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Abstract: Because perceptual video coding (PVC) can reduce bitrates with negligible visual quality
loss in video compression, a PVC scheme based on just noticeable distortion (JND) model is proposed
for ultra-high definition video. Firstly, the proposed JND model is designed, considering the spatial
JND characteristics such as contrast sensitivity, luminance adaptation and saliency weight factor.
Secondly, in order to perform precise JND suppression, the Gauss differential entropy (GDE) filter is
designed to divide the image into smooth and complex texture region. Thirdly, through incorporating
the proposed JND model into the encoding process, the transform coefficients are suppressed in
harmonization with the transform/quantization process of high efficiency video coding (HEVC). In
order to achieve the JND suppression effectively, a distortion compensation factor and distortion
compensation control factor are incorporated to control the extent of distortion in the rate distortion
optimization process. The experimental results show that the proposed PVC scheme can achieve
a remarkable bitrate reduction of 32.98% for low delay (LD) configuration and 28.61% for random
access (RA) configuration with a negligible subjective quality loss. Meanwhile, the proposed method
only causes about average 12.94% and 22.45% encoding time increase under LD and RA configuration
compared with an HEVC reference software, respectively.

Keywords: UHD image/video; just noticeable distortion; Gauss differential entropy filter; perceptual
video coding; high efficiency video coding

1. Introduction

Ultra-high definition (UHD) video provides viewers with enhanced visual experience via a wider
field of view (FOV) and more exquisite frames than high definition (HD) video [1]. UHD video is widely
applied in various fields, education, amusement, sports, etc. [2,3]. Unfortunately, the large bandwidth
and storage space are required for realization of these UHD video applications [4,5]. These problems
limit the development and application of UHD video. Besides spatial and temporal redundancies,
visual redundancy widely exists in UHD videos. Hence, the perceptual video coding (PVC) scheme
can be utilized to further exploit the visual redundancy, and improve compression performance.

The key of PVC is to determine the distortion that users can just notice. Therefore, the study of just
noticeable distortion (JND) and PVC become a hot topic and has attracted much interest. So far, various
PVC schemes based on JND have been proposed and utilized for HD image/video compression [6–26].
The JND models can be categorized into two types: pixel and subband (e.g., discrete cosine transform
(DCT), wavelet) domain approaches.

Specifically, the pixel-based JND profiles are established in the pixel domain, considering luminance
masking (LM) and contrast masking (CM) effects [6–9]. Yang et al. proposed a pixel-based JND
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profile by considering the overlapping effect between LM and CM effects [6]. Chen et al. incorporated
a foveated masking model into the JND profile and the JND values were weighted with visual
eccentricity [7]. Liu et al. improved the work in [6], where the JND model was more precisely estimated
by decomposing edge pixels from texture regions [8]. Wu et al. proposed a JND profile with free
energy principle, where an autoregressive model was deduced to imitate the active prediction of the
human visual system (HVS) with Bayesian inference [9]. Meanwhile, the disorderly concealment effect
was estimated for the JND model. Several stereoscopic JND profiles have been established in the
pixel domain [10–12]. Zhao et al. established a binocular JND profile by considering the asymmetric
binocular vision property [10]. Zhang et al. proposed a JND profile for autostereoscopic display by
considering the view position [11]. Wang et al. considered binocular spatial sensitivity in stereoscopic
image quality assessment and utilized the [10] to measure the joint visibility of a pair distortions in the
two views of stereoscopic image [12].

The pixel-based JND profiles cannot ensure conformance with perceptual characteristics of human
eyes, because they do not individually take the sensitivity of HVS for each frequency component into
consideration. In contrast, the subband-based JND profiles are modeled in subband domains and
show better performance. In particular, the JND profiles in the DCT domain are more appropriate
to image/video compression schemes [13–20]. Ahumada and Peterson proposed a JND based on
DCT-domain quantization matrices which is known as the DCTune algorithm [13]. Watson applied the
8 × 8 JND-based DCT quantization matrix to a Joint Photographic Experts Group (JPEG) coder [14].
Wei and Ngan et al. proposed a CM-JND model based on 8 × 8 block. There were different CM-JND
values for three image patch types of plain, edge, and texture [15]. Ma et al. extended [15] to work even
at a 16 × 16 block-sized DCT kernel [16]. Luo et al. proposed a JND model to suppress the magnitudes
of transform coefficients [17]. Bae et al. proposed a JND model in a DCT domain [18]. They proposed
an elaborate JND model for variable block-sized transforms in a monochrome image [19]. They also
incorporated foveated masking effects into a DCT-based total JND profile in [20].

Recently, many related works focus on the DCT-based JND profiles for high efficiency video
coding (HEVC)-complaint PVC scheme [21–26]. Kim et al. proposed an HEVC-compliant PVC scheme
based on JND models for variable block-sized transform kernels [21]. In addition, they proposed a
compensation factor to tackle the distortions caused by transform coefficients suppression with JND
profile. Bae et al. proposed an HEVC-based perceptually adaptive video coding method using a
DCT-based local distortion detection probability (LDDP) model [22]. The proportion of suppression
was modulated by the LDDP model. The models in [21,22] did not take the quantization parameter
(QP) into account. Kim et al. proposed a JND model with the convolutional neural network. Moreover,
the QP was considered in encoding process [23]. However, the distortion increased when the transform
coefficients were suppressed in rate distortion optimization (RDO) process. Zhang et al. proposed a
novel perception-based quantization to remove nonvisible information in high dynamic range (HDR)
color pixels by exploiting luminance masking [24]. Through this method, the coding performance
of HEVC was improved for HDR content. Jiang et al. proposed a saliency-based quantization
control algorithm to reduce the bitrate of HEVC encoding processing [25]. Zeeshan et al. proposed a
HEVC-compliant PVC scheme using entropy based visual saliency model to adjust the quantization
parameter at the coding tree unit (CTU) level [26].

The conventional JND models are designed and utilized for PVC of videos with eight-bit depth.
The existing JND models for videos with 10-bit depth are directly derived from the conventional JND
models [6–26]. They are only a simple extension of the luminance range. In this work, we perform
psychophysical experiments, and reveal that JND models with the simple extension do not conform
well with perceptual distortion of images/videos with 10-bit depth. Hence, we proposed a JND model
for the UHD images/videos with 10-bit depth based on psychophysical experiments. Following this,
a perceptually HEVC-complaint PVC scheme based on the proposed JND model is proposed for
improving the encoding efficiency of UHD videos with 10-bit depth. The main contributions of the
work are as follows:
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Because the conventional JND models are inappropriate for perceptual distortions of UHD videos
with 10-bit depth, an LM effect is proposed. To consider the JND threshold values in the texture region,
the Gauss differential entropy (GDE) filter is designed to divide the image into smooth and complex
texture region. Because the visual focus is not fixed in a specific region when viewing the UHD videos,
a saliency factor is incorporated into the proposed JND model. Moreover, the edge of the image is
protected in the saliency region.

