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Abstract: The sum capacity of the general K-user Gaussian Interference Channel (GIC) is known
only when the channel coefficients are such that treating interference as noise (TIN) is optimal.
The Han-Kobayashi (HK) scheme is an extensively studied coding scheme for the K-user interference
channel (IC). Simple HK schemes are HK schemes with Gaussian signaling, no time sharing and no
private-common power splitting. The class of simple HK (S-HK) schemes includes the TIN scheme
and schemes that involve various levels of interference decoding and cancellation at each receiver.
For the 2-user GIC, simple HK schemes are sufficient to achieve all known sum capacity results—sum
capacity under mixed, strong and noisy interference conditions. We derive channel conditions under
which simple HK schemes achieve sum capacity for general K-user Gaussian ICs. For the K-user
GIC, these results generalize existing sum capacity results for the TIN scheme to the class of simple
HK schemes.
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1. Introduction

Wireless cellular networks have evolved significantly in terms of both channel-adaptive
transmission and interference management. Early cellular systems were based on the interference
avoidance approach and relied on static resource allocation. However, current cellular systems allocate
resources dynamically based on short-term channel state feedback. Interference decoding and
cancellation are also implementable in today’s systems. The K-user Gaussian Interference Channel
(GIC) models a wireless network with K transmit-receive pairs. The optimal transmission scheme
for the K-user GIC depends on the channel coefficients. Simultaneous channel-aware adaptation
of multiple transmit-receive pairs requires a good understanding of the optimal scheme for each
channel condition.

The capacity region and sum capacity of the general K-user Gaussian Interference Channel (GIC)
are not known. The 2-user GIC is the most well understood special case [1–7]. The capacity region of
the 2-user GIC under strong interference conditions was obtained in References [1,2]. The sum capacity
when the interference can be treated as noise was obtained in References [3–6]. The sum capacity under
mixed interference conditions was obtained in Reference [6]. The capacity region of the 2-user GIC
within one bit was derived in Reference [7] using suitably chosen Han-Kobayashi (HK) schemes [8].

For the general K-user GIC, the channel conditions under which Treating Interference as Noise
(TIN) achieves sum capacity were obtained in References [5] (Thm. 3) and [9] (Thm. 9). The sum
capacity of some partially connected K user GICs were derived in Reference [10–13] under some channel
conditions. Z-like GICs, where the channel matrix is upper triangular with a specific structure,
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were studied in Reference [10], cascade GIC was studied in Reference [11] and many-to-one and
one-to-many GICs were studied in References [12,13]. Some new outer bounds on the capacity of
the K-user GIC were recently derived in Reference [14]. Simple HK (S-HK) schemes with Gaussian
signalling, no timesharing and no common-private power splitting, achieve sum capacity under the
channel conditions obtained in References [9–13]. S-HK schemes include the simple and practical TIN
scheme and schemes that involve various levels of interference decoding and cancellation at each
receiver as special cases. For the 2-user GIC, S-HK schemes are sufficient to achieve all known sum
capacity results. For the K-user GIC, we will generalize the sum capacity optimality results for the TIN
scheme in References [5,9], to S-HK schemes.

There are some other related results for the symmetric GIC or for GICs where the channel
coefficients satisfy some equality conditions [15,16], respectively. For a K-user interference channel, the
sum capacity under a strong interference condition was obtained in Reference [16] under conditions
that include some equality conditions on the channel coefficients. Equality conditions cannot be
satisfied if the channel coefficients come from continuous distributions. The symmetric K-user GIC
and many-to-one GIC have been considered in References [15,17], respectively. Unlike the other
results discussed above based on S-HK schemes, in References [15,17], lattice coding and interference
alignment are used to obtain the sum capacity when the interference is very strong. For the general
asymmetric GIC, only approximate sum capacity and degrees of freedom results have been obtained
using interference alignment. Other structured codes like coset codes have also been studied in
Reference [18] to show achievable sum rates better than those achieved by HK schemes for some
3-user interference channels. Interference alignment and structured codes are useful under channel
conditions where HK schemes are not optimal. We identify channel conditions where S-HK schemes
are sum capacity optimal for the K-user GIC.

In this paper, we generalize the sum capacity optimality results for the TIN scheme in
References [5,9] to S-HK schemes. In particular, we derive two sets of channel conditions under
which S-HK schemes are sum capacity optimal for general K-user GICs. For the first set of channel
conditions, we consider schemes where interference is decoded and cancelled before decoding the
desired message. For the second set of channel conditions, we consider schemes where the one
interference signal is jointly decoded with the message signal at one of the receivers. These two sets of
channel conditions provide us new sum capacity results for several channel conditions under which
sum capacity was not known earlier. Furthermore, existing results for the sum capacity of the 2-user
GIC and some partially connected K user GICs in References [11–13] can be obtained as special cases
of these results. To further understand the significance of the results, we evaluate, using Monte Carlo
simulations, the probability that these channel conditions for sum capacity are satisfied for random
wireless networks. Three different random network models are considered and we observe that this
probability is significant under all three models.

2. Channel Model and Simple HK Schemes

The K-user GIC in standard form [5] is given by

yi = xi +
K

∑
j=1
j 6=i

hijxj + zi, ∀i ∈ [K] , {1, . . . , K}, (1)

where xi is transmitted by transmitter i, yi is received by receiver i, hij is the real channel coefficient
from transmitter j to receiver i and zi ∼ N (0, 1) is the additive white Gaussian noise at receiver i. Let
Pi denote the transmit power constraint at transmitter i. For the 2-user GIC, the HK scheme [8] splits
the message at each user into two parts; common and private. The common message is decoded at
both the receivers and private part is decoded only at its corresponding receiver. This scheme can
be generalized to the K-user GIC in several ways [19] (Sec. 6.9). In Reference [20], the message at
each user of a K-user GIC is split into two—common and private messages. The common message is
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decoded at all receivers. A more general scheme can split each message into more than two parts and
specify the subset of receivers that can decode each part. We consider schemes where there is only one
message, but that is decoded by the intended receiver and a subset of the remaining K− 1 receivers.
Equivalently, these schemes can also be described by specifying the messages that are decoded at each
receiver. We call such HK schemes with Gaussian signaling, no timesharing and no common-private
power splitting as simple HK schemes. Each S-HK scheme is specified by the sets {I(1), I(2), . . . , I(K)},
I(i) ⊆ [K]\{i}, ∀i. In each such S-HK scheme, at receiver i, interference from transmitters j ∈ I(i) are
treated as noise and interference from transmitters j ∈ D(i) , {[K]\{I(i), i}} are decoded. For the
TIN scheme, I(i) = [K]\{i}, ∀i.

3. Sum Capacity Results

In this section, we derive two sets of channel conditions for the general K-user GIC under which
sum capacity is achieved by S-HK schemes. The first set of channel conditions are in Equations (2)–(4)
of Theorem 1. The second set of channel conditions are given by Equations (6), (7)–(10) in Theorems 2
and 3, respectively.

In the result in Theorem 1, we consider the strategy of decoding interference from transmitters in
D(i) for each i before decoding the desired message. For such decoding to be possible, conditions in
(4) need to be satisfied. For the optimality of treating the interference from transmitters in I(i) as noise
for each i, we get conditions (2) and (3). These conditions correspond to the TIN optimality conditions
for the modified GIC where all the links corresponding to decoded interference are removed.

Theorem 1. For the K-user GIC, the S-HK scheme defined by I(i) ⊆ [K]\{i}, ∀i ∈ [K] achieves sum capacity,
if there exist ρi ∈ (0, 1), ∀i ∈ [K], such that the following conditions are satisfied for all i ∈ [K]

∑
j:i∈I(j)

[
h2

ji

1 + Qj − ρ2
j

]
≤ 1

Pi +
(

1+Qi
ρi

)2 , (2)

∑
j∈I(i)

h2
ij(1 + Qj)

2

ρ2
j

≤ 1− ρ2
i , (3)

∏
j∈J

(
1 +

Pj

1 + Qj

)
≤
(

1 +
∑j∈J h2

ijPj

1 + Pi + Qi

)
∀J ⊆ D(i), (4)

where Qi = ∑
j∈I(i)

h2
ijPj, D(i) = [K]\{i, I(i)}. The sum capacity is

Csum =
K

∑
i=1

1
2

log
[

1 +
Pi

1 + Qi

]
. (5)

Proof. The detailed proof is given in Appendix A. For the converse, at each receiver i ∈ [K], we use
the genie signal sn

i = {xn
i + nn

i , xn
j , j ∈ D(i)} where nn

i ∼ N (0, σ2
i I) and E[nizi] = ρiσi, 0 < ρi < 1.

