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Abstract: This study presents a two-step fault diagnosis scheme combined with statistical
classification and random forests-based classification for rolling element bearings. Considering
the inequality of features sensitivity in different diagnosis steps, the proposed method utilizes
permutation entropy and variational mode decomposition to depict vibration signals under single
scale and multiscale. In the first step, the permutation entropy features on the single scale of original
signals are extracted and the statistical classification model based on Chebyshev’s inequality is
constructed to detect the faults with a preliminary acquaintance of the bearing condition. In the second
step, vibration signals with fault conditions are firstly decomposed into a collection of intrinsic mode
functions by using variational mode decomposition and then multiscale permutation entropy features
derived from each mono-component are extracted to identify the specific fault types. In order to
improve the classification ability of the characteristic data, the out-of-bag estimation of random forests
is firstly employed to reelect and refine the original multiscale permutation entropy features. Then the
refined features are considered as the input data to train the random forests-based classification model.
Finally, the condition data of bearings with different fault conditions are employed to evaluate the
performance of the proposed method. The results indicate that the proposed method can effectively
identify the working conditions and fault types of rolling element bearings.

Keywords: fault diagnosis; rolling element bearing; permutation entropy; variational mode
decomposition; statistical classification; random forests

1. Introduction

The rolling element bearing is one of the most widely used components in rotating machines, and
its running state has a direct relation to machinery reliability and safety. Common causes of bearing
faults (race fault or ball fault) are overload, high temperature, assembly error and poor lubrication,
and so on. Statistically, the bearing faults account for about 30% of all faults in rotating machines [1].
Therefore, the study of fault detection techniques and diagnosis methods of rolling bearings will be
significant to promoting of the health condition of machines. In reviewing bearing fault diagnosis
problems reported in literature, the collected vibration signals include plenty of state information
related to the system’s dynamic characteristics. When a fault occurs, the impulse components can be
effectively reflected by analyzing the corresponding vibration signal data. With the rapid development
of the technology of transducers, communication and computer science, data-driven methods have
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become the mainstream for diagnosing the faults of rolling element bearings, since they do not require
any prior knowledge about the parameters and mathematical model of diagnosis objects [2].

In general, the data-driven approach can be divided into three groups: the method of statistical
analysis, the method of signal analysis, and artificial intelligence technology [3]. Some successful
applications of statistical analysis methods in fault diagnosis have been reported in [4,5]. As an
advanced signal processing technology, time-frequency analysis methods were widely used to
extract important condition features from non-stationary signals for fault detection and diagnosis.
Its developments and applications in fault diagnosis were reviewed in [6]. As for the first two methods,
an expert’s rich knowledge will be required for their implementation and they also show some
limitations in dealing with multi-fault diagnosis problems [5,6]. The machine learning method, as an
important brand of artificial intelligence, has been widely applied in various fields, such as pattern
recognition, fault diagnosis and data mining. Meanwhile, the related theories development provides
great facility for the intelligent fault diagnosis technology [7]. It can be concluded that fault diagnosis
based on artificial intelligence is a typical pattern recognition problem, where features extraction and
classifier construction are the two crucial issues [8].

Due to the non-linear dynamic characteristics of bearings’ fault vibration signals, the traditional
feature extraction methods based on Fourier transform and statistical analysis are no longer adequate
for the effective and accurate diagnosis of bearing faults. Recently, various complexity measurement
methods derived from information theory are proposed to characterize the vibration signals [9–11].
The widely used methods include energy entropy (EnE) [10,12], sample entropy (SE) [13,14],
approximate entropy (ApEn) [15,16] and fuzzy entropy (FE) [17]. Although these methods have
made certain achievements in the health monitoring and fault diagnosis of rotating machines, they still
possess some deficiencies [8,11,18]. Permutation entropy (PE), as a non-linear dynamic parameter,
was introduced by Bandit and Pompe to measure the randomness and dynamic mutation of time
sequences [19]. Based on its advantages of intelligibility, low time consumption and strong robustness,
PE has achieved many successful applications in the fault diagnosis of rotating machines [20–23].

In practice, however, vibration signals collected from complex systems usually possess non-linear
and non-stationary properties and contain different signal components with multiscales. Most studies
indicate that the PE feature with a single scale has certain limitations when describing the dynamic
properties of vibration signals and some useful information riding in other scales may be ignored.
To overcome this problem, multiscale permutation entropy (MPE) was proposed based on the
coarse-grained processing of time series by Aziz and Arif [24]. However, the determination of
the scale factor has a direct effect on the quality of MPE and it is often very difficult. More notably,
the representation ability of MPE features could be weakened by the mixing components distributed in
different frequency bands. To obtain an accurate description about signals, the entropy features
extraction integrated with time-frequency analysis methods has become a hot spot in the fault
diagnosis field. Some representative time-frequency analysis methods include wavelet transform
(WT) [25], empirical mode decomposition (EMD) [26], local mean decomposition (LMD) [27] and
variational mode decomposition (VMD) [28]. By using these methods, a complicated signal can be
decomposed into a series of mono-components, and then the entropy features of mono-components
can be extracted as features to reflect the local characteristics of the signals. For instance, wavelet packet
decomposition (WPD)-based PE features were extracted to identify faults appearing in bearings [29].
Similarly, PE features combined with ensemble empirical mode decomposition were used to reveal
the local characteristics of original signals under intrinsic time scales [30]. Unlike WT, the other three
methods have removed the dependency to the base functions and indicate remarkable self-adaptability.
Although EMD has been widely applied to signal processing and fault diagnosis [31], the sensitivity to
noise and sampling frequency also limits its development. As a non-recursive signal decomposition
method, VMD was proposed recently for adaptive signal decomposition [28]. In [32], the performance
of VMD compared with LMD and EMD was discussed and the analysis results indicate that VMD has
the advantages of high computation efficiency, strong robustness to background noise and accurate
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frequency band allocation. Hence, in this work, VMD-based PE is employed to extract fault features
from vibration signals for working conditions identification.

