantages vanish after a few
iterations. For fractal antennas, such a number is almost never greater than six [1].

Figure 1. Construction of the Sierpinski gasket [1].

2.2. Rényi Entropy

The concept of entropy arises in thermodynamics and statistical physics. Shannon adapted
such a concept to signal theory, laying the foundations of information theory and modern
telecommunications [17]. A few years later, Rényi provided a first generalization of the Shannon
entropy [1,18,19]. It is currently known as Rényi entropy and is defined below.

Definition 3 (Rényi entropy). Let X be a discrete random variable and let α ∈ R≥0. The Rényi entropy of
order α is given by

Hα(X) :=
1

1− α
logb

N

∑
i=1

pα
i , (3)

where pi is the probability of the event {X = xi}.

In Definition 3, the most common values for b are b = 2 and b = e. Of course, it is necessary that
α 6= 1 to avoid beingzero. Let us show that the Hα is well defined. L’Hôpital’s rule entails that

1
1− α

logb

N

∑
i=1

pα
i

α→1−−−−→ H(X) ,

that is, H1 is mandatorily defined as the Shannon entropy. Consequently, Rényi entropy is a
generalization of the Shannon entropy; see [20] for more details. Furthermore, from Definition 3,
it follows that Hα characterizes the randomness of complex systems [6].

In fractal geometry, the Hausdorff–Besicovitch dimension does not provide a constructive method
to estimate the fractal dimension. Accordingly, other fractal parameters (box-counting dimension,
lacunarity, etc.) have been introduced over time in order to solve these potential problems [2,21].
In particular, the different definitions of fractal dimension allow fractal modeling to be suitable for
real-world applications. For our purposes, the fractality will be estimated via a generalized fractal
parameter called the Rényi dimension [6].

Definition 4 (Rényi dimension). Under the same hypotheses as in Definitions 3, the Rényi dimension of order
α is given by

Dα(X) :=
1

α− 1
lim
δ→0

logb

N
∑

i=1
pα

i

logb δ
,

where N = N(δ) is the total number of δ-boxes with pi > 0.
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As in Definition 3, it is understood that α 6= 1. In fact, applying L’Hôpital’s rule

1
α− 1

lim
δ→0

logb

N
∑

i=1
pα

i

logb δ

α→1−−−−→ lim
δ→0

N
∑

i=1
pi logb pi

logb δ
.

Hence, the above definition of the Rényi dimension makes sense. It directly follows that

Dα = − lim
δ→0

Hα

logb δ
, (4)

which justifies the appellation of the Rényi dimension. The parameter Dα is also known as the
generalized fractional dimension since

D0 = lim
δ→0

logb N

logb

(
1
δ

) ,

that is the box-counting dimension. The cases α = 1 and α = 2 are of special interest in chaos theory.
In fact, D1 and D2, called information dimension and correlation dimension, respectively, are used to
describe the behavior of chaotic attractors. As a result, the Rényi dimension characterizes fractality,
randomness and chaoticness. The main difficulty is that Dα cannot be directly computed. Nevertheless,
for any fixed δ > 0 small enough, we get

Hα = −Dα logb δ , (5)

Approximation (5) allows the entropy of a region to be computed from the three spatial coordinates [22].
Therefore, the entropy of fractal antennas can be defined by the introduction of Dα. In particular, the
entropy of the Sierpinski gasket antenna is computed and discussed in [1]. The entropy described
by Formula (5) depends on the computation of the Rényi dimension. It describes the so-called
multifractality, which is the generalization of the concept of fractality in which different scaling factors
occur with different probabilities. In particular, for identical scaling factors, the dependence of Dα on α

can be easily represented as in Figure 2.

-10 -5 5 10
q

0.9

1.0

1.1

1.2

1.3

1.4
Dq 

Figure 2. Rényi dimension Dα for N = 3, δ = 1/3, p1 = 1/5, p2 = p3 = 2/5 and α ∈ [−10, 10].