A perceptual friendly HEVC-complaint PVC scheme is proposed. Meanwhile, a distortion
compensation factor (DCF) and a distortion compensation control factor (DCCF) are incorporated into
the RDO process for improving the encoding efficiency of UHD videos with 10-bit depth.

The remainder of the paper is organized as follows. In Section 2, we introduce a new JND model
that takes luminance masking effect of UHD videos with 10-bit depth, saliency factor, Gauss differential
entropy filter into account. In Section 3, a HEVC-compliant PVC scheme is designed via the proposed
JND model. Section 4 presents the subjective and objective experimental results for the proposed
HEVC-complaint PVC schemes. Section 5 concludes our work.

2. The Proposed Transform-Domain Suppressed JND Model

Usually, the SKIP mode is an efficient inter prediction technology, and it does not incorporate
transforms in HEVC. Therefore, the proposed JND model based on a DCT domain is applied for the
non-SKIP mode for various block sizes (4 × 4–32 × 32) of the coding unit (CU) and the transform
unit (TU). Figure 1 shows the overall framework of the proposed HEVC-compliant PVC scheme. The
symbols are described in Table 1. The PVC scheme includes two parts, the proposed JND model and
original encoder. The block diagrams of the two parts are respectively surrounded by red and blue
dotted boxes. The JND model is used to suppress the transform coefficients.Entropy 2019, 21, x FOR PEER REVIEW 4 of 24 
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Table 1. Description of the symbols in Figure 1.

Symbol Description

HCSF(wi,j, ϕi,j ) Basic contrast sensitivity function (CSF) model
MFLM(wi,j, µp ) Luminance masking effects

JLM The proposed luminance masking effects
HGDE The proposed Gauss differential entropy (GDE) filter
S(wi,j) Modulation factor for saliency
JGDE-S The proposed JND model

wi,j,
ϕi,j,
µp

Cycles per degree,
Directional angle,

Average pixel intensity of N × N TU block

The “red dotted box” of Figure 1 shows the proposed JND model. To estimate the JND threshold
values for transform coefficients suppression, the original TU blocks of input image are applied to
calculate the µp for the LM effect. Here, the LM effects are calculated as modulation factors. Then, LM
effects are multiplied to a basic contrast sensitivity function (CSF). In order to control the proposed
JND threshold values range in the smooth and complex region of image, the GDE filter is incorporated
into JLM model. Finally, the JLM model after the filter multiply the saliency factor for the FOV of UHD.

To effectively apply the transform coefficient based on JND suppression, the DCF and DCCF are
proposed to compensate the distortion introduced by JGDE-S model at different QPs. Following this,
they are incorporated into the RDO process of HEVC in the “blue box” of Figure 1.

2.1. The Proposed JND Model by GDE Filter and the Saliency Factor

An appropriate transform-based JND model for UHD image/video with 10-bit depth is proposed
in this section. Firstly, the basic framework of transform domain JND model is modeled based on the
CSF and proposed 10-bit LM effect. Following this, the proposed JND threshold values are suppressed
by the GDE filter. Besides, the saliency factor is incorporated into the proposed JND model.

2.1.1. The Basic Framework of the JND Model

The proposed basic framework of JND model is constructed based on the HCSF and MFLM, which
is expressed as:

JLM(wi, j,ϕi, j,µp) = HCSF(wi, j,ϕi, j) ·MFLM(µp) (1)

where wi,j is cycles per degree (cpd) in spatial frequency for the (i, j)-th DCT coefficient, which is
given by:

wi, j = (1/2M)

√
(i/θx)

2 + ( j/θy)
2 (2)

where θx and θy indicate the horizontal and vertical visual angles of a pixel. The M is the transform
sizes (M = four to 32 for HEVC). The pixel aspect ratio is one for most of the display screens, and the θ
is identical in the horizontal and vertical directions [15], which is given by:

θx = θy = θ = 2 · arctan(
1

RVH ·H · 2
) (3)

where RVH is the ratio of the view distance to the screen height, and H is the number of pixels in the
screen height. From (2) and (3), it is found that the view distance or the pixel resolution of display
screen increases, the spatial frequency also increases for each DCT component.

In (1), the directional angle ϕi,j between ϕi,0 and ϕ0,j at the (i, j)-th DCT coefficient is taken into
account for HCSF modeling. Usually, the HVS is more sensitive to the distortions along the horizontal
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and vertical directions (i or j = 0) than the diagonal (i = j) direction in spatial frequency, the character is
called the oblique effect [27]. The ϕi,j is given by:

ϕi, j = arcsin
(

2 ·wi,0 ·w0, j

wi, j2

)
(4)

the µp is the normalized pixel intensity of image block, which is defined as:

µp = (1/KM2)
M∑
y

M∑
x

I(x, y) (5)

where I(x, y) is the pixel intensity at (x, y).

K = 2bit
− 1 (6)

where K is the maximum pixel intensity (255 in 8-bit image format and 1023 in 10-bit image format).
The CSF quantifies the characteristics of human visual perception, which has different sensitivities

at different spatial frequencies. In this paper, we adopt HCSF threshold in the transform domain [16],
which is given by:

HCSF(wi, j,ϕi, j) =
1

φiφ j
·

exp(cwi, j)/(a + bwi, j)

r + (1− r) · cos2 ϕi, j
(7)

where φi and φj are the normalization factors for transform coefficients, which is given by:

φk =

{ √
1/M, k = 0
√

2/M, k > 0
(8)

where the model parameter values of a = 1.33, b = 0.11, and c = 0.18 are defined as [15] in (7).

2.1.2. The Proposed 10-Bit Luminance Masking Effect

The LM effect is modeled as a human visual function by which JND threshold values change
along with the average pixel intensity. The existing JND models only extends the luminance range
to adapt the images/videos with 10-bit depth, but do not fully consider the visual difference with
increasing the luminance range.