After features extraction, the mode classifier should be established to accomplish the automatic
fault diagnosis. Some machine learning-based diagnosis models, usually constructed by an artificial
neural network (ANN), support vector machine (SVM), or extreme learning machine (ELM), have
been reported in many works [33–35]. Compared with ANN and ELM, SVM is a kind of machine
learning theory with excellent classification ability for small data sets developed on statistical learning
theory. However, SVM also has certain limitations which have severely restricted its development
in the fault diagnosis field. The parameters optimization by a grid search algorithm or other
intelligent optimization algorithms is time intensive and needs large storage resources. In addition, the
multiple binary classification models often should be exploited to solve the multi-class problem,
resulting in high model complexity and low computational efficiency. In order to enhance the
generalization performance and curb the overfitting problem of the single decision tree, the random
forests (RF) classification method was put forward by Breiman [36], based on the concept of the
bagging technique [37], CART algorithm [38] and features random selection [39]. Compared with the
traditional decision tree algorithm, RF has manifested robust classification performance in solving
high-dimensional and small-sample problems [40]. Furthermore, this method has also inherited
the high interpretability capacity of the tree-based model. Currently, some successful applications
can be found in text processing [41], speech recognition [42], face recognition [43], and pedestrian
safety [44]. However, the applications of this method in fault diagnosis of rotary machine have been
rarely reported [40,45]. Owing to its significant merits, the RF algorithm was employed to construct
the automatic diagnosis model in this work.

When faced with complex and multi-class diagnostic problems, the diagnosis performance of
models depends not only on the features and classification algorithms, but also on the diagnosis
strategy. The traditional diagnosis model often is established based on the single-step diagnosis
strategy, where this kind of models are trained by all training data once time with generating one
classifier. Usually, the single step model is much more complicated to build and lacks consideration
on the fault evolution law. In order to decrease the model complexity and enhance the flexibility of
the diagnosis model, some diagnostic approaches with a better strategy have been reported recently.
By extracting different fault features, a two-step approach was developed with integrating the statistical
method and pattern recognition for plastic bearing fault diagnosis [5]. For rolling element bearings,
some multistep diagnosis methods combined with permutation entropy and the time-frequency
analysis method were proposed [30,46]. Compared with the method of literature [30], the diagnostic
strategy of the literature [46] is more specialized and the threshold value of fault detection can be
quantified by the statistical method. Although the two methods are able to perform well in diagnosis
accuracy, the calculative efficiency of the SVM-based model still poses a significant impact on practical
engineering applications.

The results of these studies indicate that stepwise diagnostic thought is more in accordance with
the practical engineering problems and the human cognitive process. Hence, the stepwise diagnostic
strategy was also employed in this work and the whole procedure was simplified into two steps: fault
detection and fault identification. Considering features sensitivity in different stages, the single scale
PE feature of the original vibration signals were employed for fault detection and the VMD-based
PE feature were considered as input data to train the RF-based classification model. In the first step,
a statistical classification model can be established on the basis of the PE distributions of the original
signals, where the Chebyshev’s inequality was used to calculate the threshold value for the preliminary
judgment of health condition. During the second stage, the classification ability of the VMD based PE
features are easily weakened by the interference components or the components with less information.
Benefiting from the random samples, the non-selected samples in the construction of each tree based
model can be used to realize the bootstrap evaluation of the RF based model, where this procedure
is called out-of-bag estimation [36]. This property can then be further used to measure the features
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importance. Here, the random forests method was employed twice in the second step. The first RF
(1st-RF)-based model was established to calculate the importance degree of each scale PE. Next, the
PE features in the scales with high importance were selected as the input data to train the second RF
(2nd-RF)-based model for fault identification. Finally, the effectiveness and feasibility of the proposed
diagnosis approach is verified by the bearing data set with different fault types and levels. The main
contribution of this paper is the development of a two-step fault diagnosis method for rolling element
bearings by using permutation entropy and random forests. Furthermore, with consideration of the
own characteristics of feature data, a feature evaluation and selection method based on out-of-bag
estimation is firstly proposed and discussed for the fault diagnosis of rolling element bearings.

The rest of the paper is organized as follows. Background knowledge about PE, VMD and RF is
investigated in Section 2. In Section 3, the system framework of the proposed diagnosis approach is
first introduced, and then the implementation procedures of features extraction, fault detection and
fault identification are discussed. In Section 4, the proposed method is applied to the fault diagnosis of
rolling element bearings and the analysis results are given. Conclusions are presented in Section 5.

2. Background Knowledge

2.1. Permutation Entropy (PE)

The principle of PE is based on the comparison of adjacent data without counting the specific
data value of the time series. A brief description of PE is given as follows.

For a given time sequence of length N, {x(i), i = 1, 2, · · · , N}, its phase space can be reconstructed as

X(1) = {x(1), x(1 + λ), · · · , x(1 + (m− 1)λ)}
...

X(i) = {x(i), x(i + λ), · · · , x(i + (m− 1)λ)}
...

