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Abstract: Structure learning is one of the main concerns in studies of Bayesian networks. In the
present paper, we consider networks consisting of both observable and hidden nodes, and propose a
method to investigate the existence of a hidden node between observable nodes, where all nodes are
discrete. This corresponds to the model selection problem between the networks with and without
the middle hidden node. When the network includes a hidden node, it has been known that there
are singularities in the parameter space, and the Fisher information matrix is not positive definite.
Then, the many conventional criteria for structure learning based on the Laplace approximation do
not work. The proposed method is based on Bayesian clustering, and its asymptotic property justifies
the result; the redundant labels are eliminated and the simplest structure is detected even if there
are singularities.

Keywords: Bayesian clustering; structure learning in singular cases; model selection

1. Introduction

In learning Bayesian networks, one of the main concerns is structure learning. Many criteria to
detect the network structure have been proposed such as the minimum description length (MDL) [1],
the Bayesian information criterion (BIC) [2], the Akaike information criterion (AIC) [3], and the
marginal likelihood [4]. Most of these criteria assume statistical regularity, which means that the
network has identifiability on the parameter and then the nodes are observable.

The nodes of the network are not always observable in practical situations; there will be some
underlying factors, which are difficult to observe and do not appear in the given data. In such cases,
the criteria for the structure learning must be designed by taking account of the existence of the hidden
nodes. However, the statistical regularity does not hold when the network contains hidden nodes [5,6].

The probabilistic models fall into two types: Regular and singular. If the parameter and the
probability function expressed by the parameter have one-to-one mapping, the model has statistical
regularity and is referred to as regular. Otherwise, there are singularities in the parameter space and
the model is referred to as singular. Due to the singularities, the Fisher information matrix is not
positive definite, which means that the conventional analysis based on the Laplace approximation
or the asymptotic normality does not work in the singular models. Many probabilistic models such
as mixture models, hidden Markov models, and neural networks are singular. To cope with the
problem of the singularities, an analysis method based on algebraic geometry has been proposed [7],
and asymptotic properties of the generalization performance and of the marginal likelihood have been
investigated in mixture models [8], hidden Markov models [9], neural networks [7,10], etc.

It is known that the Bayesian network with hidden nodes is singular since the parametrization
will change compared with the network without hidden nodes. Even in the simple structure such
as the naive Bayesian network, the parameter space has singularities [5,11]. A method to select the
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optimal structure from some candidate networks has been proposed by using the algebraic geometrical
method [5]. For general singular models, new criteria are developed; a widely applicable information
criterion (WAIC) is based on the asymptotic form of the generalization error and a widely applicable
Bayesian information criterion (WBIC) is derived from the asymptotic form of the marginal likelihood.
BIC is also extended to the singular models [12].

The structure learning of the Bayesian network with hidden nodes is a very widely studied
problem. Observable constraints from the Bayesian network with hidden nodes is considered in [13].
A model based on observable conditional independence constraints is proposed by [14]. For causal
discovery, the related fast causal inference (FCI) algorithm has been developed, e.g., [15]. In the present
paper, we consider a two-step method; the first step obtains the optimal structure with observable
nodes and the second step detects the hidden nodes in each partial graph. Figure 1 shows the
hidden-node detection. The left side of the figure describes the optimal structure with observable
nodes only, based on some method of the structure learning. Then, as the second step, we focus on
the connections between the observable nodes shown in the right side of the figure. In this example,
the parent node x4 has the domain {1, . . . , 5} and the child node x6 has the one {1, . . . , 4}. If the value
of the child node is determined by only three factors, the middle node Z, which has the domain {1, 2, 3},
simplifies the conditional probability tables (CPTs). It has been known that the smaller dimension the
parameter of the network is, the more accurate the parameter learning is. So, it is practically useful to
find the simplest expression of the CPTs.

The issue comes down to detection of a hidden node between observable nodes. We compare two
network structures, which are shown in Figure 2.

Figure 1. The two-step method: structure learning with observable nodes and hidden-node detection.