The proposed 10-bit LM effect is obtained with psychophysical experiments by increasing the
distortion amplitudes of the DCT coefficients until subjects start to perceive the distortions. Bae et al.
designed a subjective experiment to obtain a LM effect in DCT domain [18]. In this paper, the subjective
experiment is followed as in [18], however there are two differences with Bae’s work. The first one is
that Bae et al. added distortion into selected 15 DCT coefficients in a lower triangle frequency zone of 8
× 8 DCT and perceived the distortion in the DCT domain. However, we directly added the distortions
into all DCT coefficients and perceived the distortions in the luminance domain. Our method can
better reflect the distortions of the DCT domain coefficients. The other is that we test the subjective
experiments in a wider luminance region (0 to 1023) than Bae’s (0 to 255). Therefore, in order to get a
more perceptual friendly 10-bit LM effect, the following subjective experiments are carried out as

Initialization: Monitor shows test images resided in parafovea regions (P2 in Figure 2). The
experimental environments and conditions are listed in Table 2.
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Table 2. Experimental setup.

Display
Information

Display CHANGHONG (55Q3R)

Type and Size LED 55”

Resolution 3840 × 2160

Dynamic contrast ratio 7000:1
Number of subjects 15 subjects (male: 10, female: 5, average age: 25, min: 22, max age: 33)

Viewing distance 1.2 m
Ambient illuminance 200 lux
DCT transform option Floating point, 8 × 8 block size

Test image size (P2) 256 × 256 pixels (covering a parafovea region)
Test patch size (P1) 32 × 32 pixels (resided in a fovea region)

Step 1: A subject is noticed where the distortion will be injected by making the region dark
(Figure 2a).

Step 2: The subject gradually increases the amplitude of distortion for the DCT coefficient until
the viewer perceives the distortion in luminance domain, such as P1 in Figure 2b. Each measured JND
value is a value that 50% of subjects start to perceive as the corresponding distortion.

Step 3: Step 1 and Step 2 are iteratively conducted by going back to Step 1 with the different
presentation, until all test presentations are finished.

Figure 3 shows the experimental results of the subjective experiment. The circle represents the
JND threshold values obtained from the subjective experiment. Normalized pixel intensity of the N
× N TU blocks given by (5) are displayed in the x-axis and JND threshold values are in the y-axis.
Zhang et al. exploit several parabolas to approximate the subjective data curve to build an LM effect
model [28]. Therefore, we also use the method to fit subjective data, the proposed 10-bit MFLM model
is expressed as:

MFLM(µp) =

{
A1 · (1− (µp/0.2)α) + B, µp ≤ 0.2
A2 · (µp − 0.2)β + B, µp > 0.2

(9)

where the parameters can be obtained by subjective experiments and data fitting, then A1 = 4, A2 = 5,
B = 1.5, α = 0.5, and β = 0.8.
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Figure 4 shows that the proposed MFLM model compared with the proposed LM effect model by
Zhang et al. and Kim et al. The luminance range of the Zhang’s and Kim’s is between 0 and 255, and
the JND threshold values are between 1 and 3.2 in Figure 4. When the Zhang’s and Kim’s LM effect
models are utilized to the 10-bit luminance range, the range of JND threshold values are consistent
with 8-bit JND threshold values. Through subjective experiments, the proposed MFLM model does not
only extend the luminance range, but also widens the JND threshold range than the existing LM effect
models. As shown in Figure 4, the MFLM threshold values are between 1.5 and 5.7.
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2.2. The Proposed 10-Bit JND Model Is Suppressed by the GDE Filter

With the dramatic improvement of UHD resolution, the image texture details are more fine and
closer to the natural scene. To analyze the differences between pixels of UHD image/videos, the GDE is
utilized in this paper. Meanwhile, the designed GDE filter is not only applied to divide the image into
the smooth and complex texture region, but also it is utilized to control the extent of imperceptible
noise in different regions of the image. Moreover, the texture of the image has not been considered
in the proposed JLM model and the fixed quantization matrices are used, which limits the ability to
perform precise JND suppression. The GDE is widely utilized in the information theory [29], and is
generally defined as:

H(x) = −
∫ +∞

−∞

p(x) log2 p(x)dx (10)
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where x = I(i, j) expresses the (i, j)-th position pixel, P(x) is a probability density function for arbitrary
pixels, which accord with the Gaussian distribution as follows:

p(x) =
1

√

2πσ2
e−

(x−µ)2

2σ2 , −∞ < x < +∞ (11)

where µ is mean and σ is variance of the image block.
Therefore, (10) and (11) are utilized to deduced as:

H(x) = −
∫ +∞

−∞
p(x) log2 p(x)dx

= 1
2 log2(2πeσ2)

(12)

where the GDE is only related to the σ. Then, it is expressed as:

H(σ) = log2 σ+
1
2

log2(2πe) (13)

The σ-H(σ) curves of ShakeNDry video sequences with eight-bit and 10-bit depth are shown in
Figure 5a,b, moreover they display an approximately logarithmic distribution. The small variance
indicates that the texture of current image block is smooth and allows less imperceptible noise. On the
contrary, the texture of the current image block is more complex and allows for more imperceptible
noise. Thus, the H(σ) reflects the capacity of imperceptible noise in different regions.
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The maximum curvature of the whole curve is taken as the “first-turning” point, which is used
as the threshold to distinguish smooth regions from texture complex regions. Usually, let ρ be the
curvature of the curve, and is expressed as:

ρ =

∣∣∣H′′ (σ)∣∣∣
(1 + H′(σ)2)

2
3

(14)

where H′ and H” are the first derivative and second derivative of σ respectively.
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Finally, the “first-turning” point at (σth, ρ(σth)) which is the maximum curvature of the curve is
obtained as follows:

(σth,ρ(σth)) = Maximum(ρ(σ)) (15)

where the σth is a threshold to divide the image into complex texture and smooth region. In order
to preserve more smooth regions, the “second-turning” point is defined as the threshold. The
“second-turning” point is the maximum curvature of the curve from the “first-turning” point to the
end, then (14) and (15) can be used to obtain as σth ≈ 2.0 and ρ (σth) ≈ 3.0, which are in the intersection
of two red lines as shown in Figure 5a,b.

Table 3 lists statistics of image segmentation region. Specifically, the σ of image blocks is smaller
than σth, the current image blocks are in the smooth region, otherwise are in the complex texture or
edge region. As shown in Table 3, the proportion of the smooth region of the video with 8-bit depth is
larger than the texture region. However, for the video with 8-bit depth, the proportion of texture region
of the UHD video is smaller than the texture region of HD video, because of UHD video containing
more pixels in the same content image area. As shown in Table 3, the proportion of texture region is
larger than smooth region for UHD image with 10-bit depth. Essentially, the UHD images can contain
more texture details for the 10-bit grey luminance range.

Table 3. Statistics of image segmentation region.