X(N − (m− 1)λ) = {x(N − (m− 1)λ), x(N − (m− 1)λ),
, · · · , x(N)}

(1)

where m is the embedded dimension and λ is the time delay. As described in [19], the m data values in
each X(i) can be arranged in ascending order as:

X(i) = {x(i + (j1 − 1)λ) ≤ x(i + (j2 − 1)λ) ≤ · · · ≤ x(i + (jm − 1)λ)} (2)

where jd, d = 1, 2, · · · , m represents the column index of each element in the reconstructed component.
During the above sorting procedure, if any two or more element values are equal, their original

orders are resorted by jd’s value. For instance, if x(i + (jp − 1)λ) = x(i + (jq − 1)λ) and jp < jq,
the order of these two elements can be x(i + (jp − 1)λ) ≤ x(i + (jq − 1)λ). Hence, any reconstructed
component X(i) can be mapped into a group of symbol sequences as:

S(l) = {j1, j2, · · · , jm} (3)

where l = 1, 2, · · · , k (k ≤ m!) and m! is the largest number of different symbol sequences. As described
in Equation (3), S(l) is one of the m! symbol arrangement. Then the probability distribution of the each

symbol sequence can be obtained and denoted as P1, P2, · · · , Pk,
l=k
∑

l=1
Pl = 1. By definition, the PE of

{x(i), i = 1, 2, · · · , N} with m embedded dimension can be obtained as:

Hp(m) = −
l=k

∑
l=1

Pl ln Pl (4)
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It can be noticed that Hp(m) attains the maximum value ln(m!), when all the symbol sequences
have the same probability distribution as Pl = 1/m!. For convenience, the permutation entropy can be
standardized as:

Hp = Hp(m)/ ln(m!) (5)

Obviously, the value of HP ranges from 0 to 1. A smaller Hp value indicates that the time sequence
is much more regular, and conversely, the larger the Hp value, the more random the time series is.

2.2. Variational Mode Decomposition (VMD)

VMD is a newly developed variational methodology for adaptive decomposition of
multi-component signals. Unlike EMD, it can non-recursively decompose a real valued input signal f
into a collection of quasi-orthogonal intrinsic mode functions {uk} := {u1, u2, · · · , uK} with specific
sparsity properties [28]. Each principal mode is compact around a center pulsation ωk that is adaptively
determined along with the decomposition and its bandwidth is estimated through the squared L2-norm
of the gradient, so these composition modes are called band-limited intrinsic mode functions (BLIMFs).
The solution of VMD that is constructed as a constrained variational problem can be expressed
as follows:

min
{uk},{ωk}

{
K

∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

}
s.t.

K

∑
k

uk = f (6)

The constrained problem of Equation (6) can be addressed by introducing a quadratic penalty
term α and Lagrangian multipliers λ. The augmented Lagrangian thus can be expressed as follows:

L({uk}, {ωk}, λ) = α∑
k

∥∥∥∂t

[
(δ(t)− j

πt ) ∗ uk

]
e−jωkt

∥∥∥2

2

+‖ f (t)−∑
k

uk(t)‖2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉
.

(7)

The saddle point of Equation (7), which is the optimal solution of the constrained problem in
Equation (6), can be obtained by using the alternate direction method of multipliers (ADMM). The
detailed realization of VMD is summarized with pseudo-code form as follows (Algorithm 1):

Algorithm 1 VMD Realization

Initialize
{

u1
k
}

,
{

ω1
k
}

, λ1, n = 0, boolean = ture
while Boolean
n = n+1
for k = 1:K

un+1
k = argmin

uk

L({un+1
i<k }, {u

n
i≥k}, {ω

n
i }, λn) (8)

end
for k = 1:K

ωn+1
k = argmin

ωk

L({un+1
i }, {ωn+1

i<k }, {ω
n
i≥k}, λn) (9)

End

λn+1 = λn + τ( f −
K

∑
k

un+1
k ) (10)

if ∑K
k (
∥∥∥un+1

k − un
k

∥∥∥2

2
/
∥∥un

k

∥∥2
2) < ε

boolean = false
end
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During the decomposition process, the update of uk, ωk and λ can be solved in spectral domain.
The quadratic problem in Equation (8) solved as:

ûn+1
k (ω) =

f̂ (ω)−∑i 6=k ûi(ω) + λ̂(ω)
2

1 + 2α(ω−ωk)
2 (11)

The minimization problem in Equation (9) can be easily solved as:

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûk(ω)2
∣∣∣dω∫ ∞

0

∣∣∣ûk(ω)2
∣∣∣dω

(12)

In the spectral domain, the update of λ can be obtained as:

λ̂n+1(ω)← λ̂n(ω) + τ

(
f̂ (ω)−∑

k
ûn+1

k (ω)

)
(13)

2.3. Random Forests (RF)

2.3.1. Fundamental Principle

Random forests (RF) composed of multiple decision trees {h(a, θk), k = 1, 2, . . . , T} is one kind of
ensemble classifier, where T denotes the total number of decision trees, {θk} are the random vector set
with independent and identical distribution and a is the random inputted feature vector. The final
classification result of RF is obtained based on the majority voting method or the average output of all
decision trees. Its classification model is shown in Figure 1. Compared with the decision tree analysis,
random forests possesses better generalization performance and inhibition capacity of overfitting by
aggregated multiple CART trees [36]. The algorithm flow is given as follows.

(1) Get Bootstrapping samples θk by Bagging method from the training set X. Specifically, the θk is
obtained by random selection with replacement, where the sample sizes of θk and X are identical.

(2) For each θk, based on the CART algorithm, establish the binary tree according to the
following steps.

1© Suppose θk has M characteristics, and randomly select m alternative features from the whole
characteristics at the branch growth of each node. Throughout the forests construction, the value of κ

is identical.
2© According to the Gini impurity minimization, obtain the best split attribute from the m

characteristic to enable the binary tree develop completely, where pruning is not performed on trees.
(3) Repeat steps (1) and (2) until T decision trees were constructed, and the classification model of

random forests was achieved.
(4) For unknown samples, the final classified results can be calculated by employing the majority

voting method, as shown in the following formula,

c = argmaxc(
1
T

T

∑
k=1

I(h(a, θk) = c)) (14)

where I(·) is indicator function and c represents the sample type with the most votes.
For all testing samples, the voting results can be represented by the chaotic matric CM, where the

element CM(i, j) denotes the voting numbers with j-th type of the i-th type sample for all decision trees
and I = j represents the correct classified result. The final classification accuracy CA is:

CA =
M

∑
i=1

CM(i, i)/
M

∑
i,j=1

CM(i, j) (15)
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It can be concluded that the numbers of random attributes and decision trees have a great
importance to the model accuracy and calculation cost. Generally, κ equals to

√
M and the value of T

ranges from 500 to 1000. The complete algorithm of RF in detail can be found in [36].

