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Abstract: This paper studies the performance of improper Gaussian signaling (IGS) over a
2-user Rayleigh single-input single-output (SISO) interference channel, treating interference as noise.
We assume that the receivers have perfect channel state information (CSI), while the transmitters
have access to only statistical CSI. Under these assumptions, we consider a signaling scheme, which
we refer to as proper/improper Gaussian signaling or PGS/IGS, where at most one user may
employ IGS. For the Rayleigh fading channel model, we characterize the statistical distribution of
the signal-to-interference-plus-noise ratio at each receiver and derive closed-form expressions for the
ergodic rates. By adapting the powers, we characterize the Pareto boundary of the ergodic rate region
for the 2-user fading IC. The ergodic transmission rates can be attained using fixed-rate codebooks and
no optimization is involved. Our results show that, in the moderate and strong interference regimes,
the proposed PGS/IGS scheme improves the performance with respect to the PGS scheme. Additionally,
we numerically compute the ergodic rate region of the full IGS scheme when both users can employ
IGS and their transmission parameters are optimized by an exhaustive search. Our results suggest that
most of the Pareto optimal points for the 2-user fading IC channel are attained when either both users
transmit PGS or when one transmits PGS and the other transmits maximally improper Gaussian signals
and time sharing is allowed.

Keywords: achievable ergodic rate region; fading channels; improper Gaussian signaling;
2-user interference channel

1. Introduction

Interference management techniques play a key role in modern wireless communication
systems, which are mostly interference-limited [1]. The capacity-achieving signaling in point-to-point
communication systems is proper Gaussian signaling (PGS) [2]. Nevertheless, this is not generally the
case in interference-limited systems, where it has been shown that improper (or asymmetric) Gaussian
signaling (IGS) can improve the performance of various interference-limited systems [3–21]. In contrast
to proper signals, the real and imaginary parts of an improper signal are correlated and/or have unequal
powers [22,23].
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1.1. Related Work

The Gaussian interference channel (IC) is a fundamental communication scenario where multiple
users share the same frequency and time resources for the transmission of the desired messages. It has
been vastly studied over the last decades [24–31] but its capacity is still unknown in the general
case [24–26]. In some particular cases such as the very strong and very weak interference regimes,
the capacity-achieving schemes are known [26]. For example, in the very strong interference regime,
the capacity of the 2-user IC is achieved by successive interference cancellation (SIC), in which the
interfering signals are firstly decoded and then canceled from the received signal [26–28]. In other
words, in the strong interference regime, the interference has to be decoded in order to achieve capacity.
Obviously, SIC is not a linear operation and has a high computational cost, specially in a multiuser
setting. On the other hand, when the interference level is very low, which is also referred as the very
weak interference regime, treating interference as noise (TIN) is the capacity achieving strategy [25,26].
TIN is a simple and practical decoding strategy, which turns out to be optimal from generalized degree of
freedom (GDoF) point of view in low interference regimes [31].

In summary and at a coarse level, if the interference is strong, the optimal interference management
approach is to decode it along with the desired signal, whereas if the interference is weak, then the
interference management approach is to treat interference as noise. If the strength of the interference
is comparable to the strength of the desired signal, the degrees-of-freedom (DoF) optimal interference
management approach is to apply interference alignment (IA) [32–36]. IA designs transmit precoders that
reduce the dimension of the interference subspace, in such a way that the interference can be zero-forced
at each receiver thus getting an interference-free subspace for the transmission of the desired signals.
However, the feasibility of IA for channels with constant coefficients depends on the number of antennas
and hence packing the interference into a low-dimensional subspace is not always possible. Hence, in
some practical scenarios, we have to tolerate and manage interference to improve the system performance.
As a result, in modern wireless communication systems non-orthogonal multiple access (NOMA) schemes
play an essential role [37–39].

Another approach to handle interference is to employ IGS, which has been considered as an
interference-management technique for the first time in Reference [3]. The authors of Reference [3]
showed that IGS can increase the degrees-of-freedom (DoF) of the 3-user single-input single-output
(SISO) interference channel (IC) with constant channel coefficients. In Reference [4], this result was
extended to the 4-user SISO IC and, in Reference [5], the authors showed that IGS can also increase
the DoF of the 2-user multiple-input, multiple-output (MIMO) X channel. In these papers, it is shown
that IGS with IA can improve the DoF of different interference-limited systems. However, IGS can also
be beneficial from rate and/or power/energy-efficiency point of view when interference is treated as
noise [6–21]. It was shown in Reference [6], for example, that the secondary user (SU) in an underlay
cognitive radio (UCR) system may increase its rate by transmitting IGS codewords while satisfying the
rate requirement of the primary user (PU). The superiority of IGS over PGS schemes for the Z-IC was
also established in several works [7–9] and similar performance improvements have also been shown
for the 2-user IC in References [10–12]. The benefits of IGS from Energy efficiency perspective were also
studied in different scenarios in References [15,16].