Here, for each i, we provide signals xn
j , ∀j ∈ D(i) in addition to the genie signal xn

i + nn
i that is used in

Reference [9]. Under (2) and (3), we get the required upper bound following steps similar to the proof
in Reference [9] (Theorem 9) but with the above genie signals.

Combining the conditions (2) and (3) for the converse with the conditions (4) for achievability,
we get the required result.

Now, we derive the second set of channel conditions under which S-HK schemes are optimal.
We do this in two steps. First, we derive general bounds on the achievable sum rate of S-HK schemes
in Theorem 2. Unlike Theorem 1, where the interference is decoded and cancelled before decoding
the desired signal, here we determine more general bounds on the achievable sum rate for an S-HK
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scheme. Then, we show in Theorem 3 that one of the sum rate upperbounds in Theorem 2 is also a sum
capacity bound under some channel conditions. Therefore, the channel conditions under which we get
a sum capacity result will comprise of (i) the conditions (7)–(10) required to prove the sum capacity
upper bound in Theorem 3 and (ii) the conditions (6) under which this sum capacity upperbound is
achievable in Theorem 2.

Theorem 2. For the K-user GIC, the S-HK scheme defined by {I(i)} achieves sum rates S satisfying the
following conditions for each l ∈ [K].

l.S ≤ 1
2 ∑

i∈[K]
log

(
1 +

∑j∈Ji
h2

ijPj

1 + Qi

)
(6)

for each choice of Ji ⊆ [K]\I(i) such that
⋃

i∈[K]
Ji = Sl . Here Sl is a multiset containing l copies of each element

in [K] and is denoted Sl = {(a, l) : a ∈ [K]} and Qi = ∑
j∈I(i)

h2
ijPj.

Proof. At each receiver i, users [K]\I(i) form a Gaussian MAC with noise variance 1 + Qi. The
achievable rates of each MAC at receiver i ∈ [K] satisfy

∑
j∈Ji

Rj ≤
1
2

log

(
1 +

∑j∈Ji
h2

ijPj

1 + Qi

)
∀Ji ⊆ [K]\I(i).

Using Fourier-Motzkin elimination, we get the sum rate bounds in (6).

The maximum sum rate achievable using an S-HK scheme is determined by the least lower bound
for S among the bounds in (6). As an example of a bound in the above theorem, consider l = 1,
Jm = {m, k} for some m, k ∈ [K], Jk = φ and Ji = i for i ∈ [K]\{m, k}. This gives us the bound on
sum rate to be

1
2

log

[
1 +

Pm + h2
mkPk

1 + Qm

]
+

K

∑
i=1

i 6=k,m

1
2

log
[

1 +
Pi

1 + Qi

]
.

Now, if we can show that one of these inequalities in (6) is also an upper bound on the sum capacity
under some conditions, then we get a sum capacity result. In the following theorem, we show
that the sum rate bound expression in the example above is a sum capacity upper bound under
conditions (7)–(10) (for the choice G(i) = I(i) in the following theorem).

Theorem 3. Let G(i) ⊆ [K]\{i}, ∀i ∈ [K] and let there be some m, k ∈ [K] such that m, k /∈ G(i),
∀i ∈ [K]\{k}. For the K-user GIC, if there exist ρi ∈ (0, 1), ∀i ∈ [K]\{m} such that the following conditions
are satisfied

1

Pr +
(

1+Qr
ρr

)2 ≥ ∑
i:r∈G(i)
i 6={m,k}

[
h2

ir
1 + Qi − ρ2

i

]
+ δr

[
h2

mr

1 + Qm − ρ2
k

]
∀ r ∈ [K]\{m, k}, (7)

ρkhmk = 1 + Qm (8)

∑
j∈G(i)

h2
ij(1 + Qj)

2

ρ2
j

≤ 1− ρ2
i , ∀i ∈ [K]\{m, k}, (9)

∑
j∈G(m)

h2
mj(1 + Qj)

2

ρ2
j

≤ 1− ρ2
k , (10)
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where δr = 1 if r ∈ G(m) and δr = 0 otherwise and Qi = ∑
j∈G(i)

h2
ijPj, then the sum capacity Csum is upper

bounded by

Csum ≤ 1
2 log

[
1 + (Pm+h2

mk Pk)
1+Qm

]
+

K
∑

i=1
i 6=k,m

1
2 log

[
1 + Pi

1+Qi

]
.

Proof. The detailed proof is provided in Appendix B. Here, we present a brief outline and highlight
some aspects of the proof. First, we consider a modified channel with no interference at receiver
k. The sum capacity of the original channel is upper bounded by the sum capacity of the modified
channel. Then, we derive a genie-aided upper bound for the modified channel using the genie signals
sn

i at receiver i for each i ∈ [K] as follows:

sn
i = {xn

i + nn
i , xn

j , j ∈ Ḡ(i)}, ∀i ∈ [K]\{m, k}

sn
m = {xn

j , j ∈ Ḡ(m)\k}

sn
k = hmkxn

k + ∑
j∈G(m)

hmjxn
j + nn

k

where Ḡ(i) = [K]\{i, {G(i)}}, ni ∼ N (0, σ2
i ), E[nizi] = ρiσi and 0 < ρi < 1, for each i ∈ [K]\{m}

and σk = 1. This choice of genie is then shown to be useful and smart under conditions (7)–(10) to
obtain the upper bound in the theorem statement.

Here are some remarks about this proof.

• The genie signal is different from Theorem 1 for receivers m and k. The genie at receiver k has the
interference component at receiver m from transmitter k and the other transmitters that are treated
as noise. This choice ensures that h(sn

k ) = h(yn
m|sn

m, xn
m) and helps in cancelling one negative term

in the sum capacity upper bound.
• The assumption that m, k /∈ G(i), ∀i ∈ [K]\{k} is used as part of the argument that the genie

is useful.
• The first upper bounding step is with a modified channel with no interference at receiver k. It is

interesting to note that the sum capacity result for the 2-user GIC under mixed interference in
Reference [6] also uses the one-sided GIC as the first step and we recover these results as special
cases of our result.

• This proof also generalizes the proof for the many-to-one GIC in Reference ([13], Theorem 4) to
the general K user GIC.

Some examples of the conditions obtained from Theorems 1–3 are presented in Appendix C.

Relation with Existing Sum Capacity Results

Applying Theorems 1–3 to the special case of 2-user channels, that is, K = 2, we recover all
known sum capacity results for the 2-user GIC in References [1–4,6]. As special cases, the first set of
channel conditions in our paper gives the noisy interference result in References [3,4,6], the very strong
interference result in Reference [1] and part of the mixed interference result in Reference [6] (Thm. 10)
where the interference is decoded before decoding the message. The second set of channel conditions
in our paper gives the remaining part of the mixed interference result in Reference [6] (Thm. 10) where
the interference is jointly decoded with the desired message and the strong interference result in
Reference [2]. The actual list of channel conditions and the corresponding sum capacity can be found
in Appendix D.

Applying Theorems 1–3 to the special cases of partially connected Gaussian ICs, we can recover
the sum capacity results in References [11–13]. We can also get some new results for the K-user cyclic
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and cascade GICs. The results corresponding to the two channel conditions for the cyclic, cascade and
many-to-one GICs are presented in Appendix E.

4. Numerical Results

In this section, we numerically find the probability that the first set of channel conditions under
which S-HK schemes achieve sum capacity, i.e, Equations (2)–(4), are satisfied for three different
random wireless network topologies. Theoretical analysis of the probability of the event that the
channel conditions (2)–(4) required for the sum capacity result are satisfied is difficult because of
the following reasons: (1) There are many conditions that describe the event, (2) Each condition is a
complicated function of channel coefficients, (3) The variables ρ1, ρ2, . . . , ρK in the conditions are not
available in closed form. Therefore, we resort to Monte Carlo simulations in this paper.