Figure 2. Two networks with and without a hidden node.

The left and the right panels are networks without and with the hidden node, respectively,
where X = (x1, . . . , xL) with the domain xl ∈ {1, . . . , N(l)

X } and Y ∈ {1, . . . , NY} are observable and
Z ∈ {1, . . . , NZ} is hidden. Since the evidence data on X and Y are given and there is no information
on Z, we need to consider whether the hidden node exists and its range NZ. We propose a method to
examine whether the middle hidden node should exist or not using Bayesian clustering. In order to
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obtain the simplest structure, there is a way to use the regularization technique [16], while it is not
straightforward to prove the selected structure is theoretically optimal. Our method is justified based
on a property of the entropy term in the asymptotic form of the marginal likelihood, which plays an
essential role in the clustering. The result of clustering shows necessary labels to express the relation
between the observable nodes X and Y. Counting the number of the used labels, we can determine the
existence of the hidden node. Note that we do not consider whole possible structures of the network
to reduce the computational complexity; in the present paper, we try to optimize the network from
the limited structures, where for example there is no multiple inserted hidden nodes or connections
between hidden nodes.

The remainder of this paper is organized as follows. Section 2 presents a formal definition of
the network. Section 3 summarizes Bayesian clustering. Section 4 proposes the method to select
the structure based on Bayesian clustering and derives its asymptotic behavior. Section 5 shows
results of the numerical experiments validating the behavior. Finally, we present a discussion and our
conclusions in Sections 6 and 7, respectively.

2. Model Settings

In this section, the network structure and its parameterization are formalized. The naive structure
has been applied to classification and clustering tasks and its mathematical properties are studied [5]
since it is expressed as a mixture model. As mentioned in the previous section, we consider the hidden
node with both parent and child observable nodes. One of the simplest networks is shown in the right
panel of Figure 2. Let the probabilities of X = (X1, . . . , XL), Z, and Y be defined by

p(Xl = i(l)) =a(l)
i(l)

, (1)

p(Z = j|X = i) =bij, (2)

p(Y = k|Z = j) =cjk (3)

for i ∈ I = {(i(1), . . . , i(L))}, i(l) ∈ {1, . . . , N(l)
X }, j = 1, . . . , NZ, and k = 1, . . . , NY. Since they are

probabilities, we assume that

a(l)i ≥ 0, a(l)1 = 1−
N(l)

X

∑
i=2

a(l)i , (4)

bij ≥ 0, bi1 = 1−
NZ

∑
j=2

bij, (5)

cjk ≥ 0, cj1 = 1−
NY

∑
k=2

cij. (6)

It is easy to find that bij is the element of the CPT for Z and cjk is that for Y. Let w be the parameter

consisting of a(l)i , bij, cjk, where the dimension is

dim w =
L

∑
l=1

(N(l)
X − 1) + (NZ − 1)

L

∏
l=1

N(l)
X + NZ(NY − 1). (7)

We also define the probabilities of the network shown in the left panel of Figure 2;

p(X(l) = i(l)) =d(l)
i(l)

, (8)

p(Y = j|X = i) =eij. (9)

The parameter u consisting of di and eij has the dimension
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dim u =
L

∑
l=1

(N(l)
X − 1) + (NY − 1)

L

∏
l=1

N(l)
X . (10)

If the relation between X and Y can be simplified, the degree of freedom dim u is not necessary
and is reduced to dim w such as the case shown in Figure 1. This is similar to the dimension reduction
of data with sandglass type neural networks or the non-negative matrix factorization, which have a
smaller number of nodes in the middle layers than the one in the input and output layers. The relation
between the necessary dimension of the parameter and the probability of the output is not always
trivial [17]. The present paper focuses on the sufficient case in terms of the dimension reduction,
where dim w < dim u rewritten as

NY

L

∏
l=1

N(l)
X > NZ

(
NY − 1 +

L

∏
l=1

N(l)
X

)
. (11)

Recall that X and Y are observable and Z is hidden, where NX and NY are given and NZ is
unknown. When the minimum NZ is detected from the given evidence pairs of X and Y, and is
satisfied Equation (11), the network structure with the hidden node expresses the pairs with smaller
dimension of the parameter. We use Bayesian clustering technique to detect the minimum NZ.