One Frame of Ultra-High Definition
(UHD) Video Sequence

Texture
> σth

Smooth
≤ σth

Bosphorus (1920 × 1080-8bit) 10.9% 89.1%
Bosphorus (3840 × 2160-8bit) 3.9% 96.1%

Bosphorus (3840 × 2160-10bit) 96.0% 4.0%
ShakeNDry (1920 × 1080-8bit) 36.8% 63.2%
ShakeNDry (3840 × 2160-8bit) 11.9% 88.1%

ShakeNDry (3840 × 2160-10bit) 95.6% 4.4%
HoneyBee (1920 × 1080-8bit) 12.6% 87.4%
HoneyBee (3840 × 2160-8bit) 3.4% 96.6%
HoneyBee (3840 × 2160-10bit) 99.9% 0.1%

Given the above analysis, the GDE filter is modeled as:

HGDE(x) =


H(x), σ > σth
σ, σ ≤ σth && H(x) ≤ 0
H(x), σ ≤ σth && H(x) > 0

(16)

As shown in Figure 6, one frame of the TrafficFlow video sequence is segmented by HGDE at 8-bit
depth and 10-bit depth respectively. As shown in Figure 6b,d, the texture or edge is white region, and
the smooth region is black region. Noticeably, there are more white regions in 10-bit segmentation
image than in 8-bit segmentation image, since the image with 10-bit depth contains more texture details
than image with 8-bit depth. Because the human eyes are not sensitive to the complex texture details,
the complex texture details are essentially considered as noises for HVS. Thus, the image with 10-bit
depth has a capacity for more perception distortions than the image with 8-bit depth. Meanwhile, the
JND threshold values are mainly exploited in complex texture regions of the image.
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The GDE is expressed as the capacity of noise in different regions of image. Therefore, the JND
threshold values can be suppressed to a certain range by HGDE without causing perceptual distortion,
so the J′LM(µp) is obtained by HGDE filter and it is modeled as:

J′LM(µp) =



H(x), σ > σth && JLM(µp) > H(x)
JLM(µp), σ > σth && JLM(µp) ≤ H(x)
σ, σ ≤ σth && H(x) ≤ 0 && JLM(µp) > H(x)
H(x), σ ≤ σth && H(x) > 0 && JLM(µp) > H(x)
JLM(µp), σ ≤ σth && H(x) > 0 && JLM(µp) ≤ H(x)

(17)

As shown in Figure 7, the proposed JLM threshold values are “blue stars” and the HGDE threshold
values are “red stars”. The proposed JND threshold values increase along with variances, but they all
suppressed by HGDE with imperceptible distortions.
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Figure 7. The JND threshold values distribution of TrafficFlow 3840 × 2160 video sequence with
10-bit depth.
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2.3. Saliency Factor

The human eyes do not view all UHD video contents. Furthermore, the visual focus will not be
fixed in a specific region. Thus, the saliency region is utilized to simulate the change of visual focus
when human eyes view the UHD image/video. Moreover, it better reflects the performance of the
proposed JND model in a global image.

2.3.1. Saliency Region Extraction Algorithm Based on DCT Domain

Hou et al. proposed a simple salient region extraction algorithm using the Fourier transform
(FT) [30]. In order to maintain consistency with the HEVC coding structure and simplify the complexity
of the algorithm, the DCT transform is used to replace the FT transform according to Hou’s method.
Different from Hou’s method, the saliency region is modeled as:

S(x, y) = g(x, y) ·DCT−1[sin(R(u, v) + θ(u, v))]2 (18)

where the g(x, y) is a gaussian filter, which is utilized to smooth the saliency map for better visual
effects. The DCT−1(·) is inverse discrete cosine transform. The residual spectrum of image R(u, v) is
extract in spectral domain and is given by:

R(u, v) = L(u, v) − hn(u, v) · L(u, v) (19)

where hn(·) represents the mean filter. The logarithmic spectrum of image on a log-log scale is defined as:

L(u, v) = log(A(u, v)) (20)

I(x, y) represents one image, the amplitude spectrum of image A(u, v) is obtained by:

A(u, v) = <(DCT(I(x, y))) (21)

and phase spectrum of image θ(u, v) is obtained by:

θ(u, v) = =(DCT(I(x, y))) (22)

where DCT(·) is denoted as a discrete cosine transform.
Figure 8b is the extracted saliency region based on Hou’s method and Figure 8c is the saliency

region based on the proposed saliency extraction algorithm. As shown in Figure 8b,c, the saliency
region of the proposed algorithm is consistent with Hou’s.
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Figure 8. Comparison of the extracted saliency region with Hou’s and the proposed method; (a) original
image, (b) based on FT, (c) based on DCT.
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2.3.2. The Proposed JND Model Based on the Saliency Weight Factor

Through using the proposed saliency region extraction algorithm, we continue to obtain the JND
model based on saliency weight factor. Firstly, the object map is expressed as:

µs =
∑

N

∑
N

S(x, y)/(N ·N) (23)

where µ is N × N the normalized intensity of saliency.

Kth = β · µs (24)

The selection of Kth is a trade-off problem between false alarm and the neglect of objects. According
to [30] and subject experiments, we set β = 1.5 empirically. Thus, the object map O(x, y) in a saliency is
defined as:

O(x, y) =
{

1, i f S(x, y) ≥ Kth
0, otherwise

(25)

According to the characteristics of human subjective perception, small JND thresholds are utilized
to saliency regions, while the large JND thresholds are utilized to non-saliency regions. Therefore, the
saliency regions are inversely proportional to saliency weight factor γ and the γ is given by:

γ = A− α · µ0 (26)

where the parameter α is measure factor. µ0 ∈ [0, 1] is normalized intensity of binary saliency image
block with a size of N × N and expressed as:

µo =
∑

N

∑
N

O(x, y)/(N ×N) (27)

According to (17), the JND threshold values of the current image block are not larger than the
HGDE. Thus, the conditional relation is obtained as:

0 < γ · J′LM ≤ J′LM ≤ HGDE(x) (28)

where J′LM is suppressed by HGDE, then the range of values γ can be deduced as:

0 < γ ≤ 1 (29)

According to (28) and (29), the range of parameter α can be obtained, that is α ∈ [0, 1], then the
parameter A can be deduced as:

A= 1 (30)

in order to obtain a large control range, the parameter α = 0.9.
Therefore, the JND model based on saliency weight factor is given by:

JGDE−S = γ · J′LM (31)

As Figure 9b shows, one frame of CatRobot1 UHD video sequence is contaminated by the
proposed JND values. Compared with Figure 9a, there are no obvious subjective visual distortion
loss in Figure 9b. There are three colored (red, yellow and blue) boxes in Figure 9 to show the visual
differences clearly. Figure 9c shows the distribution of J′LM threshold values, where the white regions
represent that the JND values are more lager than the JND values in black or grey regions. Because the
HGDE divides the image into complex texture regions and smooth regions, JND threshold values are
mainly embedded in texture regions or edge regions of the image. Figure 9d shows the distribution of
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proposed JGDE-S threshold values. There are some saliency weight factors are incorporated into the
J′LM model. Figure 9f shows the saliency image of Figure 9a, and as shown in Figure 9d, the edge
region of saliency object is not embedded or embedded with small JND threshold values. Therefore,
the edge regions of saliency object are protected to avoid the distortion of the edge region which could
often cause significantly visual perception. Figure 9e shows that the difference region is the same as
Figure 9b.
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Figure 9. The fourth frame of the CatRobot1 (3840 × 2160) video sequence is contaminated by the
proposed JGDE-S model. (a) Original image, (b) contaminated image, (c) J′LM image (without saliency
weight factor), (d) JGDE-S image (with saliency weight factor), (e) difference image of (a) and (b),
(f) saliency image.