Topology 1: In this topology, all K transmitters are placed randomly and uniformly in a circular
cell of radius 1 km. We assume that each transmitter has a nominal coverage radius of r1 m. For each
transmitter, we then place its receiver randomly and uniformly in its coverage area. This topology is
illustrated in Figure 1 for K = 5.

T1

T2

T3

T4

T5

R1

R2

R3

R4

R5

1 Km

r1

Figure 1. Topology 1 setup where triangles are transmitters and crosses are receivers.

Topology 2 (Motivated by the one-to-many channel): In this topology, the first transmitter is placed
at the center of a circle of radius r2 m and all the other transmitters are placed equally spaced on
the perimeter of this circle. The nominal coverage radius of first transmitter is 3r2 m and nominal
coverage radius of all other transmitters are r2 m. For each transmitter, we place its receiver randomly
and uniformly in its coverage area. This topology for K = 4 is illustrated in Figure 2. In topology 2,
the first transmitter has a longer range and, therefore, there is higher probability that its signal at other
receivers is strong enough to decode.
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T1 T2

T3

T4

R1

R2

R3

R4

3r2r2

Figure 2. Topology 2 setup where triangles are transmitters and crosses are receivers.

Topology 3 (Motivated by the cascade channel): In this topology, all transmitters are placed
equidistantly along a line, with transmitter to transmitter distance r3 m. For each transmitter, we place
its corresponding receiver randomly and uniformly along the same line towards its right within r3 m.
We assume that the nominal coverage radius of each transmitter is r3 m. This topology for K = 4 is
illustrated in Figure 3. In topology 3, each receiver usually observes strong interference only from its
adjacent transmitter.

T1 T2 T3 T4R1 R2 R3 R4

r3

Figure 3. Topology 3 setup where triangles are transmitters and crosses are receivers.

For channel fading, we use the Erceg model [21]. We consider two terrain categories, hilly/light
tree density (terrain type 1) and hilly/moderate-to-heavy tree density (terrain type 2). The model
parameters for the two terrain categories are given in Reference [21] (Table I). We have reproduced
the parameter values in Appendix F for completeness. We used an operating frequency of 1.9 GHz,
antenna height hb = 50 m, close-in distance d0 = 100 m. The noise floor is taken as −110 dBm and
transmit power at each transmitter is chosen such that the expected value of the SNR at the boundary
of their nominal coverage area is 0 dB.

For generating the plots, we consider 1000 realizations of the channel. With topology 1, for
every realization we randomly place K transmitters inside 1 km circular cell and also randomly place
each receiver in its corresponding transmitters coverage area. With topology 2 and topology 3, first
we fix the transmitters locations and for every realization we randomly place each receiver in its
corresponding transmitter’s coverage area.

In Figures 4–9, we plot the probability that the conditions (2)–(4) are satisfied for (i) TIN scheme, (ii)
all S-HK schemes except the TIN scheme (denoted S-HK\TIN) and (iii) all S-HK schemes. Figures 4–6
are plotted for terrain type 1 and Figures 7–9 are plotted for terrain type 2. From the Figures 4–9,
we observe that the probability that the conditions for optimality are satisfied is significant. In Figures 4
and 7 this probability increases with increasing nominal coverage radius r1 as expected for S-HK\TIN.
In Figures 5, 6, 8 and 9, S-HK schemes have a much higher probability of being optimal compared to
the TIN scheme.
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Coverage radius r1 of each transmitter
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ty

TIN
S-HK\TIN

S-HK

Figure 4. Success probability of conditions (2)–(4) for TIN scheme , S-HK schemes excluding TIN and
all S-HK schemes with topology 1, terrain type 1, K = 3.
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0

0.1

0.2
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Coverage radius r2 of transmitters 2 and 3
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ab
ili

ty TIN
S-HK\TIN
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Figure 5. Success probability of conditions (2)–(4) for TIN scheme , S-HK schemes excluding TIN and
all S-HK schemes with topology 2, terrain type 1, K = 3.
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Coverage radius r3 of each transmitter
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TIN
S-HK\TIN
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Figure 6. Success probability of conditions (2)–(4) for TIN scheme , S-HK schemes excluding TIN and
all S-HK schemes with topology 3, terrain type 1, K = 3.
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TIN
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Figure 7. Success probability of conditions (2)–(4) for TIN scheme , S-HK schemes excluding TIN and
all S-HK schemes with topology 1, terrain type 2, K = 3.

150 200 250 300 350 400 450

0

0.1

0.2

0.3

Coverage radius r2 of transmitters 2 and 3

Pr
ob

ab
ili

ty TIN
S-HK\TIN

S-HK

Figure 8. Success probability of conditions (2)–(4) for TIN scheme , S-HK schemes excluding TIN and
all S-HK schemes with topology 2, terrain type 2, K = 3.

0 100 200 300 400 500

0

0.05

0.1

0.15

0.2

Coverage radius r3 of each transmitter

Pr
ob

ab
ili

ty

TIN
S-HK\TIN

S-HK

Figure 9. Success probability of conditions (2)–(4) for TIN scheme , S-HK schemes excluding TIN and
all S-HK schemes with topology 3, terrain type 2, K = 3.
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In Figures 10–12, we plot the expected rate of TIN scheme, the expected rate of S-HK schemes
given that the conditions (2)–(4) are satisfied, and the expected rate of the TIN scheme given that
the conditions (2)–(4) are satisfied with topologies 1, 2, 3 respectively. Note that when (2)–(4) are
satisfied, S-HK schemes are optimal. Therefore, the expected rate in this case is the expected capacity.
As expected, from the plots, the expected rate of TIN scheme is lower than the expected rate of S-HK
schemes given that the conditions (2)–(4) are satisfied.

0 200 400 600 800 1,000
0

1

2

3

4

5

6

Coverage radius r1 of each transmitter

Ex
pe

ct
ed

ra
te

s

S-HK
∣∣ (2), (3), (4)

TIN
∣∣ (2), (3), (4)

TIN

Figure 10. Expected rate of TIN scheme, expected rate of S-HK schemes given that the conditions
(2)–(4) are satisfied and the expected rate of TIN scheme given that the conditions (2)–(4) are satisfied
with topology 1, terrain type 1, K = 3.

0 100 200 300 400 500

0

1

2

3

4

Coverage radius r2 of transmitters 2 and 3

Ex
pe

ct
ed

ra
te

s S-HK
∣∣ (2), (3), (4)

TIN
∣∣ (2), (3), (4)

TIN

Figure 11. Expected rate of TIN scheme, expected rate of S-HK schemes given that the conditions (2)–(4)
are satisfied and the expected rate of the TIN scheme given that the conditions (2)–(4) are satisfied with
topology 2, terrain type 1, K = 3.



Entropy 2019, 21, 1053 11 of 30

0 100 200 300 400 500

0
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4
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10

Coverage radius r3 of each transmitter

Ex
pe

ct
ed

ra
te

s

S-HK
∣∣ (2), (3), (4)

TIN
∣∣ (2), (3), (4)

TIN

Figure 12. Expected rate of TIN scheme, expected rate of S-HK schemes given that the conditions (2)–(4)
are satisfied and the expected rate of the TIN scheme given that the conditions (2)–(4) are satisfied with
topology 3, terrain type 1, K = 3.

In Figures 13–15, we plot the probability that the conditions (2)–(4) are satisfied for (i) all S-HK
schemes except TIN scheme, (ii) all S-HK schemes where atmost 1 strong interference signal is decoded
at each receiver except TIN (denoted S-HK1\TIN). Figures 13–15 are plotted for topologies 1, 2, and 3,
respectively. In topologies 2 and 3, decoding at most one strong interference at each receiver is the
most important class of S-HK schemes as expected, since there is mainly one strongly interfering signal
in these topologies.

In Figure 16, we plot the success probability of the achievability conditions (4) alone and compare
them with success probability of all conditions (2)–(4) for all S-HK schemes except TIN for topology
1 with K = 3 and K = 4. It can be observed that the probability that achievability conditions are
satisfied is much larger than the probability that all conditions are satisfied. It is worth noting that
whenever the achievability conditions are satisfied, interference can be decoded and the resulting sum
rate will be significantly better than the rate achieved by the TIN scheme. Therefore, even when the
sum capacity conditions are not satisfied, there is significant improvement in the sum rate of S-HK
schemes with interference decoding compare to the TIN scheme. As K increases, the probability of at
least one interference signal being decodable increases as expected. Numerical results for the 2-user
GIC are given in Appendix D.

