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Abstract: While rate distortion theory compresses data under a distortion constraint, information
bottleneck (IB) generalizes rate distortion theory to learning problems by replacing a distortion
constraint with a constraint of relevant information. In this work, we further extend IB to
multiple Markov bottlenecks (i.e., latent variables that form a Markov chain), namely Markov
information bottleneck (MIB), which particularly fits better in the context of stochastic neural networks
(SNNs) than the original IB. We show that Markov bottlenecks cannot simultaneously achieve their
information optimality in a non-collapse MIB, and thus devise an optimality compromise. With
MIB, we take the novel perspective that each layer of an SNN is a bottleneck whose learning goal is
to encode relevant information in a compressed form from the data. The inference from a hidden
layer to the output layer is then interpreted as a variational approximation to the layer’s decoding
of relevant information in the MIB. As a consequence of this perspective, the maximum likelihood
estimate (MLE) principle in the context of SNNs becomes a special case of the variational MIB. We
show that, compared to MLE, the variational MIB can encourage better information flow in SNNs
in both principle and practice, and empirically improve performance in classification, adversarial
robustness, and multi-modal learning in MNIST.

Keywords: information bottleneck; stochastic neural networks; variational inference; machine learning

1. Introduction

The information bottleneck (IB) principle [1] extracts relevant information about a target variable
Y from an input variable X via a single bottleneck variable Z. In particular, it constructs a bottleneck
variable Z = Z(X) that is a compressed version of X but preserves as much relevant information
in X about Y as possible. This principle of introducing relevant information under compression
finds vast applications in clustering problems [2], neural network compression [3], disentanglement
learning [4–7], and reinforcement learning [8,9]. In addition, there have been many variants of the
original IB principle, such as multivariate IB [10], Gaussian IB [11], meta-Gaussian IB [12], deterministic
IB [13], and variational IB [14]. Despite these vast applications and variants of IB, alongside the
theoretical analysis of the IB principle in neural networks [15,16], the context of stochastic neural
networks in which mutual information can be most naturally well-defined [17] has not been sufficiently
studied from the IB insight. In this work, we are particularly interested in this context in which multiple
stochastic variables are constructed for representation in the form of a Markov chain.

Stochastic neural networks (SNNs) are a general class of neural networks with stochastic
neurons in the computation graph. There has been an active line of research in SNNs, including
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restricted Boltzmann machines (RBMs) [18], deep belief networks (DBNs) [19], sigmoid belief networks
(SBNs) [20], and stochastic feed-forward neural networks (SFFNs) [21]. One of the advantages of SNNs
is that they can induce rich multi-modal distributions in the output space [20] and enable exploration in
reinforcement learning [22]. For learning SNNs (and deep neural networks in general), the maximum
likelihood estimate (MLE) principle (in its various forms, such as maximum log-likelihood or
Kullback–Leibler divergence) has generally been a de-facto standard. The MLE principle maximizes
the likelihood of the model for observing the entire training data. However, this principle is generic
and not specially tailored to the hierarchical structure of neural networks. Particularly, MLE treats the
entire neural network as a whole without considering the explicit contribution of its hidden layers
to model learning. As a result, the information contained within the hidden structure may not be
adequately modified to capture the data regularities reflecting a target variable. Thus, it is reasonable
to ask if the MLE principle effectively and sufficiently exploits a neural network’s representative power,
and whether there is a better alternative.

Contributions. In this paper, (i) we propose Markov information bottleneck (MIB), a variant of
the IB principle for multiple Markov bottlenecks that directly offers an alternative learning principle
for SNNs. In MIB, there are multiple bottleneck variables (as opposed to one single bottleneck variable
in the original IB) that form a Markov chain. These multiple Markov bottlenecks sequentially extract
relevant information for a learning task. From the perspective of MIB, each layer of an SNN is a
bottleneck whose information is encoded from the data via the network parameters connecting the
layer to the data layer. (ii) We show that in a non-collapse MIB, the information optimality is not
simultaneously achievable for all bottlenecks; thus, an optimality compromise is devised. (iii) When
applied to SNNs for a learning task, we interpret the inference from a hidden layer to the output layer
in SNNs as a variational approximation to that layer’s intractable decoding of relevant information.
Consequently, the variational MIB in SNNs generalizes the MLE principle. We demonstrate via a
simple analytical argument and synthetic experiment that MLE is unable to learn a good information
representation, while the variational MIB can. (iv) We then empirically show that MIB improves the
performance in classification, adversarial robust learning, and multi-modal learning in the standard
hand-digit recognition data MNIST [23]. This work is an extended version of our preprint [24] and the
first author’s Master thesis [25].

2. Related Work

There have been many extensions of the original IB framework [1]. One natural consideration
is to extend it to continuous variables, yet under special settings where the optimal information
representation is analytic [11,12]. Another direction uses alternative measures for compression and/or
relevance in IB [13]. Since the optimal information representation in IB is tractable only in limited
settings such as discrete variables [1], Gaussian variables [11], and meta-Gaussian variables [12], scaling
the IB solution using neural networks and variational inference is a very successful extension [14].
The closest extension to our MIB is multivariate IB [10], in which they define multi-information to
capture the dependence among the elements of a multivariate variable. However, in MIB, we do not
focus on capturing such multi-information but rather the optimal information sequentially processed
by a Markov chain of (possibly multivariate) bottleneck variables.

The line of work applying the IB principle to learn information representation in neural networks
is also relevant to our approach. For example, Reference [15] proposes the use of the mutual information
of a hidden layer with the input layer and the output layer to quantify the performance of neural
networks. However, it is not clear as to how the IB information optimality changes in multiple
bottlenecks in a neural network and how we can approximate the IB solutions in this high-dimensional
context. In addition, MLE is a standard learning principle for neural networks. It has been shown that
the IB principle is mathematically equivalent to the MLE principle in the multinomial mixture model
for the clustering problem when the input distribution X is uniform or has a large sample size [26].
However, it is also not clear how these two principles are related to each other in the context of neural
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networks. Moreover, regarding the feasibility of the IB principle for representation learning in neural
networks, Reference [17] analyzes two critical issues of mutual information that representation learning
might suffer from: indefinite in deterministic encoding, and invariant under bijective transformations.
These are inherent properties of mutual information which are also studied in, for example, [7,27,28].
In MIB, we share with [17] the same insight in these caveats by considering only the scenario where
mutual information is well defined. This also explains our rationale in applying MIB to stochastic
neural networks.