The temporal masking is not considered and incorporated into our proposed JND model through
weighing encoding time and efficiency. Because the reuse of CU or TU block motion vectors are
obtained in the HEVC recursively coding process, they are uncertain true motion vectors. Meanwhile,
the precise temporal JND values are hard to calculate with these motion vectors, which may cause
to bring additional visible distortions. Moreover, the calculation of the temporal masking model is
computationally heavy because of the HEVC recursively coding process.
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3. A JND-Based HEVC-Complaint PVC Scheme Using Distortion Compensation

3.1. Overall Architecture of the Proposed PVC Scheme

The proposed JGDE-S model is incorporated into an HEVC Test model (HM 16.9) reference
software [31], and the JND-based perceptually HEVC-complaint video coding is proposed. Figure 10
shows the whole flowchart of proposed PVC encoder. Firstly, a CU block is split into some TU blocks
according to the rate distortion (RD) cost. If the parent TU block is split into four sub-TU blocks
further, then each sub-TU block is decided to continue splitting by RD cost of the parent TU and its
children TUs respectively, else the transform coding process is carried out directly. The transform
coding process is mainly divided into DCT transform and quantization. As shown in the “red dot box”
of Figure 10, the average pixel value and the variance of the current N × N TU block is calculated, then
the saliency factor is obtained in DCT domain, finally the proposed JGDE-S threshold is modeled.
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Figure 10. Flowchart of the proposed perceptual visual coding (PVC) encoder.

Figure 11 shows the JND suppression example for 1-D transform coefficients. It is the distribution
before JND suppression in Figure 11a, where the red dot line is represented the JND threshold. As
(32) shows, if the amplitudes of transform coefficients |C(n, i, j)| < JGDE-S, then the after suppression
transform coefficients |C′(n, i, j)| is set to zero. Otherwise, the |C′(n, i, j)| is equal to |C(n, i, j)| − JGDE-S.
Through the above decision, the transform coefficients of complex texture regions or unperceived
regions by the HVS are set to zero, and the transform coefficients of smooth regions or perceived regions
are decreased by JND suppression. Since the zero or smaller transform coefficients are discarded in
the quantization processing, the encoding bitrates are saved, and the coding compression efficiency is
further to improved.

∣∣∣C′(n, i, j)
∣∣∣ = {

0,
∣∣∣C(n, i, j)

∣∣∣− JGDE−S ≤ 0∣∣∣C(n, i, j)
∣∣∣− JGDE−S, otherwise

(32)
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As Figure 12 shows, the “red bars” are the absolute values of 1-D transform coefficients before
suppression and the “blue bars” are the absolute values of 1-D transform coefficients after suppression
with proposed JND threshold. As Figure 12 shows, we can draw the following two conclusions.
First, the amplitudes of “blue bars” are all lower than the “red bars” because of the suppression with
proposed JND threshold values. Second, the distributions of the “blue bar” are sparser than “red bars”,
because the lower absolute values of coefficients than the JND threshold values are suppressed to zero.
This explains that parts of the transform coefficients are suppressed by proposed JND threshold values.
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Figure 12. A 32 × 32 residual transform unit (TU) coding block of the BasketballPass video sequence
under the random access (RA) main10 configuration at quantization parameter (QP) = 22.

3.2. The Proposed JND-Based HEVC-Complaint PVC Scheme using Distortion Compensation

Because the residuals of CU blocks are utilized in HEVC recursively coding process, the subsequent
coding performance is influenced on the reconstructed image quality. For the transform coefficient
based on the JND suppression method, a certain distortion of the reconstructed image will be produced,
and then the coding errors are accumulated recursively in the encoding process. Therefore, how to
control the distortion caused by JND suppression is the key to determining the final coding performance.
Obviously, the distortions directly affect the RD cost of encoding process, and RD cost is the basis for
judging the selection of encoding mode and CU partition. In (33), the RD cost function JRDO is composed
of distortion D, bitrate R and Lagrange factor λ, which has a relationship with quantization step.

JRDO = D + λ ·R (33)
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Kim et al. control the distortion caused by JND suppression through incorporating the distortion
compensation factor into RDO of the encoding process [21]. However, Kim’s method needs to
calculate the dequantization DCT coefficients without JND suppression, which increases computational
complexity. The proposed distortion compensation factor only needs to calculate the absolute value of
the difference between the DCT coefficients before and after suppression. Moreover, the distortion
compensation control factor (DCCF) under different QPs are introduced to control the extent of
distortion compensation more efficiently.

J′RDO = 1/ψq · ε ·D + λ ·R (34)

Equation (34) is the proposed rate-distortion (RD) cost function J′RDO, where ε is the distortion
compensation factor (DCF) and ψq is DCCF.

The DCF is calculated by (35), where the JGDE-S(n, i, j) represents the (i, j)-th JND threshold values
of the n-th block.

ε =
∑

N

∑
N

JGSE−S(n, i, j)
/∑

N

∑
N

∆C′′ (n, i, j) (35)

The ∆C”(n, i, j) is the absolute value of the difference between transform coefficient before
suppression and transform coefficient after suppression and is defined as (36). The DCF is large when
∆C”(n, i, j) is small, which means that the distortion caused by JND suppression is small at this time.
Therefore, a large distortion D and small DCCF are allowed in the RD cost function. Otherwise the
distortion caused by JND suppression is large, then the distortion D in the RD cost function needs to
be reduced.