 

7 

For all testing samples, the voting results can be represented by the chaotic matric CM, where 
the element CM(i ,j) denotes the voting numbers with j-th type of the i-th type sample for all 
decision trees and I = j represents the correct classified result. The final classification accuracy CA is: 

1 , 1
( , ) ( , )

M M

i i j
CA CM i i CM i j

= =

=   (15) 

It can be concluded that the numbers of random attributes and decision trees have a great 
importance to the model accuracy and calculation cost. Generally, κ  equals to M  and the 
value of T ranges from 500 to 1000. The complete algorithm of RF in detail can be found in [47]. 



Training 
samples X

Bootstrapping 
samples

Bootstrapping 
samples

Bootstrapping 
samples

Bagging resampling



Final 
results

The result 1

The result 2

The result K



Testing 
Samples

RF model

Majority 
voting1θ

2θ

Kθ

 
Figure 1. The typical classification model of random forests. 

2.3.2. Importance Evaluation of Characteristics Based on Out-of-Bag (OOB) Estimation 

Through analysis, it can be found that the probability of remaining selection of each sample is 
(1 1 )nn−  during the process of kθ  construction. By calculation, if the sample size is big enough, 
(1 1 )nn−  is roughly equal to 0.368. The samples with remaining selection in the construction of 
each tree are called out-of-bag (OOB) data, and the model evaluation by OOB data is defined as 
OOB estimation [4 

7]. 
For the established forests, one set of out-of-bag data OOBk obtained from the k-th decision tree 

were employed to evaluate the model performance and then the corresponding classification error 
rate can be obtained. Complying with the same pattern, the classification error rates of all decision 
trees can be obtained and the average value of all classification error rates is considered as the 
generalization error of random forests, as well as the classification performance estimation of the 
model. 

Some research indicates that the OOB estimation is unbiased and this method can not only 
enhance the evaluation efficiency of the classification model, but also the result is consistent with 
that of cross validation [36]. Based on the randomness of features selection, the OOB estimation can 
be employed to measure the importance of each feature for fault representation. The specific steps 
are given as follows: 

(1) For a given random forests classification model, perform evaluation tests with all OOB data 
and calculate the average of correct classification rates, denoted as CA . 

(2) Randomly change the values of the i-th characteristic in all OOB data, and recalculate the 
average value of the correct classification rates of the new OOB data, which is denoted as iCA . The 

difference value of CA  and iCA  can be expressed as i idif CA CA= − . 
(3) Repeat step (2) as many times as the difference values in terms of all attributes are obtained, 

and they are denoted as 1 2{ , , , }MDIF dif dif dif=  . 
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2.3.2. Importance Evaluation of Characteristics Based on Out-of-Bag (OOB) Estimation

Through analysis, it can be found that the probability of remaining selection of each sample is
(1− 1/n)n during the process of θk construction. By calculation, if the sample size is big enough,
(1− 1/n)n is roughly equal to 0.368. The samples with remaining selection in the construction of
each tree are called out-of-bag (OOB) data, and the model evaluation by OOB data is defined as OOB
estimation [47].

For the established forests, one set of out-of-bag data OOBk obtained from the k-th decision tree
were employed to evaluate the model performance and then the corresponding classification error rate
can be obtained. Complying with the same pattern, the classification error rates of all decision trees can
be obtained and the average value of all classification error rates is considered as the generalization
error of random forests, as well as the classification performance estimation of the model.

Some research indicates that the OOB estimation is unbiased and this method can not only
enhance the evaluation efficiency of the classification model, but also the result is consistent with that
of cross validation [36]. Based on the randomness of features selection, the OOB estimation can be
employed to measure the importance of each feature for fault representation. The specific steps are
given as follows:

(1) For a given random forests classification model, perform evaluation tests with all OOB data
and calculate the average of correct classification rates, denoted as CA.

(2) Randomly change the values of the i-th characteristic in all OOB data, and recalculate the
average value of the correct classification rates of the new OOB data, which is denoted as CAi.
The difference value of CA and CAi can be expressed as di fi = CA− CAi.

(3) Repeat step (2) as many times as the difference values in terms of all attributes are obtained,
and they are denoted as DIF = {di f1, di f2, · · · , di fM}.

Obviously, the value of di fi can reflect the effects of the corresponding feature on classification
accuracy, where the feature with larger di fi means it has a better differentiation capacity on fault types
than the one with smaller di fi. Hence, the di fi index can be employed to evaluate the importance
of one feature on fault representation. In the next sections, this peculiarity was utilized to refine the
original feature sets.

3. The Proposed Fault Diagnosis Model

According to the fault evaluation law of rolling element bearing and the human intelligence way,
a two-step fault diagnosis scheme that included fault detection and fault identification was proposed
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in this work. As shown in Figure 2, a statistical classification model and one fault classifier based
on random forests were constructed respectively in different steps. In the first step, the statistical
distributions of the permutation entropy of vibration signals can be obtained based on historical status
data analysis, and then it was used to realize preliminary judgment of the equipment health condition.
In the next step, the specific fault types were identified by employing the random forests-based
diagnostic model where the VMD-PE features were considered as inputted data. Furthermore,
the importance of each scale PE feature was evaluated by OOB estimation and the original VMD-PE
features were refined. The detailed implementation of each stage will be explained next.
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3.1. Features Extraction Based on PE and VMD

As shown in Figure 2, two types of bearing condition features, single scale PE features and
VMD-based PE features are extracted from original signals and BLIMFs respectively to identify bearing
working conditions in different steps.
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In the first stage, how to succeed in correctly and timely detection of fault occurrence is the
prior task for engineers and technical staff. When faults occur, the spatial characteristics of vibration
signals will be transformed compared with the normal condition. According to the above analysis,
the permutation entropy can be utilized to magnify the weak variation of time sequences and it is an
effective method to detect the mutation of signals. Hence, the permutation entropy feature PEi of one
given signal xi can be extracted to realize the health judgment.