Deep learning compression schemes [3,29] loosely bear some similarity with our work. Both of
the directions aim for a more compressed and useful neural networks for given tasks. The critical
distinction is that deep learning compression schemes attempt to produce a smaller-sized neural
network with similar performance of a larger one so that the network can be efficiently deployed in
small devices such as mobile phones. This task therefore involves size-reduction techniques such
as neural network pruning, low-rank factorization, transferred convolution filters and knowledge
distillation [29] . On the other hand, our work asks an important representation learning question that
given a neural network, what learning principles are the best we can do to improve the information
content learned from the data for a given task? In this work, we attempt to address this question via the
perspective that a neural network is a set of stochastic variables that sequentially encode information
into its layers. We then explicitly improve the information flow (in the sense of more compressed but
relevant information) for each layer via our introduced Markov Information Bottleneck framework.

3. Preliminaries

3.1. Notations

We denote random variables (RVs) by capital letters (e.g., X), and their specific realization value
by the corresponding lowercase letter (e.g., x). We write X ⊥ Y (respectively, X 6⊥ Y) to indicate that X
and Y are independent (respectively, not independent). We denote a Markov chain by Y → X → Z
, that is, Y and Z are conditionally independent given X, or Y ⊥ Z|X. We use the integral notation
when taking expectation (e.g.,

∫
p(x) f (x)dx) over the distribution of a random variable regardless

of whether the variable is discrete or continuous. We also adopt the following conventions from [27]
for defining entropy (denoted by H), mutual information (denoted by I), and Kullback–Leibler (KL)
divergence (denoted by DKL): 0 log 0

0 = 0, 0 log 0
q = 0, p log p

0 = ∞.

3.2. Information Bottleneck

Given a (possibly unknown) data joint distribution p(X, Y), the IB framework constructs a
bottleneck variable Z = Z(X) that is a compressed version of X but preserves as much relevant
information in X about Y as possible. The compression of the representation Z is quantized by
I(Z; X), the mutual information of Z and X. The relevance in Z, the amount of information
Z contains about Y, is specified by I(Z; Y). The optimal representation Z satisfying a certain
compression–relevance trade-off constraint is then determined via minimization of the following
Lagrangian LIB[p(z|x)] = I(Z; X)− βI(Z; Y), where β is a positive Lagrangian multiplier that controls
the trade-off. Due to the convexity of Lagrangian and constrained conditions with respect to the
encoders {p(z|x)}, the Karush–Kuhn–Tucker (KKT) conditions for this constrained minimization
problem become the sufficient and necessary conditions for finding the optimal encoders {p(z|x)}.
By solving the KKT conditions, we can obtain the optimal encoders which can be expressed in an
energy-based form as the following:

arg min
p(z|x)

LIB[p(z|x)] ∝ p(z) exp (−βDKL [p(Y|x)‖p(Y|z)]) , (1)

where p(z) =
∫

p(z|x)p(x)dx.
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4. Markov Information Bottleneck

Given a data joint distribution p(X, Y) which is possibly only observed via a set of i.i.d. samples
S = {(xi, yi)

N
i=1}, an information representation Z for p(X, Y) is said to be good if it encodes sufficient

relevant information in X about Y in a compressed manner. Ideally, Z summarizes only the relevant
information in X about Y and discards all the irrelevant information; more formally, Z is a minimal
sufficient statistic for Y. Such information representation is desirable because it can capture the
regularities in the data and is helpful for generalization in learning problems [30,31]. Our main interest
is in solving the optimal information representation for a latent variable Z that has Markov structure,
that is, Z = (Z1, Z2, . . . , ZL), where Z1 → Z2 → · · · → ZL. The Markov structure is common in deep
neural networks whose advantage is the powerful modeling capacity coming from multiple layers.
In MIB, each encoder p(zl+1|x) relates the encoders of the previous bottlenecks in the Markov chain
via Bayes’ rule:

p(zl+1|x) =
∫

p(zl+1, z1:l |x)dz1:l =
∫ l+1

∏
i=1

p(zi|zi−1)dz1:l , ∀1 ≤ l ≤ L− 1, (2)

where z1:l := (z1, . . . , zl) and z0 := x. In addition, each encoder p(zl |x) corresponds to a unique decoder,
namely relevance decoder, that decodes the relevant information in x about y from representation zl :

p(y|zl) =
∫

p(x, y)
p(zl |x)
p(zl)

dx. (3)

In MIB, we further introduce a surrogate target variable Ŷ (for the target variable Y) into the
Markov chain: Y → X → Zl → Zl+1 → Ŷ (Figure 1). The purpose of the surrogate target variable
becomes clear in the section on variational MIB.

�
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Figure 1. A directed graphical model for the Markov information bottleneck of two Markov bottlenecks.
In a non-collapse Markov chain Y → X → Z1 → Z2 with 0 < β1, β2 < ∞, the information optimality
in Z1 prevents the information optimality in Z2. Solid lines denote the encoders pθ(zi|x) (for i ∈ {1, 2}),
dashed lines denote the variational approximations pθ(ŷ|zi) to the intractable relevance decoder pθ(y|zi).
The variational relevance decoder pθ(ŷ|zi) encodes the information from zi into a surrogate target
variable ŷ. In the case of stochastic neural networks, zi, θ, and the surrogate target variable represents
the hidden layers, the network weights, and the output layer, respectively.

A trivial solution to the optimal information representation problem for Z is to apply the original
IB principle for Z as a whole by computing the optimal IB solution in Equation (1). However, this
solution ignores the Markov structure of Z. As a principled approach, leveraging the intrinsic structure
of a problem can generally provide a new insight that goes beyond the limitation of the perspective
that ignores such structure. Thus, in Markov information bottleneck (MIB), we explicitly leverage
the Markov structure of Z to derive a principled and tractable approximate solution to the optimal
information representation. We then empirically show that leveraging the intrinsic structure in the
case of MIB is indeed beneficial for learning.

In MIB, we reframe the optimal information representation problem as multiple IB problems for
each of the bottlenecks Zl :
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min
p(zl |x)

Ll [p(zl |x)] := min
p(zl |x)

{I(Zl ; X)− βl I(Zl ; Y)}, (4)

for all 1 ≤ l ≤ L.
This extension is a natural approach for multiple bottlenecks because it aims for each bottleneck

to achieve its own optimal information, and thus allows more relevant but compressed information to
be encoded into Z. Another advantage is that we can leverage our understanding of the IB solution
for each individual IB problem in Equation (4). Though this approach is promising and has good
interpretation, there are two main challenges:

1. The Markov structure among Zl prevents them from achieving their own information optimality
simultaneously in non-trivial cases.

2. The intractability of p(y|zl) in Equation (3) and p(zl |x) in Equation (2) results in intractable
mutual information in MIB.