Figure 2 shows that Dα is a nonincreasing function of α on [−10, 10]. This property holds on the
whole real line (see [6] for more details). The numerical computation of Dα is based on the auxiliary
function τ(α) = (α− 1)Dα and is sufficient for our purposes. However, this procedure allows us to
determine the multifractal spectrum fα through the Hölder exponent [23].
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3. Harmonic Sierpinski Gasket

The construction of K enables one to define a new structure on the gasket. This generalization
of K can be defined by homeomorphism theory in terms of harmonic functions. In particular,
approximations as in Figure 1 can be characterized by a harmonic metric. The construction does
not imply any additional issue. In fact, harmonic functions defined in terms of graphs are continuous
in the Euclidean topology of the gasket. K is the attractor of the IFS given by

Fix =
1
2
(x− pi) + pi , (for i = 1, 2, 3) (6)

in which pi are the vertices of an equilateral triangle. Although the space of the harmonic functions
is three-dimensional, such functions can be reduced to one variable by composing on the right with
an isometry of K and on the left with an affine mapping [24]. The IFS (6) can be generalized to a
regular three-simplex as in [9]. However, K is the unique nonempty compact subset of R2 such that
K =

⋃3
i=1 Fi(K).

Definition 5 (Decomposition in m-cells). For any m ≥ 1, let w be the multi-index defined by w =

(w1, w2, ..., wm) such that wi = {1, 2, 3} for i = 1, . . . , m and Fw be the IFS defined by Fw = Fw1 ◦ · · · ◦ Fwm .
The decomposition of K into m-cells is given by

K :=
⋃
|w|=m

Fw(K) . (7)

In Definition 5, for the simplicity of notation, Fw(K) is often denoted by Kw since the m-cells
depend on w. First and foremost, we need to show how the theory of harmonic functions can be
generalized on K. In order to get such a definition, we have to provide the concept of energy, which
for harmonic functions is easily explained. For this purpose, some basic remarks on the graph
approximation of K and their associated vertices are given [24]. In particular, the concept of the
multi-index enables us to describe the points of K by words, whose elements belong to T = {1, 2, 3}.
Let Σ = TN, W0 = {∅} and Wm = Tm for m > 0. Hence, for any m ≥ 0, the set Wm contains all
the words of length m. Under these assumptions, the vertices of K are given by V∗ =

⋃
m≥0 Vm with

V0 = {p1, p2, p3} and
Vm =

⋃
w∈Wm

Fw(V0) . (8)

The Sierpinski gasket K can be seen as the limit of the graphs Γm with vertices Vm and an appropriate
edge relation. Let Γ0 be the complete graph of V0. The relation x ∼= y if and only if x and y are neighbors
in Γm can be inductively defined by Formula (8). It provides the desired link between K and V∗. Note
that Vm−1 ⊆ Vm. Hence, Vm \V0 consists of all non-boundary vertices in Γm. It is immediate that all
these vertices have always four neighbors in Vm (see Figure 1). Therefore, Γm, called the graph cell, is
given [9] by

Γm :=


V0 , |w| = 0 ,

Fw(V0) , |w| > 0 .

Definition 6 (Energy). The graph energy form on Γm, Em(u, v), is given by

Em(u, v) :=
(

5
3

)m

∑
x∼=y:x,y∈Vm

(u(x)− u(y)) (v(x)− v(y)) ,



Entropy 2018, 20, 714 7 of 12

where Vm is the set of vertices in Γm and the relation x ∼= y is defined above. The energy, E(u), on K is given by

E(u) = lim
m→∞

Em(u, u) .

The theory of harmonic functions on K is part of a more general theory based on the Laplacian
∆. According to this theory, u is harmonic if and only if ∆u = 0. However, the harmonic condition
∆u = 0 can be replaced by an energy minimization condition [12,25–28].

Definition 7 (Harmonic extension). Let u be defined on V0. The unique extension of u from V0 to Vm+1,
denoted by û, is called the harmonic extension of u if it minimizes the energy Em+1 [9] by

E0(u) =
(

5
3

)m
Em+1 (û) .

Definition 7 assures that given values of a function u on V0, it can be uniquely extended to Vm for
any m. Therefore, u can be extended to V∗. The function u is called a harmonic function on K. Clearly,
any harmonic function u is determined uniquely by u|V0 . We can now proceed with the construction
on K, which can be seen as a space to be geometrized [7]. In fact, the metric harmonic makes K a
geometric space called the harmonic (Sierpinski) gasket. As a result, the harmonic gasket is introduced
by the space of harmonic functions H. The last step in the construction of KH is given using these
harmonic functions as a coordinate chart for K in the subspace M0 := {(x, y, z) ∈ R3 : x + y + z = 0}.
Kigami [7] introduced the map

Φ : K → M0 , (9)

by

Φ(x) =
1√
2


h1(x)

h2(x)
h3(x)

− 1
3

1
1
1


 .