Generally, the characteristic of fault signals is much more complicated than that of the normal
signals because of friction, vibration, load, fatigue damage and other factors. As a result, it can
lead to a poor description ability of the single scale PE feature on fault identification. In this work,
the VMD-based PE features are employed to measure the randomicity and dynamic mutation of fault
signals and the features are considered as characteristic parameters for the second step. The calculation
of VMD-PE is provided as follows.

(1) For a given signal xi, obtain a collection of BLIMF components {uk} = {u1, · · · , uK} by VMD.
During signal decomposition, the quadratic penalty α and the bandwidth τ are respectively set to the
default values of 2000 and 0.01.

(2) Calculate the permutation entropy value for each BLIMF component and obtain the multi-scale
permutation entropy feature of the original signal xi, denoted as MPEi = {MPEi1, · · · , MPEiK}, where
MPEij is the permutation entropy value of the j-th BLIMF.

3.2. Fault Detection Based on the Statistical Classification Model

In reality, fault early warming is very important for the prevention of fault expansion.
When bearing faults occur, the high-frequency impulse parts motivated by faults make the vibration
signals more complex. According to related theory, the PE values of fault signals are larger than that of
normal signals, and this property can be employed to detect early faults [30]. Consequently, when the
statistical classification method is used to judge the bearing health condition, how to determine the
threshold value in terms of PE distributions becomes an important issue.

Generally, the vibration data of bearings with a normal condition are much easier to obtain than
that data with fault conditions. Meanwhile its distributions of PE value are more regular and can be
discussed more easily. Hence, the inspecting data with normal condition is employed to determine the
threshold value of PE. In reality, the PE distribution of a normal condition does not always strictly obey
normal distribution. Therefore, the statistical knowledge of the normal distribution cannot be utilized
to calculate the threshold value. According to the probabilistic statistics, Chebyshev’s inequality can
be employed to analyze any unknown distribution. The probability distribution regularities of PE
values of normal bearings can be obtained by Chebyshev’s inequality as

P(|PE− µ| ≥ εσ) ≤ 1
ε2 (16)

where µ and σ2 are the mean value and variance of PE values of normal bearings respectively, and the
probability upper bond 1/ε2 is actually the false alarm rate. It means that the probability of the PE
values of normal condition with greater than µ + εσ should be no more than 1/ε2. Here, the upper
bond µ + εσ can be set as the threshold value. Let PE(i) denotes the i-th data point of PE. Then, for N
samples, its health judgment threshold value can be obtained as:

PETV =
1
N

N

∑
i=1

PE(i) + ε

√√√√ 1
N − 1

[
N

∑
i=1

(
PE(i)− 1

N

N

∑
i=1

PE(i)

)]2

(17)

In general, the false alarm rate 1/ε2 is set to 0.05 or 0.01. Practically, the value of 1/ε2 is empirically
determined with the specific objects. If the alarm rate is relative large, resulting in a relative small value
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of PETV , the misdiagnosis probability of normal samples can be heightened. Conversely, the probability
may be reduced. In this paper it is set to 0.05, and then the PETV can be computed as:

PETV =
1
N

N

∑
i=1

PE(i) + 4.4721

√√√√ 1
N − 1

[
N

∑
i=1

(
PE(i)− 1

N

N

∑
i=1

PE(i)

)]2

(18)

3.3. Random Forests-Based Fault Identification

In the fault detection stage, if the PE value of one signal is large than PETV, it may be assumed that
there are faults in bearings. Considering the type diversity and characteristic complexity of bearing
faults, this work proposed an intelligence diagnostic model based on VMD-PE and RF. To further
enhance the diagnostic performance of the model, the original VMD-PE features were reelected by
using OOB estimation, and then the refined VMD-PE features are considered as the inputted data for
training model. The implementation of the second step is described as follows.

(1) After the first step, decompose the signal with fault conditions into a series of BLIMF
components and obtain the VMD-PE features.

(2) Input the original VMD-PE feature set and train the first RF (1st-RF) model, where the 1st-RF
model is constructed with the original VMD-PE features and can mainly be utilized for the refined
selection of VMD-PE features.

(3) Based on the 1st-RF model, reelect the original VMD-PE features by OOB estimation. Then,
choose the first several scale PE features with larger importance as the optimized feature set.

(4) Construct the second RF (2nd-RF) model based on the refined VMD-PE features and obtain
the final diagnostic model.

(5) Input the testing samples and identify the corresponding fault types.
As illustrated in Figure 2, the diagnostic procedure of the two steps is not independent, where

the diagnosis results of the last step has direct effects on the subsequent step. The diagnosis results of
the second step are calculated based on the assumption that the diagnostic accuracy of the precious
step is 100%. In order to explain and analyze the performance of the proposed model, the diagnosis
accuracy of the testing samples is calculated by the following method: obtaining the sample numbers
of wrong results in two steps respectively; and calculating the total error rate of the whole diagnosis
procedure. Let E1 denotes the diagnosis error rate of the first step, and E2 be the error rate of the fault
identification step. Hence, the final diagnosis accuracy η of the proposed model can be calculated as:

η = (1− E1 ∗ H + E2 ∗ h
H

)× 100% (19)

where H is the total number of the testing samples and h is the total number of testing samples with
fault conditions.