In what follows, we formally establish and present the first challenge, the conflicting property
of information optimality in Markov structure, in Theorem 1 followed by a simple compromise
to overcome the information conflict. After that, we present variational MIB to address the
second challenge.

Without loss of generality, we consider the case when L = 2 (the result trivially generalizes to
L > 2). We first define the collapse mode of the representation Z to be the two extreme cases in which
Z2 either contains all the information in Z1 about X or simply random noise:

Definition 1 (The collapse mode of MIB). Z = (Z1, Z2) is said to be in the collapse mode if it satisfies either
of the following two conditions:

1. Z2 is a sufficient statistic of Z1 for X and Y (i.e., Y → X → Z2 → Z1);
2. Z2 is independent of Z1.

For example, if Z2 = f (Z1) where f is a deterministic bijection, Z2 is a sufficient statistic for X.
We then establish the conflicting property of information optimality in the Markov representation Z
via the following theorem:

Theorem 1 (Conflicting Markov Information Optimality). Given X, Y, Z1, and Z2 such that Y → X → Z1 →
Z2 and H(Y|X) > 0, consider two constrained minimization problems:

arg min
p(zl |x)

Ll [p(zl |x)] := arg min
p(zl |x)

{I(Zl ; X)− βl I(Zl ; Y)}, l ∈ {1, 2}, (5)

where 0 < β1 < ∞, 0 < β2 < ∞, and p(z2|x) =
∫

p(z2|z1)p(z1|x)dz1. Then, the following two statements
are equivalent:

1. Z is not in the collapse mode;
2. The two optimal solutions to L1 and L2 in (5) are conflicting, that is, there is no single solution that

minimizes L1 and L2 simultaneously.

Theorem 1 suggests that the Markov information optimality conflicts for most cases of interest
(e.g., stochastic neural networks, which we will present in detail in the next section). The values
of β1 and β2 are important to control the ratio of the relevant information versus the irrelevant one
presented in the bottlenecks. These values also determine the conflictability of multiple bottlenecks
on the edge cases. Recall by the data processing inequality (DPI) [27] that for Y → X → Z, we have
0 ≤ I(Z; X) ≤ H(X) and 0 ≤ I(Z; Y) ≤ I(X; Y). If β1 and β2 go to infinity, the optimal bottlenecks
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Z1 and Z2 are both deterministic functions of X and they do not conflict. When β1 = β2 = 0,
the information about Y in X is maximally compressed in Z1 and Z2 (i.e., Z1 ⊥ X, Z2 ⊥ X), and they do
not conflict. The optimal solutions conflict when β1 = 0 and β2 > 0, as the former leads to a maximally
compressed Z1 while the latter prefers an informative Z2 (this contradicts the Markov structure
X → Z1 → Z2, which indicates that maximal compression in Z1 leads to maximal compression in Z2).

We can also easily construct non-conflicting MIBs for 0 < β1, β2 < ∞ that violate the condition.
For example, if X and Y are jointly Gaussian, the optimal bottlenecks Z1 and Z2 are linear transforms of
X and jointly Gaussian with X and Y [11]. In this case, Z2 is a sufficient statistic of Z1 for X. In the case
of neural networks, we can also construct a simple but non-trivial neural network that can obtain
a non-conflicting Markov information optimality. For example, consider a neural network of two
hidden layers Z1 and Z2, where Z1 is arbitrarily mapped from the input layer X but Z2 is a sample mean
of n samples i.i.d. drawn from the normal distribution N (Z1; Σ). This construction guarantees that Z2

is a sufficient statistic of Z1 for X, and thus there is non-conflicting Markov information optimality.
Theorem 1 is a direct result of DPI if βi ∈ {0, ∞}. In the case that 0 < βi < ∞, we trace down

to the Lagrangian multiplier as in the original IB [1] to complete the proof. Formally, before proving
Theorem 1, we first establish the two following lemmas. The first lemma expresses the uncertainty
reduction in a Markov chain.

Lemma 1. Given Y → X → Z1 → Z2, we have

I(Z2; X) = I(Z1; X)− I(Z1; X|Z2) (6)

I(Z2; Y) = I(Z1; Y)− I(Z1; Y|Z2). (7)

Proof. It follows from [27] that I(X; Z1; Z2) = I(X; Z2)+I(X; Z1|Z2)=I(X; Z1)+I(X; Z2|Z1),
but I(X; Z2|Z1)=0 since X 6⊥ Z2|Z1, hence Equation (6). The proof for Equation (7) is similar by
replacing variable X with variable Y. (Q.E.D.)

Lemma 2. Given Y → X → Z1 → Z2, 0 < β2 < ∞ and H(X|Y) > 0, let us define the conditional
information bottleneck objective:

Lc := Lc[p(z2|z1), p(z1|x)] := I(Z1; X|Z2)− β2 I(Z1; Y|Z2). (8)

If Z is not in the collapse mode, ∂Lc/∂p(z1|x) depends on {p(z2|z1)}.

Proof. Informally, if Z2 in the conditional information bottleneck objective Lc is not a trivial transform
of the bottleneck variable Z1, Z2 induces a non-trivial topology into the conditional information
bottleneck objective. Formally, by the definition of the conditional mutual information

I(Z1; X|Z2) =
∫ ∫ ∫

p(x, z1, z2) log
p(z1, x|z2)

p(z1|z2)p(x|z2)
dz2dz1dx,

I(Z1; X|Z2) depends on p(x, z1, z2) as long as the presence of Z2 in the conditional information
bottleneck objective does not vanish (we will discuss the conditions for Z2 to vanish in the final
part of this proof). Note that due to the Markov chain X → Z1 → Z2, we have p(x, z1, z2) =

p(x)p(z1|x)p(z2|z1).
Thus, ∂I(Z1; X|Z2)/∂p(z1|x) depends on p(z2|z1) as long as Z2 does not vanish in the objective.

Similarly, the same result also applies to ∂I(Z1; Y|Z2)/∂p(z1|x). Hence, ∂Lc/∂p(z1|x) depends on
{p(z2|z1)} (note that H(X|Y) > 0 prevents the collapse ofLc when summing two mutual informations)
if Z2 does not vanish in the objective.

Now we discuss the vanishing condition for Z2 in the objective. It follows from Lemma 1 that:
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0 ≤ I(Z1; X|Z2) ≤ I(Z1; X), (9)

0 ≤ I(Z1; Y|Z2) ≤ I(Z1; Y). (10)

Note that Z2 vanishes in Lc iff each of the mutual informations in Lc does not depend on Z2 iff
the equality in both (9) and (10) occur. If I(Z1; X|Z2) = 0, we have Y → X → Z2 → Z1 (i.e., Z2 is
a sufficient statistic for X and Y), which also implies that I(Z1; Y|Z2) = 0. Similarly, I(Z1; X|Z2) =

I(Z1; X) implies that Z2 is independent of Z1, which in turn implies that I(Z1; Y|Z2) = I(Z1; Y).
(Q.E.D.)