In the map above, hi
(

pj
)
= δij for i, j = 1, 2, 3 and pj ∈ V0. In order to clarify the role played by such

functions, without loss of generality, we can identifyH with R3. As already mentioned, a harmonic
functions depends uniquely on its value on V0. Therefore, {h1 = (1, 0, 0), h2 = (0, 1, 0), h3 = (0, 0, 1)}
is a basis for H. The map Φ is a homeomorphism onto its image. The action of the map Φ on K is
shown in Figure 3. Therefore, K ' Φ(K) leads to define the harmonic Sierpinski gasket, denoted by
KH. This generalization of K is also called the harmonic gasket (for brevity) or Sierpinski gasket in the
harmonic metric. It is not a fractal set. Nevertheless, the following theorem provides a natural and
intrinsic characterization of KH.

Theorem 1. The harmonic Sierpinski gasket KH is a self-affine fractal in R2.

Proof. The harmonic Sierpinski gasket is defined by the homeomorphism Φ, which preserves
compactness. Therefore, KH is a compact subset of M0. The proof consists of the construction of
the affinities Hi : M0 → M0 as in Definition 2. Let P : R3 → M0 be the orthogonal projection
defined by

qi =
P (ei)√

2
, (for i = 1, 2, 3)

in which {e1, e2, e3} is the natural basis of R3. Furthermore, for any i = 1, 2, 3, let Ji : M0 → M0 be the
maps defined by

Ji (qi) =
3
5

qi and Ji (gi) =
gi
5

,
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where gi are such that
{

gi,
qi
|qi|

}
is an orthonormal basis of M0. The affinities sought are given

by Hi(x) = Ji(x − qi) + qi for any i = 1, 2, 3. Therefore, KH is given by KH =
⋃3

i=1 Hi (KH), which
completes the proof.

Note that the contractions Hi are clearly linked to the contractions Fi used to build K through
the homeomorphism (9). In fact, Φ commutes with such contractions, that is Φ ◦ Fi = Hi ◦ Φ for
i = 1, 2, 3. As a result, KH can also be built via Φ from the contractions Fi. The harmonic Sierpinski
gasket shows the importance of the harmonic analysis in fractal geometry. In the long term, further
analytic developments of the harmonic Sierpinski gasket might be of independent interest in pure and
applied mathematics(see for instance [29]).

Figure 3. The harmonic Sierpinski gasket KH as a homeomorphic image of K.

4. An Application in Antenna Theory

Fractal antennas have become very popular since 1988. In the current literature, this year is
widely recognized as the year of their birth, when Cohen published a paper about this new type of
antenna [1]. The pre-fractal model entails both self-similarity and space-filling, which make fractal
antennas suitable for military, space and multiband application. Hence, fractal antennas have a large
effective length due to their pre-fractal contour. In addition, the importance of fractal antennas is borne
out from their application in metamaterials. The class of metamaterials called fractal metamaterials
allows making invisible a variety of objects as satellites, spacecraft and even people [30]. However,
the fractal geometry does not uniquely translate into the electromagnetic behavior of the antenna. In
fact, despite all these advantages, non-fractal antennas can reach or exceed the performance of their
fractal counterparts. This is in accordance with antenna theory. In 1999, a characterization to make
antennas’ frequency invariant was established. This is now known as the HCR principle and describes
necessary and sufficient conditions for all frequency independent antennas [31]. According to this
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principle, the self-similarity is the main requirement for the frequency independence, together with
origin symmetry. Therefore, non-fractal antennas that satisfy the HCR principle can also be frequency
independent, providing similar performance to those with pre-fractal contour [1].

Entropy of Self-Affine Fractal Antennas

Theorem 1 allows an application of the harmonic Sierpinski gasket in antenna theory. For
simplicity, this will be called the harmonic gasket antenna. The harmonic Sierpinski gasket can be
used as a geometric configuration in antenna design. Clearly, the antenna design will use a pre-fractal
version of the harmonic Sierpinski gasket, that is the IFS is built with a finite number of iterations. As
already mentioned in Section 2, a self-affine fractal is given by contractions that scale the set by different
factors, horizontally and vertically. Accordingly, this self-affine geometric configuration can provide
further flexibility in design. This property is due to the appropriate management of the two different
scale factors, which enables one to space resonances by different factors. In self-affine antenna design,
additional degrees of freedom are often introduced by perturbing the antenna shape and varying each
segment length and thickness, in order to both increase the chaoticness of the structure and fit more
challenging project requirements. In [1], the Rényi entropy of the Sierpinski gasket antenna is defined
and discussed by Formula (5). For pre-fractal sets, the Rényi dimension can be numerically computed.
In addition, other parameters (fractal spectrum, Hölder exponent, etc.) are easily derived with similar
numerical techniques. Taking into account that the concept of multifractality can be extended to
self-affine fractals [32], the entropy of the harmonic gasket antenna can easily be computed. For more
details, we refer the reader to [18,19].