4. Experimental Results and Analysis

In this section, the experimental data freely provided by Bearing Data Center of Case Western
Reserve University is employed to validate the proposed diagnosis method. As shown in Figure 3,
the experimental setup consists of a 2 hp Reliance Electric motor (left), a torque transducer (middle)
and a dynamometer (right) [47]. The testing bearings installed on both ends of the motor housing
support the motor shaft, where the type of the testing bearings is the 6205-2RS deep groove ball
bearing (SKF, Gothenburg, Sweden). Different faults (inner race fault, outer race fault or ball fault)
were separately seeded on the normal bearings by an electric discharge machine and then faulted
bearings were reinstalled into the test motor. Four defect sizes (0.0178 cm, 0.0356 cm, 0.0533 cm
and 0.0711 cm) were processed on the inner race fault and ball fault bearings, and three defect sizes
(0.0178 cm, 0.0356 cm, 0.0533 cm) were processed on the outer race fault bearings. Here, vibration data
under different fault conditions were collected from the acceleration sensor installed on the drive end



Entropy 2019, 21, 96 11 of 18

of the motor housing with different loads of 0 to 3 hp (motor speeds of 1797 to 1720 rpm). The signal
sampling frequency was 12 kHz, and the data length of each working condition was 120,000 points.

Here, vibration data of the drive end only under loads of 0hp (1797 rpm) and 2hp (1750 rpm)
were considered, and each load condition contains 12 working conditions, as illustrated in Table 1.
To perform fault diagnosis, the measured data under each working condition was divided averagely
into 40 sub-signals. In the first stage, the 50% of the samples with normal condition were randomly
selected to determine the threshold value PETV. Then, in the second step, the MPE feature sets with
fault condition were split into two groups: 25% and 75%. 25% was employed as training data to train
the RF-based fault identification model and the remaining 75% was used to test model.
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Figure 3. Fault test platform of rolling element bearings.

Table 1. Twelve fault conditions of bearings under loads of 0 hp (Case 1) and 2hp (Case 2).

Size (cm)

Type Inner Race
Fault

Outer Race
Fault Ball Fault Normal

0.0178
√ √ √

√0.0356
√ √ √

0.0533
√ √ √

0.0711
√

–
√

“
√

” indicates the working condition is under consideration.

Figure 4 shows the time domain waveforms of the vibration signals with different fault conditions
and the corresponding frequency spectrograms. As can be seen from the figure, the spectrograms of
fault signals have significant impact frequencies and their spectral characteristics are more complex
than that of normal signals. Section 2.1 describes how permutation entropy possesses effective
measurement capacity of signal complexity. Thus, this point can be tentatively utilized to detect
incipient faults of rolling element bearings. The permutation entropy distribution of training samples
of Case 1 is displayed in Figure 5a. It can be seen from this figure that the permutation entropy values
of fault signals clearly outweigh the values of normal signals. So, how to calculate the threshold value
to detect incipient faults is an important issue. According to Equation (18), the threshold value of
Case 1 becomes 0.666. The red dotted lines in Figure 5 represent the threshold value calculated by the
PE values of normal condition signals. As shown in Figure 5, the fault conditions can be separated
from normal condition by the statistical classification method with 100% accuracy. Also, the health
judgment accuracy of Case 2 is also 100%, as shown in Figure 6.



Entropy 2019, 21, 96 12 of 18

 

12 

Induction motor

Torque transducer

Dynamometer

Fan end bearing

Drive end bearing

 
Figure 3. Fault test platform of rolling element bearings. 

Table 1. Twelve fault conditions of bearings under loads of 0 hp (Case 1) and 2hp (Case 2). 

 Type 
Inner Race 

Fault 
Outer Race 

Fault 
Ball Fault Normal Size 

(cm)  
0.0178 √ √ √ 

√ 0.0356 √ √ √ 
0.0533 √ √ √ 
0.0711 √ -- √ 

“√” indicates the working condition is under consideration. 

Figure 4 shows the time domain waveforms of the vibration signals with different fault 
conditions and the corresponding frequency spectrograms. As can be seen from the figure, the 
spectrograms of fault signals have significant impact frequencies and their spectral characteristics 
are more complex than that of normal signals. Section 2.1 describes how permutation entropy 
possesses effective measurement capacity of signal complexity. Thus, this point can be tentatively 
utilized to detect incipient faults of rolling element bearings. The permutation entropy distribution 
of training samples of Case 1 is displayed in Figure 5a. It can be seen from this figure that the 
permutation entropy values of fault signals clearly outweigh the values of normal signals. So, how 
to calculate the threshold value to detect incipient faults is an important issue. According to 
Equation (18), the threshold value of Case 1 becomes 0.666. The red dotted lines in Figure 5 
represent the threshold value calculated by the PE values of normal condition signals. As shown in 
Figure 5, the fault conditions can be separated from normal condition by the statistical classification 
method with 100% accuracy. Also, the health judgment accuracy of Case 2 is also 100%, as shown in 
Figure 6.  

 

Figure 4. Time domain waveforms and the corresponding envelope spectrums of the vibration 
signals under different working conditions. 

-0.5

0

0.5
Normal

0

0.02

0.04

      
-2

0

2
Inner race fault

      
0

0.1

0.2

-5

0

5

A
m

pl
itu

de
 (m

/s 
2 )

Outer race fault

      
0

0.5

A
m

pl
itu

de
 (m

/s 
2 )

0 0.05 0.1 0.15 0.2 0.25
-1

0

1

Time (s)

Ball Fault

0 200 400 600 800 1000
0

0.02

0.04

Frequency (Hz)

Figure 4. Time domain waveforms and the corresponding envelope spectrums of the vibration signals
under different working conditions.