3. Bayesian Clustering

In this section, let us formally introduce Bayesian clustering. Let the evidence be described by
(xi, yi) and there are n pairs, which are denoted by (Xn, Yn) = {(x1, y1), . . . , (xn, yn)}. Recall that
xi = (x(1)i , . . . , x(L)

i ). The corresponding value of the hidden node is zi and the set of n data is denoted
by Zn. We can estimate zi based on the probability p(Zn|Xn, Yn). In Bayesian clustering, it is defined by

p(Zn|Xn, Yn) =
p(Xn, Zn, Yn)

p(Xn, Yn)
, (12)

p(Xn, Zn, Yn) =
∫ n

∏
i=1

p(xi, zi, yi|w)ϕ(w|α)dw, (13)

p(Xn, Yn) =∑
Zn

p(Xn, Zn, Yn), (14)

where ϕ(w|α) is a prior distribution and α is the hyperparameter.
In the network with the hidden node,

p(xi, zi, yi|w) =
L

∏
l=1

{
a(l)

x(l)i

}
bxizi cziyi . (15)

If the prior distribution is expressed as the Dirichlet distribution for a(l)
i(l)

, bij, and cjk, the numerator
p(Xn, Zn, Yn) is analytically computable. Based on the relation p(Zn|Xn, Yn) ∝ p(Xn, Zn, Yn),
the Markov Chain Monte Carlo (MCMC) method provides the sampling of Zn from p(Zn|Xn, Yn).
This is a common method to estimate hidden variables in machine learning; the underlying topics are
estimated based on the Gibbs sampler in topic models such as the latent Dirichlet allocation [18].

4. Hidden Node Detection

In this section, the algorithm to detect the hidden node is introduced and its asymptotic property
reducing the number of the used labels is revealed.

4.1. The Proposed Algorithm

When the size of the middle node is large such as
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L

∏
l=1

N(l)
X < NZ, (16)

there is no reason to have the node Z; the middle node should reduce the degree of freedom from X.
If only NZ = 1 satisfies Equation (11), the middle node is not necessary. Note that NZ = 1 shows that
there is no edge between X and Y, which is already excluded in structure learning.

Example 1. When L = 1, N(1)
X = 3 and NY = 3, only NZ = 1 satisfies Equation (11), which shows that there

is no hidden node between X and Y.

The present paper proposes the following algorithm to determine the existence of Z;

Algorithm 2. Assume that there is NZ > 1 for given N(l)
X and NY, that is Equation (11) is satisfied. Apply the

Bayesian clustering method to the given evidence (Xn, Yn) and estimate Zn based on the MCMC sampling.
Let the number of used labels be denoted by N̂Z. If the following inequality holds, the hidden node Z ∈
{1, . . . , N̂Z} reduces the parameter,

1 < N̂Z <
NY ∏L

l=1 N(l)
X

NY − 1 + ∏L
l=1 N(l)

X

. (17)

4.2. Asymptotic Properties of the Algorithm

The MCMC method in Bayesian clustering is based on the probability p(Xn, Zn, Yn) as shown in
Section 3. Since the proposed method depends on this clustering method, let us consider the properties
of p(Xn, Zn, Yn). The negative logarithm of the probability is expressed as follows:

Fα(Xn, Zn, Yn) = − ln p(Xn, Zn, Yn)

= − ln
∫

∏n
i=1 p(xi, zi, yi|w)ϕ(w|α)dw

= ∑L
l=1

{
ln Γ(n + NXαa)−∑NX

i=1 ln Γ(ni + αa)

}
+∑i∈I

{
ln Γ

(
∑NZ

j=1 nij + NZαb

)
−∑NZ

j=1 ln Γ(nij + αb)

}
+∑NZ

j=1

{
ln Γ

(
∑NY

k=1 mjk + NYαc

)
−∑NZ

k=1 ln Γ(mjk + αc)