We now prove Theorem (1) by using Lemma (6) and Lemma (7).

Proof of Theorem 1. (⇐) This direction is obvious. When I(Z2; X) = I(Z1; X) and I(Z2; Y) =

I(Z1; Y), or I(Z2; X) = 0 and I(Z2; Y) = 0, there is effectively only one optimization problem for
L1, and this reduces into the original information bottleneck (with single bottleneck) [1].
(⇒) First we prove that if Z is not in the collapse mode, the constrained minimization problems are
conflicting. Assume, by contradiction, that there exists a solution that minimizes both L1 and L2

simultaneously, that is, ∃p(z1|x), p(z2|z1) s.t. L1 has a minimum at {p(z1|x)} and L2 has a minimum at
{p(z1|x), p(z2|z1)}. Note that {p(z1|x)} and {p(z2|z1)} are independent variables for the optimization.
By introducing Lagrangian multipliers λ1(x) and λ2(x) for the constraint

∫
p(z1|x)dz1 = 1 of L1 and

L2, respectively, the stationarity in the Karush–Kuhn–Tucker (KKT) conditions becomes:

∂L1

∂p(z1|x)
= 0, (11)

∂L2

∂p(z1|x)
= 0, (12)

where L1 and L2 are the Lagrangians:

L1[p(z1|x), λ1] := I(Z1; X)− β1 I(Z1; Y)−
∫ ∫

λ1(x)p(z1|x)dz1dx (13)

L2[p(z1|x), λ2] := I(Z2; X)− β2 I(Z2; Y)−
∫ ∫

λ2(x)p(z1|x)dz1dx. (14)

It follows from Lemma 1 that:

L2 − L1 = (β1 − β2)I(Z1; Y)−Lc −
∫ ∫

(λ2(x)− λ1(x))p(z1|x)dz1dx, (15)

where Lc = I(Z1; X|Z2)− β2 I(Z1; Y|Z2) (defined in Lemma 2). We take the derivative w.r.t. p(z1|x)
both sides of Equation (15) and use Equations (11)–(12):

∂Lc

∂p(z1|x)
= (β1 − β2)

∂I(Z1; Y)
∂p(z1|x)

+ λ1(x)− λ2(x). (16)

Notice that the left hand side of Equation (16) strictly depends on p(z2|z1) (Lemma 2) while
the right hand side is independent of {p(z2|z1)}. This contradiction implies that the initial existence
assumption is invalid, and thus implies the conclusion in Theorem 1. (Q.E.D.)

4.1. Markov Information Optimality Compromise

Due to Theorem 1, we cannot simultaneously achieve the information optimality for all bottlenecks.
Thus, we need some compromised approach to instead obtain a compromised optimality. We propose
two simple compromise strategies, namely, JointMIB and GreedyMIB. JointMIB is a weighted sum of
the IB objectives Ljoint := ∑L

l=0 γlLl where γl ≥ 0. The main idea of JointMIB is to simultaneously
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optimize all encoders. Even though each bottleneck might not achieve its individual optimality, their
joint optimality encourages a joint compromise. On the other hand, GreedyMIB progressively solves
the information optimality for each bottleneck given that the encoders for the previous bottlenecks
are fixed. In other words, GreedyMIB tries to obtain the conditional optimality of a current bottleneck
which is conditioned on the fixed greedy-optimal information of the previous bottlenecks.

4.2. Variational Markov Information Bottleneck

Due to the intractability of encoders in Equation (2) and relevance decoders in Equation (3),
the resulting mutual information in Equation (4) is also intractable. In this section, we present
variational methods to derive a lower bound on mutual information in MIB.

4.2.1. Approximate Relevance

Note that I(Zl ; Y) = H(Y) − H(Y|Zl), where H(Y) = constant, which can be ignored
in the minimization of Ll . It follows from the non-negativity of KL divergence that:

H(Y|Zl) = −
∫

p(y|zl)p(zl) log p(y|zl)dydzl ≤ −
∫

p(y|zl)p(zl) log pv(y|zl)dydzl

= −E(X,Y)EZl |X log pv(Y|Zl) = −E(X,Y)EZl |X log p(Ŷ|Zl) =: H̃(Y|Zl), (17)

where we specifically use the relevance decoder for surrogate target variable pv(y|zl) = p(ŷ|zl)

as a variational distribution to the intractable distribution p(y|zl):

pv(y|zl) := EZL |zl
[p(ŷ|ZL)] . (18)

The variational relevance Ĩ(Zl ; Y) := H(Y)− H̃(Y|Zl) is a lower bound on I(Zl ; Y). This bound
is tightest (i.e., zero gap) when the variational relevance decoder p(ŷ|zl) equals the relevance decoder
p(y|zl). In what follows, we establish the relationship between the variational relevance and the log
likelihood function, thus connecting MIB with the MLE principle:

Proposition 1 (Variational Relevance Inequalities). Given the definition of variational relevance Ĩ(Zl ; Y) =
H(Y)− H̃(Y|Zl) where H̃(Y|Zl) is defined in Equation (17), and Z = (Z1, ..., ZL), we have:

H(Y) +E(X,Y)
[
log p(Ŷ|X)

]
= Ĩ(Z0; Y) ≥ Ĩ(Zl ; Y) ≥ Ĩ(Zl+1; Y) ≥ Ĩ(ZL; Y) = Ĩ(Z; Y), (19)

for all 0 ≤ l ≤ L− 1. where Z = (Z1, ..., ZL).

Proposition 1 suggests that: (i) the log likelihood of p(ŷ|x) (plus the constant output entropy H(Y))
is a special case of the variational relevance at bottleneck Z0 = X; (ii) the log likelihood bound H(Y) +
E(X,Y)

[
log p(Ŷ|X)

]
is an upper bound on the variational relevance for all the intermediate bottlenecks

Zl and for the composite bottleneck Z = (Z1, ..., ZL). Therefore, maximizing the log likelihood, as in
MLE, does not guarantee to increase the variational relevance for all the the intermediate bottlenecks
and the composite bottleneck.