All the aforementioned works [3–17] assume perfect and instantaneous channel state information at
the transmitter side (CSIT) and they additionally involve some optimization of the parameters of the
transmitted improper signal (e.g., circularity coefficient and transmit power). However, perfect CSIT is a
restrictive assumption in practice.

The number of works studying the performance of IGS in scenarios with either imperfect or statistical
CSIT in fading channels is much smaller. For instance, in Reference [18], we proposed a robust IGS for a
2-user IC with imperfect instantaneous CSIT and showed that IGS can enlarge the achievable rate region
and outperform PGS. Reference [19] considers an underlay cognitive radio (UCR) network in which the
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secondary user has only statistical CSIT and optimizes its transmit power and degree of impropriety to
maintain a given primary user (PU) outage probability. A more challenging UCR scenario where the PU
is assumed to work using full-duplex mode is considered in Reference [20] for Rayleigh fading channels.
Nevertheless, References [19,20] only consider block fading models and the probability of outage as
the figure of merit to optimize. In Reference [21], the authors studied a full-duplex relay system over
Nakagami-m fading channels. They derived the outage probability for a given target rate as well as the
ergodic rate of the system and showed the benefits of IGS.

1.2. Contribution

In this work, we study the achievable ergodic rates of IGS schemes over the 2-user fading IC when
interference is treated as noise. To the best of our knowledge, it is the first work that analyzes the ergodic
rate of improper signaling in the 2-user IC. For the case where at most one user employs IGS (denoted as
PGS/IGS scheme), we derive closed-form expressions for the ergodic rates for both users. These rates can
be attained using fixed-rate codebooks and no optimization is involved. For the more general IGS/IGS
scheme where both users can employ improper signaling no closed-form expressions for the rates exist
and hence we compute numerically the optimal transmission parameters and the boundary of the rate
region. In our model, the users have perfect and instantaneous CSI at the receiver side (CSIR) but they
only have access to statistical CSIT. In other words, the transmitters know the parameters defining the
Rayleigh fading distributions of the direct and interfering links. Note that the perfect instantaneous CSIR
can be achieved using, for example, training sequences [18,40]. Under these assumptions, we derive the
achievable ergodic rates when the users transmit proper and improper Gaussian codewords.

The main contributions of this paper are as follows:

• We derive closed-form expressions for the achievable ergodic rate of the PGS and IGS users.
We also characterize the achievable ergodic rate region of the mixed PGS/IGS scheme by allowing
power control.

• Our proposed scheme incurs no additional overhead at the transmitter side when both users transmit
at maximum power. Moreover, in order to operate at a specific Pareto-optimal point, the transmitters
(or a central entity implementing the power control module) should be informed about the average
gain of the direct and interference links, which are scalar values and can be easily sent to the
transmitters. Hence, the PGS/IGS scheme is simple to implement in practice.

• Through numerical examples, we show that our proposed PGS/IGS scheme substantially
outperforms the PGS scheme in moderate and strong interference regimes. Moreover, we analyze
the maximum sum-rate point for the symmetric 2-user IC when both users transmit at maximum
power. Under this condition, the sum-rate point is attained either with PGS or with PGS/MIGS
(maximally IGS); that is, one user transmits proper signals while the other user employs maximally
improper signaling. Then, the maximum sum-rate point does not require any optimization and/or
power control.

• We also compare our results with the more general scheme where both users can employ IGS and
their transmission parameters are numerically optimized. Our numerical results show that the union
of the PGS and PGS/MIGS schemes with time sharing attains almost the whole Pareto-optimal
points in the rate region and little is gained by allowing both users to employ IGS.

1.3. Paper Outline

The rest of the paper is organized as follows. In Section 2, we define the system model parameters
and formulate the problem. In Section 3 we propose our scheme and derive the ergodic rates of the
PGS/IGS scheme. Section 4 presents some numerical examples and the main conclusions are summarized
in Section 5.
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2. Signal Model and Problem Statement

2.1. Notation and Preliminaries

We denote the probability density function (PDF) of a zero-mean complex Gaussian distribution
with variance px = E

{
|X|2

}
and complementary variance qx = E

{
X2} as X ∼ CN (0, px, qx). We define

the circularity coefficient of X as κx = |qx |
px

, where 0 ≤ κx ≤ 1 [22,23]. The variable X is proper if κx = 0.
Otherwise, X is improper (a.k.a. asymmetric or non-circular). Moreover, we call X maximally improper
if κx = 1.