}
+∑L

l=1

{
N(l)

X ln Γ(αa)− ln Γ(N(l)
X αa)

}
+

{
∏L

l=1 N(l)
X

}{
NZ ln Γ(αb)− NX ln Γ(NZαb)

}
+NZ

{
NY ln Γ(αc)− ln Γ(NYαc)

}
,

(18)

where ni, nij, and mjk are given as

ni =
n

∑
j=1

L

∏
l=1

δ
x(l)j ,i(l)

, (19)

nij =
n

∑
k=1

δzk ,j

L

∏
l=1

δ
x(l)k ,i(l)

, (20)
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mjk =
n

∑
l=1

δzl ,jδyl ,k, (21)

respectively, and the prior distribution ϕ(w|α) consists of the Dirichlet distributions;

ϕ(w) =
L

∏
l=1

Dir(a(l)|αa)∏
i∈I

Dir(bi|αb)
NZ

∏
j=1

Dir(cj|αc), (22)

Dir(a(l)|αa) =
Γ(N(l)

X αa)

Γ(αa)
N(l)

X

N(l)
X

∏
i=1

a(l)(αa−1)
i , (23)

Dir(bi|αb) =
Γ(NZαb)

Γ(αb)NZ

NZ

∏
j=1

bαb−1
ij , (24)

Dir(cj|αc) =
Γ(NYαc)

Γ(αc)NY

NY

∏
k=1

cαc−1
jk . (25)

The function δij and Γ(·) are the Kronecker delta and the gamma function, respectively.
The hyperparameter α consists of αa, αb, and αc. The sampling result of Zn is dominantly taken from
the area, which makes p(Xn, Zn, Yn) large. Then, we investigate which Zn minimizes Fα(Xn, Zn, Yn)

for given (Xn, Yn).

Theorem 3. When the number of the given data n is sufficiently large, F(Xn, Zn, Yn) is written as

F(Xn, Zn, Yn) =− nS + C ln n + Op(1), (26)

S = ∑L
l=1 ∑

N(l)
X

i(l)=1

n(l)

i(l)
n ln

n(l)

i(l)
n

+∑i∈I ∑ÑZ
j=1

∑
ÑZ
j′=1

nij′

n
nij

∑
ÑZ
j′=1

nij′
ln

nij

∑
ÑZ
j′=1

nij′

+∑ÑZ
j=1 ∑NY

k=1
mj
n

mjk
mj

ln
mjk
mj

,

(27)

C =

{
∏L

l=1 N(l)
X

}
(NZ − ÑZ)αb

+ 1
2

{
∑L

l=1(N(l)
X − 1) +

(
∏L

l=1 N(l)
X

)
(ÑZ − 1) + ÑZ(NY − 1)

}
,

(28)

mj =
NY

∑
k=1

mjk, (29)

where ÑZ is the number of mj such that mj/n = O(1).

The proof will be shown in Appendix A. The first term −nS is the dominant factor, and its
coefficient S is maximized in the clustering. This coefficient determines ÑZ, which is the number of
used labels in the clustering result.

Assume that the true structure with the hidden node has the minimal expression, where the range
of Z is z = 1, . . . , N∗Z, and that the estimated size is larger than the true one; N∗Z ≤ ÑZ. We can easily
confirm that Bayesian clustering chooses the minimum structure ÑZ = N∗Z as follows. The three terms
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in the coefficient S correspond to the negative entropy functions of the parameter a(l)i , bij, and cjk,
respectively. Then, the minimum ÑZ obviously makes the coefficient S maximized since the number
of elements of parameter should be minimized for the small entropy. When the hidden node has
the redundant state, which means that two values of Z have completely same output distribution of
Y, the second term of S is larger than the case of non-redundant situation N̂Z = N∗Z. Based on the
assumption that the true structure is minimal, the estimation therefore gets the minimum structure,
ÑZ = N∗Z.