400 500 600 700 800 900 1,000
0

0.05
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0.15

0.2

Coverage radius r1 of each transmitter

Pr
ob

ab
ili

ty

S-HK\TIN
S-HK1\TIN

Figure 13. Success probability of conditions (2)–(4) for topology 1, terrain type 1, K = 3.
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Figure 14. Success probability of conditions (2)–(4) for topology 2, terrain type 1, K = 3.
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Figure 15. Success probability of conditions (2)–(4) for topology 3, terrain type 1, K = 3.
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Figure 16. Success probability of achievability conditions (4) and success probability of conditions
(2)–(4) for all S-HK schemes except TIN with topology 1, terrain type 1, K = 3 and K = 4.
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5. Conclusions

We obtained new sum capacity results for the general K-user Gaussian IC. We derived two sets of
channel conditions under which S-HK schemes are sum capacity optimal for the K user Gaussian IC.
This general result also allows us to obtain all existing sum capacity results for 2-user GICs and partially
connected GICs like the cascade, many-to-one and one-to-many GICs as special cases. The first sum
capacity result corresponds to the case when interference is decoded and cancelled before decoding
the desired signal at each receiver. The second sum capacity result corresponds to the case when one
interference signal is jointly decoded with the desired message at one of the receivers. At all other
receivers, interference is decoded and cancelled before the desired message.

We also studied the probability that the channel conditions required for the sum capacity result
are satisfied in random wireless networks using Monte Carlo simulations. Three different random
network models were considered. The numerical results showed that S-HK schemes are optimal with
significant probability in the topologies that are considered. By selecting the best S-HK scheme for
each channel condition, these results can be used for dynamic interference management and sum rate
maximization in wireless networks.
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Appendix A. Proof of Theorem 1

(Achievability) Suppose that each receiver i decodes the interference from transmitters D(i)
and then decodes the information from ith transmitter, while treating interference from other
transmitters I(i) as noise. The multiple access channel (MAC) constraints for decoding the interference
at each receiver i are

∑
j∈J

Rj ≤
1
2

log

(
1 +

∑j∈J h2
ijPj

1 + Pi + Qi

)
, ∀J ⊆ D(i). (A1)

The sum capacity in (5) is achieved if choosing

Ri =
1
2

log
(

1 +
Pi

1 + Qi

)
, ∀i ∈ [K] (A2)

satisfies (A1), thereby resulting in conditions in (4).
(Converse) Consider the genie-aided channel in Figure A1, where each receiver i ∈ [K] is given

the genie signal sn
i = {xn

i + nn
i , xn

j , j ∈ D(i)}, where nn
i ∼ N (0, σ2

i I) and E[nizi] = ρiσi, 0 < ρi < 1.
For the result for TIN in Reference [9], the special case of this genie-aided channel, where D(i) is empty
for all i, was used. Now, the sum capacity can be upper bounded as

nCsum ≤
K

∑
i=1

I(xn
i ; yn

i , sn
i )

=
K

∑
i=1

I(xn
i ; yn

i , xn
i + nn

i |xn
j , j ∈ D(i))

=
K

∑
i=1

[h(xn
i + nn

i )− h(nn
i )] +

K

∑
i=1

h
(

yn
i |xn

i + nn
i , xn

j , j ∈ D(i)
)
−

K

∑
i=1

h

 ∑
j∈I(i)

hijxn
j + un

i

 (A3)



Entropy 2019, 21, 1053 14 of 30

where un
i ∼ N (0, (1− ρ2

i )I), ∀i ∈ [K]. Assuming

1− ρ2
i = φi + ∑

j∈I(i)
h2

ijσ
2
j , ∀i ∈ [K] (A4)

where φi ≥ 0, we can write

cov(un
i ) = cov(

√
φinn

0 + ∑
j∈I(i)

hijnn
j ),

where nn
0 ∼ N (0, I) and is independent of nn

i , ∀i ∈ [K]. Now, we have

exp

 2
n

h

 ∑
j∈I(i)

hijxn
j + un

i

 = exp

 2
n

h

√φinn
0 + ∑

j∈I(i)
(hijxn

j + hijnn
j )


(a)
≥ exp

[
2
n

h
(√

φinn
0

)]
+ ∑

j∈I(i)
exp

[
2
n

h
(

hijxn
j + hijnn

j

)]

= 2πeφi + ∑
j∈I(i)

h2
ijexp

[
2
n

h(xn
j + nn

j )

]
, (A5)

where (a) follows from entropy-power inequality (EPI) [19]. Therefore, we have

K

∑
i=1

h(xn
i + nn

i )− h

 ∑
j∈I(i)

hijxn
j + un

i

 ≤ n
2

K

∑
i=1

ti − log

2πeφi + ∑
j∈I(i)

h2
ije

tj


,

n
2

f (t).

where ti ,
2
n h(xn

i + nn
i ), ∀i ∈ [K] and t is the vector of all ti’s. From the power constraints, we have

ti ≤ log
[
2πe(Pi + σ2

i )
]

, i ∈ [K]. Under these constraints on ti, it can be shown as in Reference [9]
that f (t) is maximized at tk = log

[
2πe(Pk + σ2

k )
]

provided ∂ f
∂tk

at ti = log
[
2πe(Pi + σ2

i )
]

, ∀i ∈ [K] are
greater than equal to 0. Thus, we have the conditions

∑
i:k∈I(i)

[
h2

ik
1 + Qi − ρ2

i

]
≤ 1

Pk + σ2
k

, ∀k ∈ [K]. (A6)

Therefore, we now have

Csum ≤
K

∑
i=1

I(xiG; yiG, siG)

=
K

∑
i=1

I(xiG; yiG, xjG, j ∈ D(i)) +
K

∑
i=1

I(xiG; xiG + niG|yiG, xjG, j ∈ D(i))

(b)
=

K

∑
i=1

I(xiG; yiG, xjG, j ∈ D(i))

=
K

∑
i=1

1
2

log
[

1 +
Pi

1 + Qi

]
where (b) is true if I(xiG; xiG + ni|yiG, xjG, j ∈ D(i)) = 0, ∀i. From Reference [3] (Lemma 8), I(xiG; xiG +

niG|yiG, xjG, j ∈ D(i)) = 0 iff
ρiσi = 1 + Qi, ∀i ∈ [K]. (A7)
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Also, φi ≥ 0, ∀i ∈ [K] which implies

∑
j∈I(i)

h2
ij(1 + Qj)

2

ρ2
j

≤ 1− ρ2
i , (A8)

Using the conditions (A7), (A8) and (A4), we get the conditions (2) and (3) for the converse.

1

2

k

K

s1 =
{

x1 + n1, xj, j ∈ D(1)
}

s2 =
{

x2 + n2, xj, j ∈ D(2)
}

sk =
{

xk + nk, xj, j ∈ D(k)
}

sK =
{

xK + nK, xj, j ∈ D(K)
}

Figure A1. Genie aided channel for proving Theorem 1.

Appendix B. Proof of Theorem 3

First, we consider the modified channel in Figure A2 with no interference at receiver k. The sum
capacity of the original channel is upper bounded by the sum capacity of the modified channel.

1

m

k

K

1

m

k

K

Figure A2. Modified channel.