 

13 

Normal condition

Ball fault

Inner race fault
Outer race fault

 
(a) Training set (b) Testing set 

Figure 5. The PE distribution of the vibration signals of Case 1 

 
(a) Training set (b) testing set 

Figure 6. The permutation entropy (PE) distribution of the vibration signals of Case 2. 

Although the PE features perform well in detecting faults, the detailed fault types cannot be 

classified only based on the single-scale PE features. As shown in Figure 5 and Figure 6, there are 

serious aliasing regions of the PE values with different fault conditions in the vertical direction. In 

the fault identification stage, the PE features of each BLIMF component were extracted to construct 

the fault classifier and to attain the final diagnosis results. Next, the vibration signals were 

decomposed by VMD with K = 12, where K can be determined based on the observation of the 

center frequency of each BLIMF [49]. Figure 7 gives the decomposed results of one vibration signal 

with inner race fault and the frequency spectrogram of each BLIMF. For convenience sake, only the 

first six BLIMF components were displayed in Figure 7. Clearly, the original complicated signal can 

be decomposed into a series of mono components with relatively single frequency information. So 

the frequency characteristics contained in the original fault signals can be easily extracted from each 

BLIMF component. As a result, multiscale PE features extracted from each BLIMF component can 

provide a more abundant description of the dynamic characteristics of the vibration signals 

compared with the single scale PE features. The distribution dissimilarity of the VMD-PE features 

with different fault types and the aggregation of the VMD-PE with the same fault type are 

displayed in Figure 8. As shown in Figure 8a, the VMD-PE performs good differentiability for 

different fault conditions. Meanwhile, the VMD-PE distributions with same fault type performs 

good clustering, as illustrated in Figure 8b–d, where the lines with different colors in each figure 

represent the variation trend of VMD-PE values of different signal samples with the same fault type. 

Ball fault 

Inner race 

fault 

Outer race 

fault 

Normal condition 

Figure 5. The PE distribution of the vibration signals of Case 1.

 

13 

Normal condition

Ball fault

Inner race fault
Outer race fault

 
(a) Training set (b) Testing set 

Figure 5. The PE distribution of the vibration signals of Case 1 

 
(a) Training set (b) testing set 

Figure 6. The permutation entropy (PE) distribution of the vibration signals of Case 2. 

Although the PE features perform well in detecting faults, the detailed fault types cannot be 

classified only based on the single-scale PE features. As shown in Figure 5 and Figure 6, there are 

serious aliasing regions of the PE values with different fault conditions in the vertical direction. In 

the fault identification stage, the PE features of each BLIMF component were extracted to construct 

the fault classifier and to attain the final diagnosis results. Next, the vibration signals were 

decomposed by VMD with K = 12, where K can be determined based on the observation of the 

center frequency of each BLIMF [49]. Figure 7 gives the decomposed results of one vibration signal 

with inner race fault and the frequency spectrogram of each BLIMF. For convenience sake, only the 

first six BLIMF components were displayed in Figure 7. Clearly, the original complicated signal can 

be decomposed into a series of mono components with relatively single frequency information. So 

the frequency characteristics contained in the original fault signals can be easily extracted from each 

BLIMF component. As a result, multiscale PE features extracted from each BLIMF component can 

provide a more abundant description of the dynamic characteristics of the vibration signals 

compared with the single scale PE features. The distribution dissimilarity of the VMD-PE features 

with different fault types and the aggregation of the VMD-PE with the same fault type are 

displayed in Figure 8. As shown in Figure 8a, the VMD-PE performs good differentiability for 

different fault conditions. Meanwhile, the VMD-PE distributions with same fault type performs 

good clustering, as illustrated in Figure 8b–d, where the lines with different colors in each figure 

represent the variation trend of VMD-PE values of different signal samples with the same fault type. 

Ball fault 

Inner race 

fault 

Outer race 

fault 

Normal condition 
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Although the PE features perform well in detecting faults, the detailed fault types cannot be
classified only based on the single-scale PE features. As shown in Figures 5 and 6, there are serious
aliasing regions of the PE values with different fault conditions in the vertical direction. In the fault
identification stage, the PE features of each BLIMF component were extracted to construct the fault
classifier and to attain the final diagnosis results. Next, the vibration signals were decomposed by
VMD with K = 12, where K can be determined based on the observation of the center frequency of each
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BLIMF [48]. Figure 7 gives the decomposed results of one vibration signal with inner race fault and
the frequency spectrogram of each BLIMF. For convenience sake, only the first six BLIMF components
were displayed in Figure 7. Clearly, the original complicated signal can be decomposed into a series
of mono components with relatively single frequency information. So the frequency characteristics
contained in the original fault signals can be easily extracted from each BLIMF component. As a
result, multiscale PE features extracted from each BLIMF component can provide a more abundant
description of the dynamic characteristics of the vibration signals compared with the single scale PE
features. The distribution dissimilarity of the VMD-PE features with different fault types and the
aggregation of the VMD-PE with the same fault type are displayed in Figure 8. As shown in Figure 8a,
the VMD-PE performs good differentiability for different fault conditions. Meanwhile, the VMD-PE
distributions with same fault type performs good clustering, as illustrated in Figure 8b–d, where the
lines with different colors in each figure represent the variation trend of VMD-PE values of different
signal samples with the same fault type. The results demonstrate that VMD-PE is one kind of feasible
fault features for bearings fault identification.
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Figure 7. Decomposed results obtained by variational mode decomposition (VMD) and envelope
spectrums of the corresponding band- limited intrinsic mode function (BLIMF) components.
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Figure 8. Dissimilarity and aggregation of the VMD-PE distributions under different fault conditions.
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After VMD-PE features extraction, the total VMD-PE features set were randomly divided into two
parts: 25% and 75%. For comparison, the training samples were used to train the RF-based, SVM-based
and ELM-based fault classifier respectively, where the other 75% samples were employed as testing
data to evaluate the performance of each diagnosis model. To improve the reliability of the experiment
results, each diagnosis experiment with different classification algorithms was performed repeatedly
20 times based on the same computing platform. Table 2 gives the diagnosis results of testing samples
for different diagnostic models. The mean diagnosis accuracy (%) and the standard deviations (%) are
given in the second and fourth columns of Table 2, while the mean cost time (s) is reported in the third
and fifth columns.