∆C′′ (n, i, j) =
∣∣∣C′(n, i, j) −C(n, i, j)

∣∣∣ (36)

Usually, the coding distortion of the video is smaller when using a small QP than the use of a
large QP. As shown in Figure 13a,b, the subjective and objective (PSNR) quality of encoded frame
when using QP = 19 is higher than that of encoded frame when using QP = 40. The encoding process
causes high coding distortion because of using a large QP, and there is no chance to further suppress
perceptual redundancy. Therefore, the large DCF is adopted to the RDO process. Otherwise, the small
DCF is adopted to the RDO process and more bitrates are saved. Therefore, a DCCF is applied to
control the extent of DCF under different QPs. When the QP value is greater than 40, because the
objective and subjective quality of encoded video decreases significantly, the small DCCF is utilized.
In order to get the relationship between DCCF and QPs, the designed decision is shown in (37), where
q is a vector of QPs and q = [22 27 32 37]. Therefore, ψq represents the difference of PSNR between
q , 37 and q = 37 or the difference of PSNR between q = 37 and q = 40.

ψq =

{
PSNRq − PSNR37, q , 37
PSNRq − PSNR40, q = 37

(37)

In Figure 14, the statistics are come from different scenarios of HD and UHD sequences at different
QPs under the random access (RA) and low delay (LD) configurations. As shown in Figure 14, we
can obtain the values of ψq (in ordinate) are large at small QPs and the curves are smooth at high
QPs. Essentially, the objective and subjective quality of encoded video are high at the small QP and
more perceptual distortions are acceptable. Thus, the DCF is reduced and DCCF should be increased
appropriately. On the contrary, in order to ensure the subjective and objective quality of the encoded
video, and allow for small perceptual distortion, the DCF should be increased while the DCCF should
be reduced.
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Figure 13. The 34th encoded frame of the Cactus video sequence with QP = 19 and QP = 40 under the
RA mian10 configuration of HM 16.9. (a) The subjective and objective quality (PSNR) of the encoded
frame is 40.10 dB with QP = 19; (b) the PSNR of encoded frame is 31.30dB with QP = 40.
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From the above statistical results, average values of ψq are set to DCCF under different QPs.
Figure 15 shows the polynomial fitting curves based on the statistics in Figure 14. The ψq decrease with
increasing QPs, and ψq is larger in LD configuration than in RA configuration, because the encoding
usually operates with smaller prediction errors under the RA configuration than that under the LD
configuration for different QPs. The ψq is given by:

ψq =

{
0.013 ·QP2

− 1.109 ·QP + 24.641, f or RA
0.015 ·QP2

− 1.294 ·QP + 28.310, f or LD
(38)

where (38) shows the fact that the high ψq is utilized at small QPs. On the contrary, the small ψq is
utilized at high QPs. It is consistent with the results shown in Figure 14.
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4. Experimental Results

4.1. Verification of the Proposed JGDE-S Model

The HD and UHD videos are mainly provided by [32] and Joint Video Exploration Team (JVET).
For a wide FOV of 4K UHD video/image, it is not appropriate to apply the adjectival categorical
judgment (ACJ) method, which shows the reference images (left) and test images (right) at the same
time. To verify the effectiveness of the proposed JGDE-S model for 4K UHD video/image, subjective
viewing tests are conducted based on double-stimulus continuous quality-scale (DSCQS) where A
(a reference sequence) and B (a sequence to be compared) are pseudo-randomly ordered for each
presentation [33,34]. For the subjective of still picture, the sequence A consists of one frame from
4K UHD video sequence. Then sequence A is contaminated by (40) to form sequence B as shown
in Figure 16. However, a 3–4 s sequence and five repetitions (voting during the last two) may be
appropriate for still picture [33,34]. The display condition is the same as the one in Table 2. The viewing
distance is set to 2.1 m which is appropriate for a 55-inch 4K UHD display. A total of 15 subjects
have participated in the subjective quality assessment experiments where all of them have normal
vision power.
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Figure 16. The double-stimulus continuous quality-scale (DSCQS) method for the movie video sequence.

According to [33,34], the both A and B are evaluated with subjective voting scores ranged from 0
to 100 for the worst and the best visual qualities, respectively. The differential mean opinion score
(DMOS) value is defined as:

DMOS = MOSPVC −MOSORI (39)

where MOSPVC and MOSORI are the measured mean opinion score (MOS) values from the image
contaminated by the JND and the original image of sequence.

According to (40), the C(n, i, j) represent the (i, j)-th DCT coefficient of the n-th block, the C′(n, i,
j) is the (i, j)-th DCT coefficient of the n block that is contaminated by random noise, Srand(n, i, j) is
random noise with the value of +1 or −1 randomly.

C′(n, i, j) = C(n, i, j) + Srand(n, i, j) · JND (40)

Table 4 lists the comparison of the Kim’s CM-JND and the proposed JGDE-S models in terms of
PSNR and DMOS values. As shown in Table 4, the average PSNR values of the Kim’s CM-JND and the
proposed JND model are 52.77 dB and 49.82 dB respectively, and their corresponding DMOS values are
both −0.1. That is, the proposed JND model produces 2.95 dB lower average PSNR at the same visual
quality level compared with the Kim’s CM-JND model. The DMOS value of −0.1 indicates that most of
subjects rarely distinguish the distorted images compared to the original ones. The results show that
the proposed JGDE-S model is more appropriate to image with 10-bit depth than Kim’ JND model.
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Table 4. Subjective experiments for 10-bit 4K UHD image.

Test Image
(3840 × 2160)

10-Bit Depth

Kim Pro.

PSNR (dB) Differential Mean Opinion Score (DMOS) PSNR (dB) DMOS

Beauty 50.42 −0.1 48.25 −0.1
Bosphorus 53.56 −0.1 50.82 −0.0
HoneyBee 53.28 −0.0 49.05 −0.0

Jockey 53.03 −0.1 49.40 −0.1
ReadySetGo 52.75 −0.0 49.95 −0.1
ShakeNDry 52.78 −0.0 48.71 −0.0
YachtRide 53.62 −0.1 50.66 −0.1
TrafficFlow 52.74 −0.1 49.48 −0.1
Campfire 52.74 −0.0 52.08 −0.0

Avg. 52.77 −0.1 49.82 −0.1

4.2. Objective and Subjective Performance Evaluation for the Proposed PVC Scheme

To verify the effectiveness of the proposed HEVC-compliant PVC scheme, the proposed JGDE-S
model is implemented into HM 16.9, and it is compared with the original HM 16.9 and Kim’s PVC
scheme [21]. Because Kim’s PVC is proposed in harmonization with HM 11.0 and also used in the
RDO-based encoding process, the Kim’s PVC is re-implemented into HM 16.9 for fair comparison in
this paper. The test sequence used for the experiments include eight different scenes of 4k UHD video
sequences in the 4:2:0 color format. Because 10-bit depth is used as the mainstream for 4K UHD videos,
the LD and RA configuration based on 10-bit depth are used for all experiments with a set of fixed
quantization parameters, such as QP = 22, 27, 32, and 37.