Then, we derive a genie-aided upper bound for the modified channel in Figure A3 using the genie
signals sn

i at receiver i for each i ∈ [K] as follows:

sn
i = {xn

i + nn
i , xn

j , j ∈ Ḡ(i)}, ∀i ∈ [K]\{m, k}

sn
m = {xn

j , j ∈ Ḡ(m)\k}

sn
k = hmkxn

k + ∑
j∈G(m)

hmjxn
j + nn

k

where Ḡ(i) = [K]\{i, {G(i)}}, ni ∼ N (0, σ2
i ), E[nizi] = ρiσi and 0 < ρi < 1, for each i ∈ [K]\{m}

and σk = 1. This choice of genie can be shown to be useful and smart under conditions (7)–(10) to
obtain the upper bound in the theorem statement. This proof generalizes the proof for the many-to-one
GIC in Reference [13] (Theorem 4) to the general K user GIC. Assume

1− ρ2
i = φi + ∑

j∈G(i)
h2

ijσ
2
j , i ∈ [K]\{m, k}, (A9)

1− ρ2
k = φk + ∑

j∈G(m)

h2
mjσ

2
j , (A10)
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where φi ≥ 0 and assume h2
ij ≤ 1, ∀i ∈ G(i), i ∈ [K]. Now, we have

nCsum ≤
K

∑
i=1

I(xn
i ; yn

i , sn
i )

= I(xn
m; yn

m|sn
m) + I(xn

k ; yn
k , sn

k ) +
K

∑
i=1

i 6={m,k}

I(xn
i ; yn

i , sn
i )

= h(yn
m|sn

m)− h(yn
m|sn

m, xn
m) + h(sn

k ) + h(yn
k |s

n
k )− h(zn

k )− h(sn
k |y

n
k , xn

k )

+
K

∑
i=1

i 6={m,k}

I(xn
i ; yn

i , sn
i )

(a)
= h(yn

m|sn
m) + h(yn

k |s
n
k )− h(zn

k )− h

 ∑
j∈G(m)

hmjxn
j + un

k


+

K

∑
i=1

i 6={m,k}

[h(xn
i + nn

i )] +
K

∑
i=1

i 6={m,k}

h (yn
i |sn

i )− h(nn
i )− h

 ∑
j∈G(i)

hijxn
j + un

i


where (a) follows because h(sn

k ) = h(yn
m|sn

m, xn
m), un

i ∼ N (0, (1− ρ2
i )I) , ∀i ∈ [K]\{m}. Also note that

from (A9) and (A10), we have

cov(un
i ) = cov(

√
φinn

0 + ∑
j∈G(i)

hijnn
j )∀i ∈ [K]\{m, k},

cov(un
k ) = cov(

√
φknn

0 + ∑
j∈G(m)

hmjnn
j ),

where nn
0 ∼ N (0, I) and nn

0 is independent of nn
i , i ∈ [K]\{m}. From EPI, we have

exp

 2
n

h

 ∑
j∈G(i)

hijxn
j + un

i

 = exp

 2
n

h

√φinn
0 + ∑

j∈G(i)
(hijxn

j + hijnn
j )


≥ exp

[
2
n

h
(√

φinn
0

)]
+ ∑

j∈G(i)
exp

[
2
n

h
(

hijxn
j + hijnn

j

)]

= 2πeφi + ∑
j∈G(i)

exp
[

2
n

h(xn
j + nn

j )

]
exp

[
2
n

log(hn
ij)

]
(A11)

= 2πeφi + ∑
j∈G(i)

h2
ij exp

[
2
n

h(xn
j + nn

j )

]
(A12)

Considering the terms that are not directly maximized by Gaussian inputs, we get

K

∑
i=1

i 6=m,k

h(xn
i + nn

i )− h

 ∑
j∈G(i)

hijxn
j + un

i

− h

 ∑
j∈G(m)

hmjxn
j + un

k


(b)
≤ n

2

K

∑
i=1

i 6=m,k

ti − log

2πeφi + ∑
j∈G(i)

h2
ije

tj

− n
2

log

2πeφk + ∑
j∈G(m)

h2
mje

tj


,

n
2

f (t),
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where (b) follows from (A12) and ti ,
2
n h(xn

i + nn
i ), i ∈ [K]. From the power constraints, we have

ti ≤ log
[
2πe(Pi + σ2

i )
]

, i = 1, · · · , K.

Since m, k /∈ G(i), ∀i ∈ [K]\{k}, terms tm, tk do not appear in f (t) and we consider the
optimization problem

max f (t)

s.t ti ≤ log
[
2πe(Pi + σ2

i )
]

,

∀i ∈ [K]\{m, k}.

The Lagrangian for the above optimization problem is

L = f (t)− ∑
i 6=m,k

µi[ti − log
[
2πe(Pi + σ2

i )
]
],

where µi ≥ 0, ∀i ∈ [K]. At optimal tr, ∂L
∂tr

= 0. We want optimal tr = 1
2 log

[
2πe(Pr + σ2

r )
]

for

Gaussian inputs to be optimal for the genie-aided channel. From KKT conditions, ∂ f
∂tr
≥ 0 at tr =

log
[
2πe(Pr + σ2

r )
]

, ∀r ∈ [K]\{m, k} (since µr ≥ 0). Thus, we have

1
Pr + σ2

r
≥ ∑

i:r∈G(i)
i 6={m,k}

[
h2

ir
1 + Qi − ρ2

i

]
+ δr

[
h2

mr

1 + Qm − ρ2
k

]
, ∀ r ∈ [K]\{m, k},

where Qi, δr are defined as in the theorem statement. Therefore, we now have

Csum ≤
K

∑
i=1

I(xiG; yiG, siG)

= I(xmG; ymG|smG) + I(xkG; ykG, skG) +
K

∑
i=1

i 6={m,k}

I(xiG; yiG, siG)

(c)
= I(xmG; ymG|smG) + I(xkG; skG) +

K

∑
i=1

i 6={m,k}

I(xiG; yiG|xjG, j ∈ Ḡ(i))

(d)
= I(xmG, xkG; ymG|smG) +

K

∑
i=1

i 6={m,k}

I(xiG; yiG|xjG, j ∈ Ḡ(i)),

(c) is valid when I(xiG; xiG + ni|yiG, xjG, j ∈ Ḡ(i)) = 0, ∀i ∈ [K]\{m, k} and
I(xkG; ykG|skG) = 0. From Reference [3] (Lemma 8), I(xiG; xiG + ni|yiG, xjG, j ∈ Ḡ(i)) =

I

(
xiG; xiG + ni

∣∣∣∣(xiG + ∑
j∈I(i)

hijxjG + zi)

)
= 0, ∀i ∈ [K]\{m, k} and I(xkG; ykG|skG) =

I

(
xkG; xkG + zk

∣∣∣∣ xkG+ ∑
j∈I(m)

hmjxjG+nk

hmk

)
= 0 iff

ρiσi = 1 + Qi, ∀i ∈ [K]\{m, k}, (A13)

ρkhmk = 1 + Qm. (A14)

(d) is valid since genie sk is chosen such that h(sk) = h(ym|sm, xm) which implies I(xkG; skG) =

I(xkG; ymG|smG, xmG).
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Using φi ≥ 0 and (A13) and (A14), we get conditions (7)–(10) for the upper bound on Csum to
be valid.

1

m

k

K

s1 =
{

x1 + n1, xj, j ∈ D(1)
}

sm =
{

xj, j ∈ D(m)\{k}
}

sk = hmkxk + ∑
j∈I(m)

hmjxj + nk

sK =
{

xK + nK, xj, j ∈ D(K)
}

Figure A3. Genie aided channel for proving Theorem 3.

Appendix C. Examples

In this section, we will give some examples of finding the two sets of channel conditions under
which sum capacity is achieved by a S-HK scheme using Theorems 1–3.

Example A1. In this example, using Theorem 1, we will find the first set of channel conditions under which
sum capacity is achieved by a S-HK scheme. Consider a 3-user GIC with S-HK scheme given by I(1) = {2},
I(2) = {3}, I(3) = {}. Inequalities (2) and (3) gives the same set of conditions given by

h2
12(1 + h2

23P3) ≤ ρ2
2(1− ρ2

1) (A15)

h2
23 ≤ (1− ρ2

2) (A16)

for some ρ2, ρ1 ∈ (0, 1). In inequality (4), for i = 1, J = {3}; for i = 2, J = {1}; and for i = 3, J can be
{1}, {2} and {1, 2}. Therefore, (4) gives the set of conditions

1 + P1 + h2
12P2 ≤ h2

13 (A17)

1 + P2 + h2
23P3 ≤ h2

21(1 + h2
12P2) (A18)

(1 + P3) ≤ h2
31(1 + h2

12P2) (A19)

(1 + P3) ≤ h2
32(1 + h2

23P3) (A20)

(1 +
P1

1 + Q1
)(1 +

P2

1 + Q2
) ≤

(
1 +

h2
31P1 + h2

32P2

1 + P3

)
(A21)

where Q1 = h2
12P2, Q2 = h2

23P3, Q3 = 0. Under conditions (A15)–(A21), sum capacity is achieved by S-HK
scheme with I(1) = {2}, I(2) = {3}, I(3) = {} and the sum capacity is given by

Csum =
3

∑
i=1

1
2

log
[

1 +
Pi

1 + Qi

]
.