A random variable X that is Gamma-distributed with shape parameter α and rate parameter β

is denoted as X ∼ Γ(α, β). Its PDF is fX(x) = βαxα−1

Γ(α)
e−βx, x ≥ 0, where Γ(α) is the gamma function.

If X ∼ Γ(1, β), then X has an exponential distribution.

2.2. Signal Model

We consider the 2-user SISO IC depicted in Figure 1. The received signal at receiver i ∈ {1, 2} is

yi = h1ix1 + h2ix2 + ni, (1)

where xi, ni and hji for j ∈ {1, 2} are, respectively, the transmit signal of user i, proper Gaussian noise
with variance σ2 and the channel coefficient for the link between transmitter j and receiver i. We consider
Rayleigh fading channels modeled as

hii ∼ CN (0,
√

snri, 0), (2)

hı̄i ∼ CN (0,
√

inri, 0), (3)

where snri and inri for i, ı̄ ∈ {1, 2} and i 6= ı̄ are, respectively, the average gain of the direct and
interference links of receiver i. Additionally, the channel gains are Gamma distributed, that is,

|hii|2 ∼ Γ(1, 1/snri), (4)

|hı̄i|2 ∼ Γ(1, 1/inri). (5)

We assume that the transmitters know neither the fading states on which they transmit, nor the
fading states of the interfering signal. On the other hand, we assume that the receivers have perfect
knowledge of the channels.

We treat interference as noise and assume that users may employ IGS. Thus, the instantaneous rate
of user i is [18]

Ri =
1
2

log2

(
(σ2+ p1|h1i|2+ p2|h2i|2)2− |q1h2

1i + q2h2
2i|2

(σ2 + pı̄|hı̄i|2)2 − |qı̄h2
ı̄i|2

)
, (6)

where pi and qi are the transmission power and complementary variance of user i, respectively. Hereafter,
we consider σ2 = 1 without loss of generality. Moreover, the power budget of user i is Pi.
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x1 ∼ CN (0, p1, q1)

x2 ∼ CN (0, p2, q2)

+

+

n1 ∼ CN (0, σ2, 0)

n2 ∼ CN (0, σ2, 0)

Figure 1. The 2-user interference channel (IC) with proper/improper Gaussian signaling.

We first consider the scenario, where at most one user may employ IGS. For notational simplicity
in this section, we consider user 1 as the PGS user without loss of generality. Obviously, there is no
difference between the users and either user can be the PGS user. The instantaneous rate of the PGS
user is

RPGS
1 =

1
2

log2

(
1 +

X1

1 + (1 + κ)Y1

)
+

1
2

log2

(
1 +

X1

1 + (1− κ)Y1

)
, (7)

where Xi = pi|hii|2 ∼ Γ(1, 1/(pisnri)) and Yi = pı̄|hı̄i|2 ∼ Γ(1, 1/(pı̄inri)) are independent Gamma
distributed random variables and κ is the circularity coefficient of the IGS user. The instantaneous rate of
the IGS user is

RIGS
2 =

1
2

log2

(
1+

(1+ κ)X2

1 + Y2

)
+

1
2

log2

(
1+

(1− κ)X2

1 + Y2

)
. (8)

A special case of this scheme is MIGS, that is, κ = 1. In this case, the rate of the PGS user simplifies to

RPGS
1 =

1
2

log2 (1 + X1)︸ ︷︷ ︸
interference free

+
1
2

log2

(
1 +

X1

1 + 2Y1

)
︸ ︷︷ ︸

with interference

. (9)

Since the MIGS user transmits only on one dimension, there is an interference-free dimension for
the PGS user. We can exploit this interference-free dimension even without CSIT due to the fact that the
receivers know the channels perfectly. Additionally, the rate of the MIGS user is

RMIGS
2 =

1
2

log2

(
1 +

2X2

1 + Y2

)
. (10)

As we observe in Equation (10), the PGS user causes less interference to the MIGS user because both
the PGS user and the noise divide their power between the two dimensions. The downside is that the MIGS
user loses some rate because only one signal dimension is exploited for transmission. However, the MIGS
user can compensate for this rate loss by increasing its transmission power if the power budget has not been
fully used and the overall effect can be beneficial in terms of sum-rate. As indicated, the PGS user has an
interference-free dimension, which ensures a minimum instantaneous achievable rate of

RPGS
1 >

1
2

log2 (1 + X1) . (11)
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2.3. Problem Statement

In this paper, we derive the achievable ergodic rates for the PGS/IGS scheme under fast fading
channels (i.e., when the codewords span a large number of fading states). The achievable ergodic rate is
defined as the expected achievable rate R = E {R}. In order to derive the achievable ergodic rate region,
we employ the Pareto boundary, which is defined in Definition 1.