Proof. It follows from Jensen’s inequality and the Markov chain that:

∫
p(zl |x) log p(ŷ|zl)dzl =

∫
p(zl |x) log

(∫
p(ŷ|zl+1)p(zl+1|zl)dzl+1

)
dzl

≥
∫

p(zl |x)
∫

p(zl+1|zl) log p(ŷ|zl+1)dzl+1dzl

=
∫ ∫

p(zl |x)p(zl+1|zl) log p(ŷ|zl+1)dzldzl+1

=
∫

p(zl+1|x) log p(ŷ|zl+1)dzl+1,
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for all 0 ≤ l ≤ L− 1. Thus, we have:

Ĩ(Zl ; Y) = H(Y)− H̃(Y|Zl)

= H(Y) +E(X,Y)EZl |X log p(Ŷ|Zl)

≥ H(Y) +E(X,Y)EZl+1|X log p(Ŷ|Zl+1)

= Ĩ(Zl+1; Y).

It also follows from the Markov chain that:

p(ŷ|z) = p(ŷ|zL, zL−1, ..., z1) = p(ŷ|zL).

Therefore, we have:

Ĩ(Z; Y) = H(Y) +E(X,Y)EZL |ZL−1,...,Z1|Z0
log p(Ŷ|ZL)

= H(Y) +E(X,Y)EZL |X log p(Ŷ|ZL)

= Ĩ(ZL; Y).

Finally, by the definition in Equation (17), we have:

Ĩ(Z0; Y) = H(Y) +E(X,Y)EZ0|X log p(Ŷ|Z0)

= H(Y) +E(X,Y) log p(Ŷ|X).

(Q.E.D.)

4.2.2. Approximate Compression

In practice (e.g., in SNN presented in the next section), we can model the encoding between
consecutive layers p(zl |zl−1) with an analytical form. However, the encoding of non-consecutive
layers p(zl |x) for l > 1 is generally not analytic as it is a mixture of p(zl |zl−1). We thus propose to
avoid directly estimating I(Zl ; X) by instead resorting to its upper bound I(Zl ; Zl−1) as its surrogate
in the optimization. However, I(Zl ; Zl−1) is still intractable as it involves the intractable marginal
distribution p(zl) =

∫
p(zl |x)p(x)dx. We then approximate I(Zl ; Zl−1) using a mean-field (factorized)

variational distribution q(zl) = ∏nl
i=1 q(zl,i) where zl = (zl,1, . . . , zl,nl

):

I(Zl ; X) ≤ I(Zl ; Zl−1) =
∫

p(zl |zl−1)p(zl−1) log
p(zl |zl−1)

p(zl)
dzldzl−1

≤
∫

p(zl |zl−1)p(zl−1) log
p(zl |zl−1)

q(zl)
dzldzl−1 = EZl−1 DKL [p(Zl |Zl−1)||q(Zl)]

= EZl−1

nl

∑
i=1

DKL [p(Zl,i|Zl−1)||q(Zl,i)] =: Ĩ(Zl ; Zl−1). (20)

The mean-field variational inference not only helps derive a tractable approximation but also
encourages distributed representation by constraining each neuron to capture an independent factor of
variation for the data [32]; thus, it can potentially represent an exponential number of concepts using
independent factors.

5. Case Study: Learning Binary Stochastic Neural Networks

In this section, we officially connect the variational MIB in Section 4 to stochastic neural networks
(SNNs). We consider an SNN with L hidden layers (without any feedback or skip connection) where
the input layer X, the hidden layers Zl for 1 ≤ l ≤ L, and the output layer Ŷ are considered as random
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variables. We use the convention that Z0 := X, ZL+1 := Ŷ, and Zl = ∅ for all l /∈ {0, 1, . . . , L, L + 1}.
Without any feedback or skip connection, Y, X, Zl , Zl+1, and Ŷ form a Markov chain in that order.
The output layer Ŷ is the surrogate target variable presented in Section 4. The role of SNNs is therefore
reduced to transforming from one random variable to another via the Markov chain X → Zl →
Zl+1 → Ŷ such that it achieves the good information representation (i.e., the compression–relevance
tradeoff) for each layer. With the MLE principle, the learning in SNNs is performed by maximizing
the log likelihood E(X,Y)

[
log p(Ŷ|X)

]
. However, maximizing the log likelihood does not guarantee to

improve the variational relevance for all the intermediate bottlenecks and the composite bottleneck
(Proposition 1).

Algorithm 1: JointMIB

Input: data S0 ← (xi, yi)
N
i=1 ∼ pD(x, y), layer IB weights γl , information tradeoff βl , number

of particles for Monte Carlo simulation M.
Output: θ

Initialization: θ

1 while not converged do
2 for i = 1 to L do
3 Si ← ∅
4 for zi−1 ∈ Si−1 do

/* Monte Carlo simulates M particles z(k)i given each zi−1 */

5 Si ← Si ∪ {z
(k)
i : 1 ≤ k ≤ M} where z(k)i ∼ p(zi|zi−1)

6 end
7 end

/* Estimate the variational relevance and compression using Monte Carlo samples */
8 Ĩ(Zl ; Y)← Equation (17) and {Si}L

i=0
9 Ĩ(Zl ; Zl−1)← Equation (20) and {Si}L

i=0
10 L̃joint(θ)← ∑L

l=0 γl
(
− Ĩ(Zl ; Y) + βl Ĩ(Zl ; Zl−1)

)
11 g← ∂

∂θ
L̃joint(θ) /* Using the Raiko estimator in Binary SNNs */

12

13 θ ← θ − νg /* Update using SGD */
14 end

We here instead combine the variational MIB and the MIB compromise to derive a practical
learning principle that encourages compression and relevance for each layer, improving the information
flow in SNNs. To make it concrete and simple, we consider a simple network architecture: binary
stochastic feed-forward (fully-connected) neural networks (SFNNs). In binary SFNNs, we use
a sigmoid as the activation function: p(zl = 1|zl−1) = σ(Wl−1zl−1 + bl−1), where σ(.) is the
(element-wise) sigmoid function, Wl−1 is the network weights connecting layer l − 1 to layer l, bl−1
is a bias vector, and Zl ∈ {0, 1}nl . Let us define L̃l := − Ĩ(Zl ; Y) + βl Ĩ(Zl ; Zl−1), where Ĩ(Zl ; Y)
and Ĩ(Zl ; Zl−1) are the approximate relevance and compression defined in Equation (17) and (20),
respectively. Note that the position of βl here is slightly different from its position in Equation (4).
In Equation (4), βl is associated with the relevance term to respect the convention of the original IB,
while here it is associated with the compression term for practical reasons. In practice, the contribution
of Ĩ(Zl ; Y) is higher than Ĩ(Zl ; Zl−1). In computing Ĩ(Zl ; Y) and Ĩ(Zl ; Zl−1), any expectation with
respect to p(zl |zl−1) is approximated by Monte Carlo simulation in which we sample M particles
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zl ∼ p(zl |zl−1). Regarding the information optimality compromise, we combine the variational MIB
objectives into a weighted sum in JointMIB:

L̃joint :=
L

∑
l=0

γlL̃l , (21)

where γl ≥ 0. In GreedyMIB, we greedily minimize L̃l for each 0 ≤ l ≤ L. We also make each
q(Zl,i) a learnable Bernoulli distribution. The JointMIB is presented in Algorithm 1. The Monte Carlo
sampling operation of Algorithm 1 in stochastic neural networks precludes the backpropagation in
a computation graph. It becomes even more challenging with binary stochastic neural networks,
as it is not well-defined to compute gradients w.r.t. discrete-valued variables. Fortunately, we can
find approximate gradients, which have been proved to be efficient in practice: the REINFORCE
estimator [33,34], the straight-through estimator [35], the generalized EM algorithm [20], and the
Raiko (biased) estimator [21]. Especially, we found that the Raiko gradient estimator works best in
our specific setting and thus deployed it in this application. In the Raiko estimator, the gradient of a
bottleneck particle zl,i ∼ p(zl,i = 1|zl−1) = σ(a(l)i ) is propagated only through the deterministic term

σ(a(l)i ): ∂zl,i
∂θ ≈

∂σ(a(l)i )
∂θ .

6. Experimental Evaluation

We evaluated the effectiveness of the MIB framework on binary SNNs in synthetic data and MNIST
hand-digit recognition data [23]. Each data sample in MNIST is a 28× 28 gray-scale image representing
a handwritten digit from 0 to 9. The dataset is split into 60000 training samples and 1000 test samples.
In the synthetic data, we visualized the learning dynamics of the SNNs trained with the variational
MIB variants (i.e., JointMIB and GreedyMIB), and those trained with MLE. In MNIST, we evaluate
the effectiveness of the variational MIB variants by comparing them against the baselines MLE and
VIB [14] in classification, adversarial robustness and multi-modal learning problems. We make the
code for our framework publicly available at https://github.com/thanhnguyentang/pib.

6.1. Synthetic Data: Learning Dynamics of Variational MIB

To better understand how MIB modified the information within the layers during the learning
process, we visualized the compression and relevance of each layer over the course of training of
stochastic feed-forward neural networks (SFNNs) [21], JointMIB, and GreedyMIB in synthetic data.
SFN1N is different from MIB only in the objective functions: SFNN is trained with the negative
log likelihood while MIB is trained with the variational MIB objective. To simplify our analysis,
we considered a binary decision problem where X is 12 binary inputs making up 212 = 4096 equally
likely input patterns and Y is a binary variable equally distributed among 4096 input patterns [16].
The base neural network architecture had 4 hidden layers with widths: 10–8–6–4 neurons. Since
the network architecture was small, we could precisely compute the true compression Ix := I(Zi; X)

and true relevance Iy := I(Zi; Y) over training epochs. We fixed βl = β = 10−4 for both JointMIB,
trained five different randomly initialized neural networks for each comparative model with stochastic
gradient descent (SGD) up to 20, 000 epochs on 80% of the data, and averaged the mutual information.
In JointMIB, we set γl = γ = 1, ∀l.

Figure 2 provides a visualization of the learning dynamics of SFNN versus JointMIB on
the information plane (Ix, Iy). Firstly, we observed a common trend in the learning dynamics of
MLE (in the SFNN model) and JointMIB frameworks. Both principles allow the network to gradually
encode more information about X and the relevant information about Y into the hidden layers at
the beginning as I(Zi; X) and I(Zi; Y) both increase. Intuitively, in order for the representations Zl
to make sense of the task, the representations should encode enough information about X; thus,
I(Zl ; X) should increase. This is especially true for shallow layers because, due to the Markov chain

https://github.com/thanhnguyentang/pib
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property, the shallower a layer, the greater its burden of carrying enough information to make sense
of a task. Especially, we can observe that the increase of I(Zl ; X) slowed down at some point for the
deeper layers for both SFNN and MIB. This slowing effect was especially stronger in MIB where the
compression is explicitly encouraged during the learning. Secondly, MIB was different from MLE in
the maximum level of relevance at each layer and the number of epochs to encode the same level of
relevance. JointMIB at l = 1 needed only about 4.68% of the training epochs to achieve at least the
same level of relevance in all layers of SFNN at the final epoch. In addition, MLE was unable to encode
the network layers to reach the maximum level of relevance enabled by MIB (we also trained SFNN
up to 100,000 epochs and observed that the level of relevance of each layer never reached the value of
0.8 bits).

Figure 2. The learning dynamics of the stochastic feed-forward (fully-connected) neural network
(SFNN) (left) and JointMIB (right). The color indicates the training epochs while each node in a color in
the graph represents (I(Zl ; X), I(Zl ; Y)) at the corresponding epoch. Note that at each epoch, I(Zl ; X) ≥
I(Zl+1; X), ∀l (data processing inequality—DPI). JointMIB jointly encodes relevant information into
every layer of stochastic neural networks (SNNs), while keeping each layer informatively concise.
Compared to maximum likelihood estimation (MLE), the level of relevant information encoded by
JointMIB increased more quickly over training epochs and reached a higher value. MIB: Markov
information bottleneck.

There is also a subtle observation in Figure 2 that the relevance for MIB increased until some
point before decreasing, while the relevance for SFNN increased until some point where the value
almost stayed the same without a noticeable decrease. This could be explained by the fact that that the
MIB objective can eventually allow the encoding of relevant information into each layer to its optimal
information trade-off at some point. After this point, if training is continued, due to the mismatch
between the exact MIB objective and its variational bound, the further minimization of the variational
bound would decrease I(Zl ; Y). Consequently, in order for βl I(Zl ; X)− I(Zl ; Y) to be small, I(Zl ; X)

also needs to decrease after this point to compensate for the decrease in I(Zl ; Y). In the case of SFNN
(trained with MLE), the MLE objective reaches its local minimum before the information of each layer
can even reach its optimal information trade-off (if ever). This also suggests that MIB is better than
MLE in terms of exploiting information for each layer during the learning.

GreedyMIB also obtained the representation of higher relevance as compared to MLE (Figure 3).
GreedyMIB at l = 1 needed only about 17.95% of the training epochs to achieve at least the same level
of relevance in all layers of the SFNN at the final epoch. Recall that in GreedyMIB at l = 1 the MIB
principle is applied only to the first hidden layer. The layer representation at the final epoch gradually
shifts to the left (i.e., more compressed) while not degrading the relevance over the greedy training
from layer 1 to layer 4 in Figure 3.