Example A2. In this example, we will find achievable sum rates in (6) for a S-HK scheme. Consider a 3-user
GIC with S-HK scheme given by I(1) = {}, I(2) = {1, 3}, I(3) = {2} which implies D(1) = {2, 3},
D(2) = {}, D(3) = {1}. From Theorem 2, l can be 1,2,3 and J1 ⊆ {1, 2, 3}, i.e., J1 can be {}, {1}, {2}, {3},
{1,2},{1,3},{2,3}, {1,2,3}. J2 ⊆ {2}, J3 ⊆ {1, 3}. For l = 1, 2, 3, the possible sets of J1, J2, J3 such that⋃
i∈[K]
Ji = Sl are given in Table A1.
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Table A1. Set of Ji such that
⋃

i∈[K]
Ji = Sl for S-HK with I(1) = {}, I(2) = {1, 3}, I(3) = {2}.

l J1 J2 J3

l = 1 {} {2} {1, 3}
{1} {2} {3}
{2} {} {1, 3}
{3} {2} {1}
{1, 2} {} {3}
{1, 3} {2} {}
{2, 3} {} {1}
{1, 2, 3} {} {}

l = 2 {1, 2, 3} {2} {1, 3}

Achievable sum rates are given by

S ≤ 1
2

log
[

1 +
P2

1 + Q2

]
+

1
2

log

[
1 +

h2
31P1 + P3

1 + Q3

]

S ≤ 1
2

log(1 + P1) +
1
2

log
[

1 +
P2

1 + Q2

]
+

1
2

log
[

1 +
P3

1 + Q3

]
S ≤ 1

2
log(1 + h2

12P2) +
1
2

log

[
1 +

h2
31P1 + P3

1 + Q3

]

S ≤ 1
2

log(1 + h2
13P3) +

1
2

log
[

1 +
P2

1 + Q2

]
+

1
2

log

[
1 +

h2
31P1

1 + Q3

]

S ≤ 1
2

log(1 + P1 + h2
12P2) +

1
2

log
[

1 +
P3

1 + Q3

]
S ≤ 1

2
log(1 + P1 + h2

13P3) +
1
2

log
[

1 +
P2

1 + Q2

]
S ≤ 1

2
log(1 + h2

12P2 + h2
13P3) +

1
2

log

[
1 +

h2
31P1

1 + Q3

]

S ≤ 1
2

log(1 + P1 + h2
12P2 + h2

13P3)

2S ≤ 1
2

log(1 + P1 + h2
12P2 + h2

13P3) +
1
2

log
[

1 +
P2

1 + Q2

]
+

1
2

log

[
1 +

h2
31P1 + P3

1 + Q3

]
.

where Q2 = h2
21P1 + h2

23P3, Q3 = h2
23P2. Depending on the channel and power constraints one of the above

inequalities will be dominant.

Example A3. In this example, using Theorems 2 and 3 we will find the second set of channel conditions
under which sum capacity is achieved by a S-HK scheme. Consider a 3-user GIC with S-HK scheme given by
I(1) = {3}, I(2) = {1, 3}, I(3) = {}. Let m = 1, k = 2. Here m, k /∈ I(i), i ∈ {1, 3}. First we will find the
converse conditions or the conditions under which sum rate

S ≤ 1
2

log

[
1 +

(P1 + h2
12P2)

1 + Q1

]
+

1
2

log(1 + P3) (A22)



Entropy 2019, 21, 1053 20 of 30

is an upper bound. For I(1) = {3}, I(2) = {1, 3}, I(3) = {}, inequalities (7) and (10) gives the same set
of conditions

h2
13 ≤ ρ2

3(1− ρ2
2). (A23)

(9) does not give any condition. (8) implies

ρ2h12 = 1 + h2
13P3 (A24)

Combining (A23) and (A24), sum rate in (A22) is an upper bound for all the channels satisfying

h2
13 +

(
1 + h2

13P3

h12

)2

≤ 1 (A25)

For achievablity conditions, first we will find all achievable sum rates of the S-HK scheme using Theorem 2.
Observe that J1 ⊆ {1, 2}, J2 ⊆ {2}, J3 ⊆ {1, 2, 3}. For l = 1, 2, 3, the possible sets of J1, J2, J3 such that⋃
i∈[K]
Ji = Sl are given in Table A2.

Table A2. Set of Ji such that
⋃

i∈[K]
Ji = Sl for S-HK with I(1) = {3}, I(2) = {1, 3}, I(3) = {}.

l J1 J2 J3

l = 1 {} {} {1, 2, 3}
{} {2} {1, 3}
{1} {} {2, 3}
{1} {2} {3}
{2} {} {1, 3}
{1, 2} {} {3}

Achievable sum rates for S-HK with I(1) = {3}, I(2) = {1, 3}, I(3) = {} are given by

S ≤ 1
2

log
[
1 + P3 + h2

32P2 + h2
31P1

]
(A26)

S ≤ 1
2

log
[

1 +
P2

1 + Q2

]
+

1
2

log
[
1 + P3 + h2

31P1

]
(A27)

S ≤ 1
2

log
[

1 +
P1

1 + Q1

]
+

1
2

log
[
1 + P3 + h2

32P2

]
(A28)

S ≤ 1
2

log
[

1 +
P1

1 + Q1

]
+

1
2

log
[

1 +
P2

1 + Q2

]
+

1
2

log(1 + P3) (A29)

S ≤ 1
2

log

[
1 +

h2
12P2

1 + Q1

]
+

1
2

log
[
1 + P3 + h2

31P1

]
(A30)

S ≤ 1
2

log

[
1 +

P1 + h2
12P2

1 + Q1

]
+

1
2

log(1 + P3) (A31)

where Q1 = h2
13P3, Q2 = h2

21P1 + h2
23P3. We want (A31) to be dominant among the inequalities (A26)–(A31)

which gives the conditions

(1 + P3)(P1 + h2
12P2) ≤ (h2

32P2 + h2
31P1)(1 + Q1) (A32)

(1 + P3)

(
P1 + h2

12P2

1 + Q1

)
≤

(1 + P3 + h2
31P1)P2

1 + Q2
+ h2

31P1 (A33)
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h2
12(1 + P3) ≤ h2

32(1 + P1 + Q1) (A34)

h2
12(1 + Q2) ≤ (1 + P1 + Q1) (A35)

(1 + P3) ≤ (1 + Q1 + h2
12P2)h2

31 (A36)

Therefore, under conditions (A32)–(A36) and (A25), sum capacity is achievable by S-HK scheme with
I(1) = {3}, I(2) = {1, 3}, I(3) = {} and the sum capacity is given by (A22).

Appendix D. 2-User GIC Results

For a 2 user GIC, there are only 4 possible S-HK schemes. Optimality conditions and sum capacity
of S-HK schemes using Theorem 1 are given in Table A3.

Table A3. Optimality conditions and sum capacity of S-HK schemes for a 2 user GIC using Theorem 1.

S-HK Scheme Optimality Conditions Sum Capacity Matches

I(1) = {2} |h12(1 + h2
21P1)|+ 1

2 log(1 + P1
1+h2

12P1
)

I(2) = {1} |h21(1 + h2
12P2)| ≤ 1 + 1

2 log(1 + P2
1+h2

21P1
) [3,4,6]

I(1) = {} h2
21 ≤ 1, 1

2 log(1 + P1)+ Thm. 10 in [6]
I(2) = {1} h2

12 ≥
1+P1

1+h2
21P1

1
2 log(1 + P2

1+h2
21P1

)

I(1) = {2} h2
12 ≤ 1, 1

2 log(1 + P2)+ Thm. 10 in [6]
I(2) = {} h2

21 ≥
1+P2

1+h2
12P2

1
2 log(1 + P1

1+h2
12P2

)

I(1) = {} h2
12 ≥ 1 + P1, 1

2 log(1 + P1)+ [1]
I(2) = {} h2

21 ≥ 1 + P2
1
2 log(1 + P2)

Optimality conditions and sum capacity of S-HK schemes using Theorems 2 and 3 are given in
Table A4. These conditions are plotted in Figure A4.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

T 11 T 12

T 13

T 14

T 21

T 22

T 23

T 24

h12

h 2
1

Figure A4. Channel conditions where sum capacity is obtained for the 2-user GIC, P1 = P2 = 1.