Definition 1 ([7]). The ergodic rate pair (R1, R2) is called Pareto-optimal if (R′1, R2) and (R1, R′2), with R′1 > R1

and R′2 > R2, are not achievable.

The whole achievable ergodic rate region can be obtained by varying the powers and complementary
variances of the transmit symbols. In References [12,41] it is proven that the Pareto-optimal rates for the
2-user IC when interference is treated as noise are obtained when at least one user transmits at maximum
power. This result, which was originally proved for the case where the transmitters have perfect CSIT,
is also valid for our ergodic fast fading channel model.

3. PGS/IGS Scheme

In this section, our goal is to derive the achievable pair of ergodic rates
(

RPGS
1 , RIGS

2

)
obtained by

taking the mathematical expectation of RPGS
1 in Equation (7) and RIGS

2 in Equation (8). We first present
Lemma 1 in order to derive the ergodic rate of the users. Then we present the achievable ergodic rates in
Theorem 1.

Lemma 1. Let us define the random variable Z = βX
1+αY , where α ≥ 0 and β ≥ 0 are given constants and

X ∼ Γ(1, 1
snr ) and Y ∼ Γ(1, 1

inr ) are independent Gamma distributed random variables. The cumulative density
function (CDF) of Z is

FZ(z) = 1− e−
z

βsnr

1 + αinr
βsnr z

. (12)

The expectation of Z is

E{Z} =
{

βsnr if α = 0,(
βsnr
αinr

)
e

1
βsnr E1

(
1

βsnr

)
if α > 0.

(13)

Additionally, the expectation of R = log(1 + Z) is

f (βsnr, αinr) , R =


e

1
βsnr E1

(
1

βsnr

)
if α = 0,

βsnr

(
e

1
βsnr E1

(
1

βsnr

)
−e

1
αinr E1( 1

αinr )

)
βsnr−αinr , if βsnr 6= αinr > 0

e
1

βsnr E2

(
1

βsnr

)
, if βsnr = αinr > 0

(14)

where the En (x) function is defined by the integral (for n ≥ 1 and x > 0)

En (x) =
∫ ∞

1

e−xt

tn dt. (15)

Proof of Lemma 1. Please refer to Appendix A.
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Note that when β = 0, the variable Z defined in Lemma 1 is Z = 0. To include this case, we define
f (0, αinr) , 0. Moreover, notice that En (x) can be written in terms of the upper incomplete gamma
function as En (x) = xn−1Γ(1− n, x), where

Γ(s, x) =
∫ ∞

x
ts−1e−t. (16)

E1(x) = Γ(0, x) is the exponential integral. These functions can be computed using standard
software packages.

Theorem 1. The ergodic rates of the PGS and the IGS users are, respectively,

R̄PGS
1 = f (p1snr1, (1+κ)p2inr1)+ f (p1snr1, (1−κ)p2inr1), (17)

R̄IGS
2 = f ((1+κ)p2snr2, p1inr2)+ f ((1−κ)p2snr2, p1inr2), (18)

where f (x, y) is given by Equation (14).

Proof of Theorem 1. The ergodic rate of users are given by taking expectations of Equations (7) and (8).
Hence, by applying the results of Lemma 1 and substituting the corresponding α and β, we can prove
the theorem.

Remark 1. The ergodic rate of the PGS user is strictly increasing in κ, while the ergodic rate of the IGS user
is strictly decreasing in κ. This is due to the fact that the instantaneous rate of the PGS (IGS) user is strictly
increasing (decreasing) in κ.