There is an easier method to compute the entropy of some self-affine fractal antennas based on the
additivity of the Rényi entropy. Suppose that the self-affine fractal can be partitioned into self-similar
fractals. Once the self-affine fractal structure is chosen, the numerical computation reduces to that
described for the Sierpinski gasket antenna [1]. Hence, the entropy of these self-affine fractal antennas
is given by

H =
m

∑
i=1

Hαi , (10)

where Hαi is the Rényi entropy of the i-th pre-fractal and m is the total number of pre-fractal subsets
that partition the antenna. This method reduces the computational cost. In fact, the entropy (10) is
the sum of all the Rényi entropies associated with each self-similar subset. As already mentioned in
Section 2, the main advantages of the pre-fractal configuration in antenna design vanish after a few
iterations (typically five or six iterations). Therefore, the entropy (10) is the sum of no more than six
Rényi entropies. Formulas (5) and (10) entail that the entropy sought is characterized by the Rényi
dimension of each self-similar subset. Accordingly, the method described above is nothing more than
a simple generalization of that introduced in [1] for the Sierpinski gasket antenna.

For example, let us consider the Rényi dimension in Figure 2. The associated model consists of
three independent sets, characterized by the probabilities p1 = 1/5 and p2 = p3 = 2/5. In general, the
performance of the self-affine antenna can be expressed in terms of multifractal analysis. For any fixed
δ > 0 small enough, Formula (5) holds where

Dα =
1

α− 1
logb

(
1 + 2α+1)+ α logb p1

logb δ
.

The multifractal spectrum fα is given [23] by

(α− 1) Dα = αHα − fα ,
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in which Hα is the Hölder exponent. A simple computation gives

Hα =
1

logb δ

(
2α+1 log 2
1 + 2α+1 + log p1

)
,

therefore

fα =
1

logb δ

(
d

dα
log
(

1 + 2α+1
)
− log

(
1 + 2α+1

))
. (11)

Formula (11) does not depend on p1. Of course, Dα, Hα and fα cannot be solved explicitly. Their
numerical computation, as in Figure 2, allows one to achieve information on the performance of each
self-affine antenna. Whenever Equality (10) holds, the analysis of the self-affine antenna is simplified.
In fact, it reduces to the computation of the Rényi entropy Hi associated with each self-similar partition.
The performance analysis of the harmonic gasket antenna will be reported and discussed in greater
detail in a forthcoming publication.

In summary, whenever the self-affine fractal antenna can be partitioned into self-similar
pre-fractals, the entropy is given by Formula (10). In other cases, it is computed by the concept
of multifractality. However, as in the case of fractal antennas, the value of such entropy describes the
performance of the self-affine fractal antenna.

5. Conclusions

Harmonic analysis on fractal sets allows us to build a suitable generalization of the Sierpinski
gasket K by the homeomorphism theory. More precisely, it is the homeomorphic image of K, called the
harmonic Sierpinski gasket and denoted by KH. Homeomorphisms preserve the topological structure.
Hence, KH inherits some properties of K. In particular, Theorem 1 asserts that it is a self-affine fractal
set. The self-affine fractal structure entails that it can be used as a geometric configuration in antenna
design. The entropy of this antenna can be numerically computed by the concept of multifractality.
In addition, the application described here shows that the numerical method given in [1] holds also
for self-affine fractal antennas. The self-affine fractal structure provides flexibility in small antenna
design. Therefore, the harmonic gasket antenna exhibits multiband resonance by selecting the proper
scaling factor and optimization of the feed position. Further research should be done to generalize
the definition of entropy for small antennas. Moreover, the analysis carried out could leads to an
investigation of how the chaoticness of the geometric configuration influences the electromagnetic
performance.
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RF MEMS Radio frequency microelectromechanical system
UMTS Universal mobile telecommunications system
WLAN Wireless local area network
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