According to this property, the number of used label N̂Z asymptotically goes to N∗Z. The proposed
algorithm compares the essential number of the values of Z and will be a criterion to select the proper
structure when n is large. This property exists only in Bayesian clustering so far; the eliminating
effect of the redundant labels has not been found in other method of the clustering such as the
maximum-likelihood clustering based on the expectation-maximization algorithm.

5. Numerical Experiments

In this section, we validate the asymptotic property in numerical experiments. We set the
data-generating model shown in Figure 3 and prepared ten evidence data sets.

Figure 3. The data-generating model.

There was a single parent node L = 1. The sizes of the nodes were N(1)
X = 6, NY = 6 and N∗Z = 3.

The CPTs are described on the right-side of the figure, where the true parameter consists of these
probabilities. There were 2000 pairs of (x, y) in each data set. Since the following condition is satisfied,

NY ∏L
l=1 N(l)

X

NY − 1 + ∏L
l=1 N(l)

X

=
6× 6

6− 1 + 6
=

36
11

> 3 = N∗Z, (30)

the structure of the data-generating model with the hidden node had smaller dimension of the
parameter than the one without a hidden node.

We applied Bayesian clustering to each data set, where the model had the size of the hidden node
NZ = 6. According to the asymptotic property in Theorem 3, the MCMC method should take label
assignment from the area, where the number of the used labels was reduced to three. The estimated
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model size was determined by the assignment, which minimized the function Fα(Xn, Zn, Yn). Since the
sampling of the MCMC method depended on the initial assignment, we conducted ten trials for each
data set and regarded the estimated size as the minimum one. The number of iterations in the MCMC
method was 1000.

Table 1 shows the results of the experiments.

Table 1. The results of the estimated size.

Data-Set ID 1 2 3 4 5 6 7 8 9 10

Estimated size 3 3 3 4 3 3 4 4 4 3

In all data sets, the size of the hidden node Z is reduced and the correct size is estimated in more
than half sets, we confirmed the effect eliminating the redundant labels. Since the result of the MCMC
method depends on the given data, the minimum size is not always found; the estimated size is four
in some data sets instead of three. Even in such case, however, we could estimate the correct size after
setting the initial size of the model as NZ = 4. Repeating this procedure, we will be able to avoid the
local optimal size and find the global one.

Figure 4 shows this estimation procedure in the practical cases. The initial model size starts from
six. The left panel is the case, where the proper size is directly found and the estimated size does not
change at size four. The right panel is the case, where the estimated size is first four and then the next
result is three, which is the fixed point.

Figure 4. The estimation procedure in practical cases.

To investigate the properties of the estimated size, we tried some different numbers of pairs
n = 100, 500 and a skewed distribution of the parent node (Figure 5), and nearly uniform distribution
of the child node (Figure 6).

Figure 5. The skewed distribution of the parent node X.

Figure 6. The nearly uniform distribution of the parent node Y.

Table 2 shows the results of n = 100, 500.
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Table 2. The results of the estimated size in n = 100, 500.

Data-Set ID 1 2 3 4 5 6 7 8 9 10

Estimated size (n = 100) 3 3 3 3 4 3 4 3 3 3
Estimated size (n = 500) 3 3 3 3 3 3 3 3 3 4

Since these CPTs of X, Z, Y are a straightforward case to distinguish the role of the hidden node,
the smaller number of the pairs does not adversely affect the estimation. Table 3 shows the results of
the different CPTs in the parent and the child nodes.

Table 3. The results of the estimated size in the different conditional probability tables (CPTs).

Data-Set ID 1 2 3 4 5 6 7 8 9 10

Estimated size (skewed parent node) 3 3 3 3 3 4 3 3 3 3
Estimated size (nearly-uniform child node) 1 1 1 1 2 1 1 2 1 1

The number of pairs was n = 100. Due to the CPT of Z, the skewed distribution of the parent node
still keeps the sufficient variation of Z to estimate the size NZ, which provides the same accuracy as the
uniform distribution. On the other hand, the nearly uniform distribution of the child node makes the
estimation difficult because each value of Z has the similar output distribution. The Dirichlet prior of
Z has a strong effect to eliminate the redundancy, which means the estimated sizes tend to be smaller
than the true one.