In Figure A4, T 1i denotes the region given by scheme i (corresponds to ith row in the Table)
in Table A3 and T 2i denotes the region given by scheme i in Table A4. In Figures A5 and A6,
for Topology 1, we plot the success probability of conditions in Tables A3 and A4 respectively. For
topology 1, as transmitter range increases, the probability that decoding interference is optimal
increases and the probability that treating interference as noise is optimal reduces. Therefore, as
expected, probability that T 11 is optimal decreases with increasing range and the probability that the
other schemes are optimal increases.
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Table A4. Optimality conditions and sum capacity of S-HK schemes for a 2 user GIC using Theorems 2
and 3.

S-HK Scheme Optimality Conditions Sum Capacity Matches

I(1) = {} h21 ≤ 1, h12 ≥ 1, 1
2 log(1 + P1 + h2

12P2) Thm. 10 in Reference
[6]

I(2) = {1} h2
12(1 + h2

21P1) ≤ 1 + P1

I(1) = {2} h12 ≤ 1, h21 ≥ 1, 1
2 log(1 + P2 + h2

21P1) Thm. 10 in Reference
[6]

I(2) = {} h2
21(1 + h2

12P2) ≤ 1 + P2

I(1) = {} 1 ≤ h2
12 ≤ 1 + P1, 1

2 log(1 + P1 + h2
12P2)

I(2) = {} P1 + h2
12P2 ≤ P2 + h2

21P1
[2]

1 ≤ h2
21 ≤ 1 + P2, 1

2 log(1 + P2 + h2
21P1)

P2 + h2
21P1 ≤ P1 + h2

12P2
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Figure A5. Success probability of conditions in Table A3 for Topology 1.
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Figure A6. Success probability of conditions in Table A4 for Topology 1.

Appendix E. Partially Connected GIC Results

We specialize our sum capacity results to cyclic, cascade and many-to-one GICs, which are special
cases of GIC. For cyclic channels, we specialize the two channel conditions for general S-HK schemes
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to get two new sum capacity results. For 3 user cascade channels, sum capacity results were derived
in Reference [11] but we derive sum capacity results for a general K user cascade channels. For the
many-to-one and one-to-many GICs, we can recover the results derived in Reference [13].

Appendix E.1. Cyclic GIC

We use the following channel model for cyclic GIC

yk = xk + hk+1xk+1 + zk, ∀k ∈ [K],

where the indices are modulo K.

Result A1. For a cyclic GIC, satisfying the following conditions for some sets I1, D1 ⊆ [K] and I1 ∪ D1 = [K]

h2
i+1(1 + Qi+1)

2

ρ2
i+1

≤ 1− ρ2
i , ∀i ∈ I1 (A37)

h2
i+1(1 + Qi+1) ≥ 1 + Pi, ∀i ∈ D1 (A38)

where

Qi =

{
h2

i+1Pi+1 : i ∈ I1

0 : else

the sum capacity is given by

Csum =
K

∑
i=1

1
2

log
[

1 +
Pi

1 + Qi

]
(A39)

and the sum capacity is achieved by S-HK scheme defined by I(i) = φ, ∀i ∈ D1 and I(i) = {i + 1}, ∀i ∈ I1.

Proof. Use Theorem 1.

Corollary A1. For the cyclic channel, if we treat interference as noise at receivers i ∈ I1 and decode interference
at receivers i ∈ D1 = [K]\I1, then the achievable sum rates given by

S ≤ 1
2 ∑

j∈J1

log(1 + Pj + h2
j+1Pj+1) +

1
2 ∑

j∈J2

log(1 + cjPj)

∀J1 ⊆ D1, such that if i ∈ J1, then, i + 1 /∈ J1

J2 = [K]\{i, i + 1 : i ∈ J1} (A40)

2S ≤ 1
2

K

∑
j=1

log(1 + Pj + h2
j+1Pj+1), if D1 = [K] (A41)

where, for all i = 1, 2, · · · , K

ci =


min

{
h2

i , 1
1+h2

i+1Pi+1

}
: i− 1 ∈ D1, i ∈ I1

min{h2
i , 1} : i− 1 ∈ D1, i ∈ D1

1
1+h2

i+1Pi+1
: i− 1 ∈ I1, i ∈ I1

1 : i− 1 ∈ I1, i ∈ D1

are achievable.

Proof. Use Theorem 2.
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Result A2. For the cyclic GIC, let I1, D1 ⊆ [K] such that I1 ∪ D1 = [K] and let some {k} ∈ D1 , if the
channel satisfies the following conditions

h2
i+1(1 + Qi+1)

2

ρ2
i+1

≤ 1− ρ2
i , ∀i ∈ I1, (A42)

hk+1 ≥ 1 (A43)

K

∏
j=1

j 6={k.k+1}

(
1 +

Pj

1 + Qj

)
≤

∏j∈[K]
1
2 (1 + Pj + h2

j+1Pj+1)

(1 + Pk + h2
k+1Pk+1)

if D1 = [K] (A44)

∏K
j=1

j 6={k.k+1}

(
1 +

Pj
1+Qj

)
∏j∈J2

(1 + cjPj)
≤

∏j∈J1
(1 + Pj + h2

j+1Pj+1)

(1 + Pk + h2
k+1Pk+1)

,

∀J1 ⊆ D1, s.t. if i ∈ J1, then, i + 1 /∈ J1,

J2 = [K]\{i, i + 1 : i ∈ J1} (A45)

where

Qi =

{
h2

i+1Pi+1 : i ∈ I1

0 : else

the sum capacity is given by

Csum =
1
2

log(1 + Pk + h2
k+1Pk+1) +

K

∑
j=1

j 6={k,k+1}

1
2

log(1 +
Pj

1 + Qj
)

where ci, ∀i ∈ [K] is defined as in Corollary A1.

Proof. Use Theorem 3, to get the converse conditions (A42) and (A43) and use Corollary A1, to get the
achievability conditions (A45).

Appendix E.2. Cascade GIC

We use the following channel model for cascade GIC

yk = xk + hk+1xk+1 + zk, ∀k ∈ {1, 2, · · · , K− 1}
yK = xK + zK

Result A3. For the cascade GIC, satisfying the following conditions for some sets I1, D1 ⊆ [K] and I1 ∪ D1 ∪
{K} = [K] and {K} /∈ I1, D1

h2
i+1(1 + Qi+1)

2

ρ2
i+1

≤ 1− ρ2
i , ∀i ∈ I1 (A46)

h2
i+1(1 + Qi+1) ≥ 1 + Pi, ∀i ∈ D1 (A47)

where

Qi =

{
h2

i+1Pi+1 : i ∈ I1

0 : else

the sum capacity is given by

Csum =
K

∑
i=1

1
2

log
[

1 +
Pi

1 + Qi

]
(A48)
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Proof. We get the result by taking I(i) = φ, ∀i ∈ I1 and I(i) = {i + 1}, ∀i ∈ D1 in Theorem 1. Noisy
and mixed interference results in Reference [11] (Cor. 1), [11] (Thm. 3) can be obtained from this
result.

Corollary A2. For the cascade channel, if we treat interference as noise at receivers i ∈ I1 and decode
interference at receivers i ∈ D1 = {1, 2, · · · , K− 1}\I1, then the sum rates given by

S ≤ 1
2 ∑

j∈J1

log(1 + Pj + h2
j+1Pj+1) +

1
2 ∑

j∈J2

log(1 + ejPj)

∀J1 ⊆ D1, such that if i ∈ J1, then, i + 1 /∈ J1

J2 = [K]\{i, i + 1 : i ∈ J1} (A49)

where, for all i = 1, 2, · · · , K− 1

ei =


min

{
h2

i , 1
1+h2

i+1Pi+1

}
: i− 1 ∈ D1, i ∈ I1

min{h2
i , 1} : i− 1 ∈ D1, i ∈ D1

1
1+h2

i+1Pi+1
: i− 1 /∈ D1, i ∈ I1

1 : i− 1 /∈ D1, i ∈ D1

and eK = 1
are achievable.