We can derive the achievable ergodic rate region by varying the transmission power of the two users.
As indicated in Section 2.3, every point on the boundary of the achievable ergodic rate region is obtained
when at least one user transmits with maximum power [12,41]. Thus, the whole Pareto optimal region
for the PGS/IGS scheme can be derived as

S IGS =
⋃

0 ≤ κ2 ≤ 1
0 ≤ p2 ≤ P2

(
RPGS

1 (P1, p2, κ2), RIGS
2 (P1, p2, κ2)

) ⋃
0 ≤ κ2 ≤ 1

0 ≤ p1 ≤ P1

(
RPGS

1 (p1, P2, κ2), RIGS
2 (p1, P2, κ2)

)
⋃

0 ≤ κ1 ≤ 1
0 ≤ p2 ≤ P2

(
RIGS

1 (P1, p2, κ1), RPGS
2 (P1, p2, κ1)

) ⋃
0 ≤ κ1 ≤ 1

0 ≤ p1 ≤ P1

(
RIGS

1 (p1, P2, κ1), RPGS
2 (p1, P2, κ1)

)
. (19)

Note that the achievable ergodic rate region in Equation (19) is the union of the achievable ergodic
rate region of two transmission strategies:

1. User 1 employs PGS, while user 2 may employ IGS,
2. User 2 employs PGS, while user 1 may employ IGS.

4. Numerical Examples

We consider a 2-user fading IC where the channel coefficients of the direct links are drawn from hii ∼
CN (0,

√
snr, 0) and the channel coefficients of the interfering links are drawn from hiı̄ ∼ CN (0,

√
inr, 0).

The four channel coefficients are independent random variables. In this way, the performance of the
proposed schemes can be analyzed in terms of the average snr and inr, which are the same at both
receivers. Moreover, we assume P1 = P2 = 1 and σ2 = 1. Indeed, we reflect the effect of the transmission
power as well as the noise power by the gain of the direct and interference links, that is, snr and inr.
Since the fading direct and interference channels are symmetric, the two users send information at the
same rate.
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When at most one user employs IGS, the instantaneous rates are independent of the phases of
the channels. Additionally, it allows us to find closed-form expressions of the ergodic rates. However,
the question remains: How far is the PGS/IGS scheme from the Pareto-optimal design of a scheme that would
allow both users to use IGS on the 2-user IC?

To answer the question, we compare the performance of our scheme with an exhaustive search over
all design parameters (κ1, κ2, p1, p2) when both users may employ IGS. Unfortunately, to the best of our
knowledge, there is no closed-form solution for the ergodic rates when both users employ IGS. Thus,
we estimate the ergodic rate of the 2-user IC when both users employ IGS by Monte Carlo simulations.
That is, we generate a large number (105) of channels and compute the instantaneous rate achieved by the
transmission parameters for each channel realization. Finally, we estimate the ergodic rate by averaging
the instantaneous rates. Once the ergodic rate pairs have been estimated for many different transmission
parameters, the Pareto boundary for the IGS/IGS scheme can readily be estimated.

The considered schemes are denoted as follows.

• PGS: The PGS scheme with κ1 = κ2 = 0.
• MIGS: The PGS/MIGS scheme with κ = 1.
• E-IGS: The exhaustive search for IGS when both users may employ IGS.
• O-P/IGS: The PGS/IGS scheme with the optimal κ.
• MIGS-Ui: The PGS/MIGS scheme when the MIGS user is user i.
• MIGS-TS: The PGS/MIGS scheme with time sharing over the points with maximum power for

both users.

In Figure 2, we depict the achievable ergodic rate region of our proposed schemes for snr = 10 dB.
As can be observed, the union of the ergodic rate regions achievable by the PGS and MIGS schemes is
very close to the optimal achievable ergodic rate region. If we employ time sharing over the points with
maximum power for both users in the union of the PGS and PGS/MIGS schemes (indicated by circles in
Figure 2), we attain almost the entire Pareto-optimal region of the 2-user IC when both users are allowed
to employ IGS.
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symmetric 2-user IC with snr = 10 dB.
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5. Conclusions

This paper studied the ergodic rate of a PGS/IGS scheme in a 2-user Rayleigh IC treating interference
as noise. Under the assumption that the users have perfect CSIR but they have access only to statistical
CSIT, we derived closed-form expressions for the ergodic rates and characterized the boundary of the
achievable ergodic rate region. We also proposed a practical IGS scheme which does not require any
optimization and power control at the transmitter side. In this scheme, both users transmit with maximum
power. One user employs MIGS while the other user employs PGS. By numerical examples, we showed
that IGS can substantially increase the sum-rate and enlarge the ergodic rate region of the 2-user Rayleigh
SISO-IC under strong interference.