As shown in Table 2, although the ELM-based model requires a minimum of computation time,
its diagnosis accuracy is the lowest compared with other two methods. Meanwhile, the diagnosis
accuracy of SVM is relative high but it is time consuming. It is clearly that these two methods cannot do
well in both of the aspects of efficiency and precision. The diagnosis results of the RF-based model were
also listed in Table 2, where the average precisions of two cases are 98.44% and 99.09%, respectively
and the computation time is much less than that of the SVM-based model. Diagnosis results indicate
that the RF-based model performs well in both efficiency and precision, which means it is a powerful
classification algorithm for fault diagnosis of rolling element bearings.

Table 2. Comparison of diagnosis results obtained by different classifiers and VMD-PE features.

Case 1 Case 2

Accuracy (%) Cost Time (s) Accuracy (%) Cost Time (s)

MPE-ELM 1 94.11 ± 1.11 0.006 96.15 ± 1.45 0.007
MPE-SVM 96.76 ± 0.86 5.452 97.83 ± 1.01 5.029
MPE-RF 98.44 ± 0.67 0.075 99.09 ± 0.67 0.074

1 MPE, multiscale permutation entropy; ELM, extreme learning machine; SVM, support vector machine; RF,
random forests.

As displayed in Figure 7, each BLIMF contains certain frequency information, but it does not
mean that each component could play a positive role in fault identification. Actually, the interference
components or the components with less condition information will seriously block the proper
identification of faults and are hard to distinguish and eliminate. In this work, the OOB estimation was
used to evaluate the PE features importance of each BLIMF component to further refine the original
VMD-PE set. The importance value of each scale PE feature is displayed in Figure 9, where the PEs of
7, 9 and 10 scale number contribute less to fault classification. Meanwhile, to avoid excess information
loss only the first three PE features with small importance value were removed from the original MPE
features. As the estimation results presented in Figure 9b, the PEs of 5, 7 and 8 scale number are
eliminated in Case 2.
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Figure 9. Importance evaluation of multiscale permutation entropy (MPE) features based on out-of-bag
(OOB) estimation.
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In order to verify the effectiveness of OOB estimation in features evaluation, the refined VMD-PE
features, as shown in Figure 9, were employed to train the 2nd-RF based diagnosis model and the
diagnosed results are displayed in Table 3. As can be seen from this table, the average diagnosis
accuracy of the method with OOB estimation in the fault identification stage is 98.48% (100%−1.52%)
and 99.97% (100%−0.3%), respectively, and the result of the method with the original VMD-PE features
is 98.44% and 99.09%. Obviously, only a slight improvement in diagnosis accuracy can be obtained
by using OOB estimation, but the refined features are more simple and sensitive and result in high
diagnosis efficiency. With a slight improvement of accuracy in the second step, a certain enhancement
of the final diagnosis accuracy can also be achieved, as shown in the 4th column and the 7th column
of Table 3. Meanwhile, the proposed method was compared with the one-step method. By using
the one-step model, the whole VMD-PE features dataset was divided into two groups: 25% and 75%.
The 25% of samples are training set and the rest of the samples are testing samples. The diagnosis
results obtained by the one-step method are listed in the fourth row of Table 3. As for the average
diagnosis accuracy, the proposed method also outperforms the one-step method. These comprehensive
results prove that the proposed method could classify the test samples efficiently and ultimately
complete the fault diagnosis of rolling element bearings.

Table 3. Diagnosis results obtained by the proposed method, the two-step method with no features
refinement and the traditional one-step method. OOB, out-of-bag.

Case 1 Case 2

E1 (H = 350) E2 (h = 330) η E1 (H = 350) E2 (h = 330) η

Two-step+ OOB 0% 1.52% 98.57% 0% 0.30% 99.997%
Two-step 0% 1.56% 98.57% 0% 0.91% 99.14%
One-step - - 97.50% - - 98.89%

5. Conclusions

In this study, a two-step fault diagnosis scheme based on permutation entropy with different scales
and random forests is proposed for rolling element bearings. In the fault detection step, a preliminary
judgment about the health condition of bearings can be easily achieved with 100% accuracy, as shown
in Figures 5 and 6. By using this statistical classification model based on Chebyshev’s inequality and
PE, the subsequent workload in the next step can be reduced substantially and it can help workers
to realize the real time monitoring of equipment. In order to further confirm the fault information of
bearings, a RF-based diagnosis model based on VMD-PE features and OOB estimation is established.
The results of Figure 8 and Table 2 show that VMD-PE features can effectively reveal the dynamic
characteristics of vibration signals with different fault conditions and RF is more applicable to the
intelligent fault diagnosis of bearings. Furthermore, this is the first time that the OOB estimation is
used to evaluate the features importance and the results of Table 3 demonstrate its availability and
practicality. Finally, the proposed method is also contrasted with the single step diagnosis model.
The comparison results have verified the advantages of the proposed method in accuracy and the
proposed diagnosis strategy is more in line with fault evolvement rule and human perception.

However, the applications of RF in fault diagnosis are still at an early stage, or else its diagnosis
performance may be further improved. For example, its parameters often are determined by experience
values, and in some real applications, the experience values are not suitable. Hence, the parameters
optimization of RF is our next research point. In addition, the PE value of the signals with early weak
or serious defect is probably closer to the value of normal signals, resulting in misdiagnosing these
defects as normal. Therefore, how to establish a sounder diagnosis model with multiple features fusion
is also our next study focus.
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