We compare the original HM 16.9, Kim’s PVC and proposed PVC in terms of bitrate reduction
and encoding time to verify the objective RD performance and encoder complexity. Then we also use
DMOS values to verify subjective quality assessment. The bitrate reduction is represented as (41),
between the original HM16.9 and the proposed (Kim’s and our) PVC scheme.

∆R =
RPVC −Rori

Rori
× 100% (41)

and encoding time is represented as:

∆T =
TPVC − Tori

Tori
× 100% (42)

where Rori and Tori are the bitrates and encoded time produced by the original HM 16.9. where RPVC
and TPVC are the bitrates and encoded time produced by proposed or Kim’s PVC scheme. The proposed
PVC scheme are also compared via subjective quality assessment experiments. For this, the DSCQS
method is employed for subjective evaluation and the experimental set as Section 4.1. For movie
video sequence, A and B are respectively presented to last 10 s and 3 s dummy videos are inserted
between them as Figure 16 shows, where one test sequence is a reconstructed sequence encoded by the
original HM 16.9, and the other is a reconstructed sequence encoded by proposed PVC or Kim’s PVC.
The presentation order of the two test sequences are randomly selected for each presentation. The
subjective voting scores are set the same as Section 4.1.

Tables 5–7 show the objective and subjective test results for the proposed PVC scheme, the Kim’s
PVC scheme and the original HM 16.9 under LD and RA Main10 profiles, respectively. For performance
in terms of bitrate reduction, the proposed PVC scheme outperforms Kim’s PVC scheme for all the
test sequences and all the four QP values, yielding the average ∆R = 32.98%, the maximum ∆R =

80.89% under the LD profile and the average ∆R = 28.61%, the maximum ∆R = 66.04% under the
RA profile for the ‘DaylightRoad2’ sequence at QP = 22. The maxim bitrate reduction obtained from
the ‘DaylightRoad2’ sequence is due to the fact that it contains richer scenes and a lot of complex
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texture regions throughout all the frames. Therefore, it contains more noise which is insensitive to
visual perception so that the proposed PVC scheme effectively suppresses the transform coefficients in
those regions.

Table 5. Bit rate and encoding complexity comparison of LD configuration.

Sequence QP Bitrates (kpbs) ∆R (%) ∆T (%)

HM Kim Pro. Kim Pro. Kim Pro.

Tango2

22 37,173 25,339 13,945 −31.83 −62.49 9.92 4.68
27 11,282 9327 7441 −17.33 −34.05 17.61 8.70
32 5715 5485 5150 −4.02 −9.89 24.93 22.54
37 3205 3150 3139 −1.72 −2.06 24.94 23.95

Drums100

22 152,613 55,726 37,854 −63.49 −75.20 5.44 −12.7
27 37,861 26,516 17,501 −29.96 −53.78 15.33 8.01
32 15,041 13,747 12,419 −8.60 −17.43 24.39 20.10
37 7441 7225 6850 −2.90 −7.94 25.62 22.19

Campfire

22 100,798 51,279 34,100 −49.13 −66.17 10.68 −6.70
27 29,612 24,236 15,683 −18.15 −47.04 15.65 5.47
32 13,141 12,453 11,208 −5.24 −14.71 29.09 18.88
37 7359 7152 6585 −2.81 −10.52 30.24 22.13

Toddler-Fountain2

22 272,351 184,980 175,151 −32.08 −35.69 13.12 8.91
27 133,188 79,831 78,904 −40.06 −40.76 16.49 10.88
32 60,899 38,526 51,470 −36.74 −15.48 19.65 24.38
37 26,596 18,690 24,087 −29.73 −9.43 22.75 27.09

CatRobot

22 44,763 25,649 14,713 −42.70 −67.13 7.62 −1.80
27 12,316 9980 7414 −18.97 −39.80 10.76 10.24
32 6082 5692 5097 −6.41 −16.20 25.85 21.83
37 3306 3222 2930 −2.54 −11.37 26.01 23.85

Traffic-Flow

22 9848 6094 3448 −38.12 −64.99 9.63 1.49
27 2855 2363 1616 −17.23 −43.40 15.54 15.54
32 1254 1132 1085 −9.73 −13.48 25.35 21.52
37 630 628 614 −0.32 −2.54 26.05 23.73

Daylight-Road2

22 83,299 27,497 15,922 −66.99 −80.89 7.84 −9.72
27 14,549 9970 7173 −31.42 −50.70 15.26 7.48
32 6608 5831 5127 −11.76 −22.41 26.19 21.88
37 3364 3054 2881 −9.22 −14.36 27.49 24.45

Roller-coaster2

22 31,689 22,893 12,844 −27.76 −59.47 4.89 −2.20
27 11,672 10,450 6333 −10.47 −45.74 13.10 5.32
32 5200 5040 4457 −3.77 −14.29 23.31 19.22
37 2688 2646 2528 −1.56 −5.95 24.89 22.84

Avg. - − − − −21.02 −32.98 18.61 12.94

Tables 5 and 6 show that the ∆R values are usually decreased as QP values increase for both PVC
schemes. This is because the distortions introduced by quantization errors are high enough with QP
values increasing, in order to maintain high objective quality, thus resulting in almost no room for
coefficient suppression and making the coefficient suppression relatively less contribute to the total
bitrate reduction. Compared to the Kim’s PVC scheme, the proposed PVC scheme achieves remarkably
higher bitrate reductions with higher objective and subjective quality than Kim’s for all test sequences
at different QPs. In order to reach a large extent of suppression for DCT coefficients, the JND threshold
values are scaled to a large threshold values in Kim’s PVC. Therefore, the reconstruction distortions
of TU residual block are increased to cause the lower objective and subjective quality than proposed
PVC scheme. Given that the DCCF is utilized in the proposed PVC scheme to control the extern of
distortions, the proposed PVC scheme more effectively suppresses the transform coefficients than
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the Kim’s JND suppression. In particular, this is because the objective and subjective video quality
encoded by proposed PVC scheme is higher than Kim’s PVC scheme.

Table 6. Bit rate and encoding complexity comparison of RA configuration.

Sequence QP Bitrates (kpbs) ∆R (%) ∆T (%)

HM Kim Pro. Kim Pro. Kim Pro.