6. Discussion

In this section, we discuss the difference between the proposed method and other conventional
criteria for the model selection. In the proposed method, the label assignment Zn is obtained from the
MCMC method, which takes the samples according to p(Xn, Zn, Yn). The probability p(Xn, Zn, Yn) is
the marginal likelihood on the complete data (Xn, Zn, Yn); recall the definition,

p(Xn, Zn, Yn) =
∫ n

∏
i=1

p(xi, zi, yi|w)ϕ(w|α)dw. (31)

This looks similar to the criteria based on the marginal likelihood such as BDu(e) [19,20] and its
asymptotic form such as BIC [2], MDL [1]. Since it is assumed that the network has the statistical
regularity or the nodes are all observable, many criteria do not work on the network with hidden nodes.

WBIC is proposed for the singular models. The main difference is that it is based on the marginal
likelihood of the incomplete data Xn, Yn;

p(Xn, Yn) = ∑Zn p(Xn, Zn, Yn)

=
∫

∏n
i=1 ∑zi

p(xi, zi, yi|w)ϕ(w|α)dw.
(32)

Due to the marginalization over Zn, it requires the calculation of values for all candidate structures.
For example, assume that we have candidate structures NZ = 1, 2, 3 denoted by p1(Xn, Yn), p2(Xn, Yn),
and p3(Xn, Yn), respectively. In WBIC, we calculate all values and select the optimal structure;

N̂Z = arg min
i=1,2,3

pi(Xn, Yn). (33)

On the other hand, in the proposed method, we calculate the label assignment with the structure
NZ = 3 and obtain N̂Z, which shows the necessity of the node Z.
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Another difference from the conventional criteria is the dominant order of the objective function,
which determines the optimal structure. As shown in Corollary 6.1 of [6], the negative logarithm of the
marginal likelihood of the incomplete data has the following asymptotic form;

Fα(Xn, Yn) = − ln p(Xn, Yn)

= −nSXY + CXY ln n + op(ln n),
(34)

where the coefficient SXY is the empirical entropy of the observation (Xn, Yn) and CXY depends on
the data-generating distribution, the model, and the prior distribution. This form means that the
optimal model is selected by ln n order term with the coefficient CXY, while it is selected by n order
term with the coefficient S of Theorem 3 in the proposed method. Since the largest terms are n order in
both Fα(Xn, Yn) and Fα(Xn, Zn, Yn), the proposed method will have stronger effect to distinguish the
difference of the structures.

The asymptotic accuracy of Bayesian clustering has been studied [21], which considers the error
function between the true distribution of the label assignment and the estimated one measured by the
Kullback-Leibler divergence:

D(n) =EXn ,Yn

[
∑
Zn

q(Zn|Xn, Yn) ln
q(Zn|X,Yn)

p(Zn|Xn, Yn)

]
, (35)

where EXn ,Yn [·] is the expectation over all evidence data and

q(Zn|Xn, Yn) =
q(Xn, Zn, Yn)

∑Zn q(Xn, Zn, Yn)
, (36)

q(Xn, Zn, Yn) =
n

∏
i=1

q(xi, zi, yi). (37)

The true network is denoted by q(x, z, y). The proposed method minimizes this error function,
which means that the label assignment Zn is optimized in the sense of the density estimation.
Even though the optimized function is not directly for the model selection, due to the asymptotic
property of the Bayes clustering simplifying the label use, the proposed method is computationally
efficient to determine the existence of the hidden node and the result asymptotically has coincident.