We also see the compression effect that the compression constraints within the MIB framework
prevented the layer representation from shifting to the right (in the information plane) during the
encoding of relevant information (e.g., it slowed down the increase of I(Zl ; X) during the information
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encoding, keeping the representation more concise). As compared with JointMIB, GreedyMIB also
obtained a comparable information representation.

To conclude, two main advantages of MIB as compared to MLE are: (i) MIB can improve
the information representation in SNNs in terms of higher relevance while keeping the information
in each layer concise during encoding; (ii) MIB uses much fewer training epochs to obtain such
information representation.

(a) (b)

(c) (d)

Figure 3. Subfigures (a), (b), (c), and (d) represent GreedyMIB’s encoding of relevant information into
layers 1 ≤ l ≤ 4, respectively. GreedyMIB greedily encodes relevant information into each layer given
the encoded information of the previous layers. GreedyMIB also achieved a significantly higher level of
relevant information at each layer compared to MLE.

6.2. Image Classification

In this experiment, we compared JointMIB and GreedyMIB with three other comparative models
which used the same network architecture without any explicit regularizer: (1) a standard deterministic
neural network (DET) which simply treated each hidden layer as deterministic; (2) a stochastic
feed-forward neural network (SFNN) [21] which is a binary stochastic neural network as in MIB but
is trained with the MLE principle; and (3) variational information bottleneck (VIB) [14], which uses
the entire deterministic network as an encoder, adds an extra stochastic layer as a out-of-network
bottleneck variable, and is then trained with the IB principle on that single bottleneck layer. The base
network architecture in this experiment had two hidden layers with 512 sigmoid-activated neurons
per layer. These models were trained in MNIST [23].

Adopted from the common practice, we used the last 10,000 images of the training set as a
validation (holdout) set for tuning hyperparameters. We then retrained the models from scratch in
the full training set with the best validated configuration. We trained each of the five models with the
same set of five different initializations and reported the average results over the set. For the stochastic
models (all except DET), we drew M = 32 samples per stochastic layer during both training and
inference, and performed inference 10 times at test time to report the mean classification errors for
MNIST. The value of M = 32 is empirically reasonable in this experiment, as illustrated in Figure 4.
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For JointMIB and GreedyMIB, we set γl = 1 (in JointMIB only) and βl = β, ∀1 ≤ l ≤ L, tuned
β on a linear log scale β ∈ {10−i : 1 ≤ i ≤ 10}. We found β = 10−4 worked best for both models
(Figure 5). For VIB, we found that β = 10−3 worked best on MNIST . We trained all the models on
MNIST with Adadelta optimization [36], except for VIB for which we used Adam optimization [37],
as we found that they worked best in the validation set.

The results are shown in Table 1. It shows that JointMIB substantially outperformed DET,
MLE, and VIB on MNIST while GreedyMIB outperformed only DET and underperformed SFNN.
Though JointMIB and GreedyMIB could have comparable information representation, as illustrated in
the synthetic experiment in Section 6.1, in practice, it can be harder to obtain a comparable information
representation for GreedyMIB. In GreedyMIB, it is necessary to train each layer greedily in order to
obtain its information representation. The greedy nature makes it difficult to determine when would be
a good time to stop the training and conclude the information representation for each layer. In addition,
training greedily is expensive. JointMIB makes it more efficient by jointly obtaining a compromised
information representation in each layer. Thus, it allows the compromised information representations
of all the layers to jointly interact with each other during the learning. In principle, it is also harder to
obtain good information representation in GreedyMIB. Due to the conflicting information optimality in
MIB (Theorem 1), the good encoder for the first layer does not guarantee a good information trade-off
in the the deeper layers. Though JointMIB also suffers from the conflicting information optimality,
jointly and explicitly inducing relevant but compressed information into each layer of a neural network
via MIBs as in JointMIB can make it easier for the training.

Figure 4. The value of M versus validation error. M = 32 gave a reasonably good performance as
compared to other larger values.
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Figure 5. The learning curve of JointMIB and SFNN in the MNIST validation set. Either a too-large
or too-small value of β could hurt the generalization of learning. While a large value of β introduces
aggressive compression, a smaller value allows more irrelevant information into the representation.
In this experiment, we found that β = 10−4 was the best trade-off hyperparameter in JointMIB for
this experiment.

Table 1. The performance of the variational MIB variants (i.e., JointMIB and GreedyMIB) for
classification and adversarial robustness on MNIST in comparison with MLE and variational
information bottleneck (VIB). MIB explicitly induces compression–relevance trade-offs in each layer
during the training, which outperforms and is more adversarially robust than the other models of the
same architecture. DET: deterministic neural network.

Model Classification MNIST (Error %) Adv. Robustness (%)
Targeted Untargeted

DET 1.73 00.00 00.00
VIB [14] 1.45 83.70 93.10

SFNN [21] 1.44 83.00 95.20
GreedyMIB 1.54 83.21 94.30
JointMIB 1.36 84.16 96.00

6.3. Robustness against Adversarial Attacks

We consider here the adversarial robustness of neural networks trained with MIBs. Neural
networks are prone to adversarial attacks which disturb the input pixels by small amounts that are
imperceptible to humans [38,39]. Adversarial attacks generally fall into two categories: untargeted and
targeted attacks. An untargeted adversarial attack Amaps the target model M and an input image
x into an adversarially perturbed image x′: A : (M, x) → x′, and is considered successful if it can
fool the model M(x) 6= M(x′). A targeted attack, on the other hand, has an additional target label l:
A : (M, x, l)→ x′, and is considered successful if M(x′) = l 6= M(x).

We performed adversarial attacks on the neural networks trained with MLE and MIB, and used the
accuracy on adversarially perturbed versions of the test set to rank a model’s robustness. In addition,
we used the L2 attack method for both targeted and untargeted attacks [40], which has shown to be
the most effective attack algorithm with smaller perturbations. Specifically, we attacked the same four
comparative models described from the previous experiment on the first 1000 samples of the MNIST
test set. For the targeted attacks, we targeted each image into the other 9 labels other than the true
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label of the image. We used the same hyperparameters as in the classification experiment. The value of
β = βl = 10−4 was also reasonable for this adversarial robustness task (Figure 6).
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Figure 6. Adversarial robustness of JointMIB for various values of β. Introducing aggressive
compression (i.e., large values of β) reduced adversarial robustness while smaller values of β introduced
comparable robustness. The best information trade-off for targeted attacks was at β = 10−4 in
this experiment.