Result A4. For the cascade GIC, treating interference as noise at receivers i ∈ I1 and decoding interference at
receivers i ∈ D1 (assuming {K− 1} ∈ D1) is optimal if the channel satisfies the following conditions

h2
i+1(1 + Qi+1)

2

ρ2
i+1

≤ 1− ρ2
i , ∀i ∈ I1, (A50)

hK ≥ 1 (A51)

(1 + PK−1 + h2
KPK)

K−2

∏
j=1

(
1 +

Pj

1 + Qj

)
≤

∏
j∈J1

(1 + Pj + h2
j+1Pj+1) ∏

j∈J2

(1 + ejPj),

∀J1 ⊆ D1, such that if i ∈ J1, then, i + 1 /∈ J1,

J2 = [K]\{i, i + 1 : i ∈ J1} (A52)

where

Qi =

{
h2

i+1Pi+1 : i ∈ I1

0 : else

and the sum capacity is given by

Csum =
1
2

log(1 + PK−1 + h2
KPK) +

K−2

∑
j=1

1
2

log(1 +
Pj

1 + Qj
) (A53)

where ei, ∀i ∈ [K] is defined as in Corollary A2.

Proof. Use Theorem 3 to get the converse conditions (A50) and (A51) and use Corollary A2 to get the
achievability conditions (A52). Part of the strong interference result in Reference [11] (Cor. 2) can be
obtained from this result.
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Appendix E.3. Many-to-One GIC

Channel model for many-to-one IC is given by

y1 = x1 +
K

∑
j=2

hixi + zi

yi = xi + zi, ∀i = 2, 3, · · · , K (A54)

Result A5. For a many-to-one channel, satisfying the following conditions

K

∑
j=k+1

h2
j ≤ 1 (A55)

∏
i∈B−N

(1 + Pi).(1 +
K

∑
j=k+1

h2
j Pj + P1) ≤

1 + ∑
i∈B−N

h2
i Pi + P1, ∀N ⊂ B,N 6= B, (A56)

where B = {2, 3, . . . , k} , k ∈ {1, 2, .., K}, the sum capacity is given by then the sum capacity is given by

Csum =
1
2

log

(
1 +

P1

1 + ∑K
j=k+1 h2

j Pj

)
+

K

∑
i=2

1
2

log(1 + Pi) (A57)

Proof. From Theorem 1, taking I(1) = {k + 1, · · · , K}, we get the required sum capacity if the channel
satisfies the conditions (A55) and also

K

∑
j=k+1

h2
j

ρ2
j
≤ 1− ρ2

1

for some ρi ∈ [0, 1], i = 1, 2, · · · , K.
Choose ρ1 = 0 and ρj = 1 ∀j = k + 1, · · · , K to get the condition (A55). Reference [13] (Thm. 4) can be
obtained from this result.

Result A6. For the K-user Gaussian many-to-one IC satisfying the following channel conditions:

∏
i∈N

(1 + Pi)

(
1 + P1 +

K

∑
i=k+1

h2
i Pi + ∑

i∈B−N
h2

i Pi

)

≥
k−1

∏
i=2

(1 + Pi)(1 + P1 +
K

∑
j=k

h2
j Pj) (A58)

∀N ⊆ B,N 6= {2, 3, .., k− 1} and B = {2, 3, ...k}
K

∑
i=k+1

h2
i ≤ 1− ρ2, ρhk = 1 +

K

∑
i=k+1

h2
i Pi (A59)

the sum capacity is given by

Csum =
K

∑
i=2
i 6=k

1
2

log(1 + Pi) +
1
2

log

1 +
P1 + h2

k Pk

1 +
K
∑

i=k+1
h2

i Pi

 (A60)
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Proof. (Converse) From Theorem 3, taking G(i) = {k + 1, · · · , K} , we get the required outer bound
when (A59) is satisfied.
(Achievability) Using Theorem 2 with I(i) = {k + 1, · · · , K}, we get the following achievable sum
rates

S ≤ 1
2

K

∑
i=k+1

log(1 + Pi) +
1
2 ∑

i∈M
log(1 + miPi) +

1
2

log

1 +
P1 + ∑

i∈B−M
h2

i Pi

1 +
K
∑

i=k+1
h2

i Pi

 , ∀M ⊆ B. (A61)

where B = {2, 3, · · · , k} and mi = min

1, h2
i

1+
K
∑

j=k+1
h2

j Pj

.

Among these sum rates, we want the sum rate with M = B\{k} and mi = 1, ∀i ∈ B\{k} to
be dominant. We get the conditions (A58), for the sum rate with M = B\{k} to be dominant
assuming mi = 1, ∀i ∈ {2, 3, · · · , k}. Given the converse conditions (A59) and (A58), conditions with

m1 =
h2

i

1+
K
∑

j=k+1
h2

j Pj

are always redundant. Reference [13] (Thm. 5) can be obtained from this result.

Appendix E.4. One-to-Many GIC

We use the following model for one-to-many channel

yi1 = xi + hixK + zi i = 2, · · · , K− 1

yK = xK + zK (A62)

Result A7. For the K user Gaussian one-to-many channel satisfying the following conditions

1 + Pi ≤ |hi|2, 1 ≤ i ≤ k, (A63)
K−1

∑
j=k+1

|hj|2PK + |hj|2

|hj|2PK + 1
≤ 1, (A64)

then the sum capacity is given by

Csum =
1
2

k

∑
i=1

log(1 + Pi) +
1
2

log(1 + PK) +
1
2

K−1

∑
j=k+1

log

(
1 +

Pj

1 + |hj|2PK

)

Proof. From Theorem 1, taking I(i) = φ, ∀i = {1, 2, · · · , k} and I(i) = {K}, ∀i = {k + 1, · · · , K− 1},
we get the required sum capacity under the conditions (A63) and

K−1

∑
j=k+1

h2
j

1 + h2
j PK − ρ2

j
≤ 1

1 + ( 1
ρK
)2

Choosing ρK = 1, ρj = 0, ∀j = k + 1, · · · , K− 1, we get (A64). Reference [13] (Thm. 6) can be obtained
from this result.

Result A8. For the K-user Gaussian one-to-many IC satisfying the following conditions:

1 ≤ h2
l ≤ 1 + Pl (A65)

h2
l

1 + Pl
≤

h2
i

1 + Pi
, 1 ≤ i ≤ K− 1, i 6= l (A66)
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for any l ∈ {1, 2, . . . , K− 1}, the sum capacity is

Csum =
1
2

K−1

∑
j=1,j 6=l

log(1 + Pj) +
1
2

log(1 + Pl + h2
l PK) (A67)

Proof. From Theorem 3, with G(i) = {K}, ∀i = {1, 2, · · · , K− 1}, sum rate is upper bounded by (A67).
From Theorem 2, we get the following achievable sum rates

S ≤
K

∑
j=1

1
2

log(1 + Pj),

S ≤
K−1

∑
j=1
j 6=i

1
2

log(1 + Pj) +
1
2

log(1 + Pi + h2
i PK), ∀ 1 ≤ i ≤ K− 1

For the required sum rate to be dominant among all the achievable rates, channel should satisfy (A65)
and (A66). Reference [13] (Thm. 7) can be obtained from this result.

Appendix F. Model Parameters Used in the Numerical Results

For channel fading, we use the Erceg model [21]. The path loss function is given by

PL = 20 log10

(
4πd0

λ

)
+ 10γ log10

(
d
d0

)
+ s,

where d0 is some close-in distance, λ is wavelength, γ is path loss exponent, s is shadow fading
component. γ is characterized as follows

γ =

(
a− bhb +

c
hb

)
+ xσγ,

where hb is antenna height, x ∼ N (0, 1), a, b, c, σγ are constants which depends on the terrain type.
The shadow fading component s is given by

s = y(µσ + zσσ),

where y, z ∼ N (0, 1), µσ, σσ are constants which depends on the terrain type. We consider two terrain
categories, hilly/light tree density (terrain type 1) and hilly/moderate-to-heavy tree density (terrain
type 2). The model parameters for the two terrain categories are given in the Table A5.

Table A5. Numerical values of model parameters.

Model
Parameter

Terrain Category

Hilly/Light Tree Density Hilly/Moderate-to-Heavy Tree Density

a 4.0 4.6

b
(in m−1)

0.0065 0.0075

c
(in m) 17.1 12.6

σγ 0.75 0.57

µσ 9.6 10.6

σσ 3.0 2.3
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