7. Conclusions

In this paper, we have proposed a method to detect a hidden node between observable nodes
based on Bayesian clustering. The asymptotic behavior of the clustering has been revealed and it shows
that the redundant labels are eliminated and the essential structure will be detected. Evaluation of the
proposed method with numerical experiments is one of our future studies.
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Appendix A

In this section, we prove Theorem 3. Using the asymptotic relation ln Γ(x) = x ln x− 1
2 ln x− x +O(1)

for sufficiently large x, we can obtain that

Fα(Xn, Zn, Yn) = ∑L
l=1

{(
n + N(l)

X αa
)

ln
(
n + N(l)

X αa
)

− 1
2 ln

(
n + N(l)

X αa
)
−
(
n + N(l)

X αa
)}

−∑L
l=1 ∑

N(l)
X

i(l)=1

{
(n(l)

i(l)
+ αa) ln(n(l)

i(l)
+ αa)

− 1
2 ln(n(l)

i(l)
+ αa)− (n(l)

i(l)
+ αa)

}
+∑i∈I

{(
∑NZ

j=1 nij + NZαb

)
ln
(

∑NZ
j=1 nij + NZαb

)
− 1

2 ln
(

∑NZ
j=1 nij + NZαb

)
−
(

∑NZ
j=1 nij + NZαb

)}
−∑i∈I ∑NZ

j=1

{
(nij + αb) ln(nij + αb)− 1

2 ln(nij + αb)− (nij + αb)

}
+∑NZ

j=1

{(
∑NY

k=1 mjk + NYαc

)
ln
(

∑NY
j=1 mjk + NYαc

)
− 1

2 ln
(

∑NY
k=1 mjk + NYαc

)
−
(

∑NY
k=1 mjk + NYαc

)}
−∑NZ

j=1 ∑NY
k=1

{
(mjk + αc) ln(mjk + αc)− 1

2 ln(mjk + αc)− (mjk + αc)

}
+Op(1).

(A1)

Collecting the constant terms and uniting them to Op(1), we rewrite Fα(Xn, Zn, Yn) as

Fα(Xn, Zn, Yn) = ∑L
l=1

{
n ln n + N(l)

X αa ln n− 1
2 ln n− n

}
−∑L

l=1 ∑
N(l)

X
i(l)=1

{
n(l)

i(l)
ln n(l)

i(l)
+ αa ln n(l)

i(l)
− 1

2 ln n(l)
i(l)
− n(l)

i(l)

}
+∑i∈I

{(
∑NY

j=1 nij

)
ln ∑NY

j=1 nij + NZαb ln ∑NZ
j=1 nij − 1

2 ln ∑NZ
j=1 nij −∑NZ

j=1 nij

}
−∑i∈I ∑NZ

j=1

{
nij ln nij + αb ln nij − 1

2 ln nij − nij

}
+∑NZ

j=1

{
∑NY

k=1 mjk ln
(

∑NY
k=1 mjk

)
+ NYαb ln ∑NY

k=1 mjk

− 1
2 ln ∑NY

k=1 mjk −∑NY
k=1 mjk

}
−∑NZ

j=1 ∑NY
k=1

{
mjk ln mjk + αc ln mjk − 1

2 ln mjk −mjk

}
+ Op(1).

(A2)
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Using the following relations,

N(l)
X

∑
i(l)=1

n(l)
i(l)

ln n(l)
i(l)

=n
N(l)

X

∑
i(l)=1

(n(l)
i(l)

n
ln

n(l)
i(l)

n

)
+ n ln n, (A3)

∑
i∈I

( NZ

∑
j=1

nij

)
ln

NZ

∑
j=1

nij =n ∑
i∈I

(
ni
n

ln
ni
n

)
+ n ln n, (A4)

∑
i∈I

NZ

∑
j=1

nij ln nij =n ∑
i∈I

NZ

∑
j=1

nij

n
ln

nij

n
+ n ln n, (A5)

NZ

∑
j=1

( NY

∑
k=1

mjk

)
ln

NY

∑
k=1

mjk =n
NZ

∑
j=1

mj

n
ln

mj

n
+ n ln n, (A6)

NZ

∑
j=1

NY

∑
k=1

mjk ln mjk =n
NZ

∑
j=1

NY

∑
k=1

mjk

n
ln

mjk

n
+ n ln n (A7)

and focusing on the terms of order n and ln n, we obtain the asymptotic form in the theorem.
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