The results are shown in Table 1. Firstly, it was expected that the adversarial robustness accuracy
in the targeted attacks would be smaller than that in the untargeted attacks because the targeted attacks
are more challenging for the neural networks to overcome than untargeted attacks. This result is
consistent in our experiment. Secondly, the deterministic model DET was totally fooled by all the
attacks. It is known that stochasticity in neural networks improves adversarial robustness, which is
consistent with our experiment as SFNN was significantly more adversarially robust than DET. Thirdly,
VIB had comparable adversarial robustness to SFNN even if VIB had “less stochasticity” than SFNN
(VIB had one stochastic layer while all hidden layers of the SFNN were stochastic). We hypothesize
that this is because VIB performance was compensated with the IB principle for its stochastic layer.
Finally, JointMIB was more adversarially robust than the other models. Again, GreedyMIB was not
very effective in adversarial robustness (it was worse than VIB in the targeted attack and SFNN in
the untargeted attack). We hypothesize that this relates to the difficulty for GreedyMIB to have a
good information representation for all layers. In conclusion, this experiment suggests that explicitly
and jointly inducing compression and relevance into each layer has a good potential of being more
adversarially robust for neural networks.

6.4. Multi-Modal Learning

One of the main advantages of stochastic neural networks is their ability to model structured
output space in which a one-to-many mapping is required. A binary stochastic variable zl of
dimensionality nl can take on 2nl different states, each of which would give a different ŷ. Thus, the
conditional distribution p(ŷ|x) in stochastic neural networks is multi-modal. Hence in this experiment,
we evaluated how MIB affected the multi-modal learning capability of SNNs.
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Figure 7. Samples drawn from the prediction of the lower half of the MNIST test data digits
based on the upper half for JointMIB (right, after 60 epochs) and SFNN (left, after 200 epochs).
The leftmost column is the original MNIST test digit followed by the masked out digits and nine samples.
The rightmost column was obtained by averaging over all generated samples of bottlenecks drawn
from the prediction. The figures illustrate the capability of modeling structured output space using
JointMIB and SFNN. JointMIB generated more recognizable digits within much fewer training epochs.

In this experiment, we followed [21] and predicted the lower half of the MNIST digits using
the upper half as inputs. We used the same neural network architecture of 392–512–512–392 for
JointMIB and SFNN and trained them with SGD with a constant learning rate of 0.01 (due to
the under-performance of GreedyMIB from the previous experiments and its expensive training,
we compared only JointMIB with SFNN in this experiment). We trained the models on the full training
set of 60,000 images and tested with the test set. For JointMIB, we also used βl = β = 10−4. The results
of JointMIB at epoch 60 and MLE at epoch 200 are shown in Figure 7. Firstly, JointMIB could generate
digit variations which were more recognizable than those generated by MLE. In particular, some
samples of digits 2, 4, 5, and 7 generated by MLE were distorted, while all digit samples generated by
JointMIB were recognizable. Secondly, JointMIB used much fewer epochs to achieve good samples.
In JointMIB, we trained only up to 60 epochs while in MLE, we trained up to 200 epochs but did
not observe as good samples in between. This further highlights the advantage of MIB in obtaining
good information representation in much fewer training epochs. Furthermore, we expect that the
advantage of inducing compression and relevance into each layer by JointMIB is particularly helpful
for multi-modal learning because in multi-modal learning, the modes generated in each hidden layer
are critical for representing multiple modes. While MLE ignores the explicit contribution of each layer
to the information representation of the neural network, JointMIB explicitly takes into account the
compression and relevance of each layer.

7. Discussion and Future Work

In this work, we introduce Markov Information Bottleneck, an extension of the original
Information Bottleneck to the context where a representation is multiple stochastic variables that
form a Markov chain. In this context, we show that one cannot simply directly apply the original
IB principle to each variable as their information optimality is conflicting for most of the interesting
cases. We suggest a simple but efficient fix via a joint compromise. In this scheme, we jointly
combine the information trade-offs of each variable into a weighted sum, encouraging the information
trade-offs for all the variables better off during the learning. In particular in the context of Stochastic
Neural Networks, we present the variational inference to estimate the compression and relevance for
each bottleneck. As a result, the variational MIB turns the intractable decoding of each bottleneck
approximately into an efficient inference for that bottleneck. This variational approximation turns
out to generalize the MLE principle in the context of Stochastic Neural Networks. We empirically
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demonstrate the effectiveness of MIB by comparing it with the baselines using MLE principle and
Variational Information Bottleneck in classification, adversarial robustness and multi-modal learning.
The empirical performance supports the potential benefit of explicitly inducing compression and
relevance into each layer (e.g., in a jointly manner), presenting a special link between information
representation and the performance in classification, adversarial robustness and multi-modal learning.

One limitation of our current approach is the number of samples generated via zl ∼ p(zl |zl−1)

used to estimate the variational compression and relevance scales exponentially with the number
of layers. This is however a common drawback for performing inference in fully stochastic neural
networks. This difficulty can be overcome by using partially stochastic neural networks. In addition,
the Monte Carlo sampling to estimate the variational mutual information, though unbiased, is of
high variance and sample inefficiency. This sample inefficiency limitation can be overcome by
resorting to more advanced methods of estimating mutual information such as [41,42]. The MIB
framework also admits several possible future extensions including scaling the framework to bigger
networks and real-valued stochastic neural networks. The extension to real-valued stochastic neural
networks are straightforward by, e.g., constructing a Gaussian layer for modeling p(zl |zl−1) and using
reparameterization tricks [43] to perform back-propagation via sampling. Another dimension of
improvement is to study hyperparameter effect of MIB. This current work only considers equal γl = γ

for JointMIB and equal βl = β, and tuned β via grid search. We can use, e.g., Bayesian optimization
[44] to efficiently tune γl and βl with expandable bounds. In addition, we believe that the challenge
of applying our methods to more advanced datasets such as Imagenet [45] is partly associated with
that of scaling the stochastic neural network as we tend to need more expressive models for more
challenging datasets. Given this perspective, the challenge to scale to large datasets can be partially
addressed with the solutions from scaling stochastic neural networks some of which we suggest
above. Furthermore, we believe that, as one of the main messages from our work, explicitly inducing
compressed and relevant information (e.g., via mutual information as in MIB) into many intermediate
layers can be more beneficial to large-scale tasks than simply resorting to the MLE principle. An
intuition is to think of this as a way for information-theoretic regularization for intermediate layers. Finally,
a followup important question to ask is whether there is any theoretical and stronger empirical link
between an improved information representation (e.g., in the MIB sense) and the generalization of
neural networks. This connection might be intuitively correct but a systematically empirical study or a
theoretical suggestion are an important future research direction.
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SFNN Stochastic Feed-forward Neural Network
VIB Variational Information Bottleneck
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