Figure 2. Proper Gaussian signaling (PGS) and improper Gaussian signaling (IGS) rate regions for a
symmetric 2-user IC with snr = 10 dB.
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In Figure 3, we show the sum-ergodic rate as a function of the inr when both users transmit at
maximum power. Note that, in this case, the sum-ergodic rate can be achieved by red points for the PGS
scheme and by either black or blue points for the PGS/MIGS scheme in Figure 2. As can be observed in
Figure 3, the PGS/MIGS scheme significantly outperforms the PGS scheme when the interference level
is high. Interestingly, the sum-rate can be achieved by either κ = 0 or κ = 1 and no optimization over
κ is required for maximizing the sum-rate. Note that, for symmetric channels, both users can achieve
the same ergodic rate in the PGS/MIGS scheme by letting each user be the MIGS user 50% of the time.
Hence, the MIGS scheme with switching between proper and maximally improper users can substantially
improve the performance of the 2-user IC. This scheme requires as little cooperation as possible between
users and further it requires no optimization or power control at the transmitter side.
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5. Conclusions

This paper studied the ergodic rate of a PGS/IGS scheme in a 2-user Rayleigh IC treating interference
as noise. Under the assumption that the users have perfect CSIR but they have access only to statistical
CSIT, we derived closed-form expressions for the ergodic rates and characterized the boundary of the
achievable ergodic rate region. We also proposed a practical IGS scheme which does not require any
optimization and power control at the transmitter side. In this scheme, both users transmit with maximum
power. One user employs MIGS while the other user employs PGS. By numerical examples, we showed
that IGS can substantially increase the sum-rate and enlarge the ergodic rate region of the 2-user Rayleigh
SISO-IC under strong interference.

5.1. Future Studies

This paper, to the best of our knowledge, is the first work on IGS in IC without instantaneous CSIT,
which can open a path for further studies on IGS with more practical assumptions when instantaneous
CSIT is not available. It has been shown that IGS can improve the performance of multi-user (more than
two users) and/or multiple antenna systems in the presence of perfect instantaneous CSIT [3,5,9,17].
However, perfect and instantaneous CSIT might not be available in practical scenarios. Thus, the
following question arises, which has to be answered in future works. Does IGS provide some gains, in
multi-user (large scale scenarios) and/or multiple antenna systems when instantaneous CSIT is not available?
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Appendix A. Proof of Lemma 1

By definition, the CDF of Z is

FZ(z) = Pr(Z ≤ z) = 1− Pr(βX ≥ z(1 + αY)) =
∫ ∞

0

e−y/inr

inr

∫ ∞

z(1+αy)
β

e−x/snr

snr
dxdy = 1− e−

z
βsnr

1 + αinr
βsnr z

. (A1)

Furthermore, since Z is a positive random variable, its expectation can be obtained as

E{Z} =
∫ ∞

0
(1− FZ(z)) dz =

{
βsnr if α = 0,(

βsnr
αinr

)
e

1
βsnr E1

(
1

βsnr

)
if α > 0.

(A2)

It can be easily verified that R̄ = e
1

βsnr E1

(
1

βsnr

)
when α = 0. Hence, in the following, we consider

α > 0. In this case, the CDF of R = log (1 + Z) is

FR(r) = 1− e
1

βsnr e−
er

βsnr

(
1

1− αinr
βsnr +

αinr
βsnr er

)
, r ≥ 0. (A3)

Since R is a positive random variable, its expectation may be found from its CDF as

E {R} =
∫ ∞

0
(1− FR(r)) dr. (A4)

Making the change of variables er = 1 + z in Equation (A4), R is given by the integral

E {R} =
∫ ∞

0

e−
z

βsnr

1 +
(

αinr
βsnr + 1

)
z +

(
αinr
βsnr

)
z2

dz. (A5)

If βsnr 6= αinr, the integrand in Equation (A5) has two simple poles at z = −1 and z = −βsnr/αinr.
Decomposing the integrand into simple fractions we arrive, after some change of variables, at

R =

(
βsnr

βsnr−αinr

)[
e

1
βsnr E1

(
1

βsnr

)
− e

1
αinr E1

(
1

αinr

)]
. (A6)

On the other hand, if βsnr = αinr, the integrand in Equation (A5) has a double pole at z = −1.
Then, Equation (A5) becomes

R =
∫ ∞

0

e−
z

βsnr

1 + z2 dz = e
1

βsnr

∫ ∞

1
βsnr

e−t

t2 dt = e
1

βsnr E2

(
1

βsnr

)
, (A7)

thus proving Lemma 1.
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