Tango2

22 35,848 22,115 16,659 −38.31 −53.53 17.74 8.34
27 10,511 9224 7399 −12.24 −29.61 21.02 23.32
32 5386 5067 4776 −5.92 −11.33 38.41 32.22
37 3072 3040 2917 −1.04 −5.05 39.08 34.53

Drums100

22 125,145 70,489 45,109 −43.67 −63.95 8.65 −3.01
27 36,429 26,449 21,078 −27.40 −42.14 20.26 18.51
32 15,608 14,090 13,229 −9.73 −15.24 41.02 29.86
37 8003 7870 7414 −1.61 −7.36 41.44 31.83

Campfire

22 79,100 50,370 34,004 −36.32 −57.01 11.22 1.93
27 26,395 21,733 14,980 −17.66 −43.25 19.63 13.85
32 11,414 10,365 9655 −9.19 −15.41 43.84 28.96
37 6485 6223 5765 −4.04 −11.10 46.70 33.55

Toddler-Fountain2

22 236,874 171,444 151,512 −27.62 −36.03 25.56 10.90
27 109,785 78,272 67,705 −28.70 −38.33 24.65 15.26
32 49,085 36,675 41,910 −25.28 −14.62 25.54 30.67
37 21,776 18,756 19,609 −13.87 −9.95 32.57 34.04

CatRobot

22 46,842 35,783 20,886 −23.61 −55.41 11.37 8.47
27 13,245 11,526 9017 −12.98 −31.92 11.64 24.02
32 6756 6242 5749 −7.61 −14.91 41.90 33.67
37 3804 3764 3409 −1.05 −10.38 42.06 35.20

Traffic-Flow

22 14,151 11,277 5928 −20.31 −58.11 18.46 13.10
27 3965 3339 2676 −15.79 −32.51 31.58 21.22
32 1850 1754 1627 −5.19 −12.05 44.47 34.81
37 971 942 923 −2.97 −4.94 44.17 36.76

Daylight-Road2

22 80,460 43,424 27,325 −46.03 −66.04 11.87 −2.45
27 15,401 12,109 9201 −21.38 −40.26 28.38 18.03
32 7242 6142 5873 −15.19 −18.90 37.68 28.90
37 3821 3529 3365 −7.64 −11.93 38.57 32.01

Roller-coaster2

22 28,274 20,336 14,506 −28.08 −48.69 16.33 9.80
27 11,185 9031 6887 −19.26 −38.43 17.73 19.30
32 5319 5011 4544 −5.79 −14.57 38.31 30.30
37 2891 2838 2816 −1.83 −2.59 40.75 30.66

Avg. - - - - −16.79 −28.61 29.14 22.45

It is noticed that the average bitrate reduction ratios for the test PVC schemes under the RA profile
are slightly smaller than those obtained under the LD profile. This is because the encoding under the
RA profile usually operates with smaller prediction errors than that under the LD profile. That is,
there exist smaller chances for both the proposed JGDE-S suppression and Kim’s suppression on the
transform coefficients of residues under the RA profile.

As shown in Tables 5 and 6, the proposed PVC scheme increases the total encoding time only with
average 12.94% and 22.45% under LD Main10 and RA Main10 profiles compared to the original HM
16.9, respectively. Because the temporal masking is not considered and the proposed simple distortion
compensation factor is utilized in our PVC scheme, the proposed PVC scheme is lower in complexity
than Kim’s.

Table 7 shows that the PSNR is a little degradation than the original PSNR for the proposed
PVC scheme, and Kim’s PVC scheme. However, the PSNR of the proposed PVC scheme is higher
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than Kim’s. Usually the objective quality is not very well correlated to perceived visual quality, thus
subjective quality is also an important measurement to assessment PVC scheme. For the subjective test
results shown in Table 7, Kim’s and the proposed PVC scheme have statistically almost zero average
DMOS values, yielding rarely visible distortion. The subjective quality of the proposed PVC scheme
is higher than Kim’s PVC scheme. For example, the character details and edges are clearer compare
with Kim’s PVC scheme in the yellow boxes of Figures 17 and 18, due to the effect of different QPs on
distortion considered in the proposed PVC scheme.

Table 7. Objective and subjective quality comparison of LD and RA configurations.

Configuration LD RA

Sequence QP PSNR (dB) DMOS PSNR (dB) DMOS

HM Kim Pro. Kim Pro. HM Kim Pro. Kim Pro.

Tango2

22 40.46 38.93 38.91 −0.1 −0.1 40.31 38.80 39.26 −0.1 −0.1
27 39.59 38.01 37.85 −0.6 −0.2 39.57 37.94 38.40 −0.6 −0.3
32 38.46 36.63 37.56 −0.8 −0.1 38.56 36.64 37.85 −0.8 −0.1
37 36.90 35.05 36.14 −0.8 −0.3 37.15 35.14 36.55 −0.8 −0.5

Drums100

22 42.31 37.08 38.05 0.0 0.0 41.47 37.21 38.63 0.0 0.0
27 39.30 35.57 36.31 −0.2 −0.1 39.10 35.86 37.13 −0.2 −0.1
32 36.97 34.01 35.91 −0.2 −0.2 37.08 34.24 36.23 −0.2 −0.1
37 34.62 32.33 33.88 −0.4 −0.2 34.94 32.61 34.29 −0.4 −0.2

Campfire

22 40.28 36.00 36.46 −0.2 −0.2 39.32 35.76 36.50 −0.4 −0.3
27 37.38 34.67 35.20 −0.3 −0.3 37.07 34.39 35.11 −0.3 −0.5
32 35.67 33.24 34.86 −0.4 −0.4 35.43 32.94 34.59 −0.5 −0.5
37 33.88 31.90 33.29 −0.4 −0.3 33.65 31.67 33.02 −0.5 −0.3

Toddler-Fountain2

22 40.78 32.13 36.29 0.0 0.0 39.78 31.68 35.37 0.0 0.0
27 37.06 29.89 32.90 −0.2 −0.1 35.88 29.62 32.12 −0.2 −0.1
32 33.52 28.29 32.41 −0.3 −0.2 32.53 29.63 31.52 −0.3 −0.2
37 30.59 26.99 30.01 −0.5 −0.3 29.90 26.73 29.34 −0.5 −0.3

CatRobot

22 40.28 38.21 38.28 0.0 0.0 40.23 38.14 39.03 0.0 0.0
27 38.96 37.11 36.95 −0.1 0.0 39.17 37.18 37.93 −0.3 0.0
32 37.34 35.65 36.42 −0.3 0.2 37.75 35.82 37.02 −0.4 0.2
37 35.31 33.84 34.56 −0.5 −0.1 35.90 34.06 35.26 −0.7 −0.1

Traffic-Flow

22 39.84 38.70 38.48 −0.1 −0.4 39.89 38.49 38.90 −0.1 −0.5
27 38.62 37.80 37.46 −0.2 −0.4 38.82 37.66 37.97 −0.3 −0.5
32 37.27 36.58 36.66 −0.1 −0.3 37.55 36.34 37.05 −0.6 −0.3
37 35.63 35.01 35.12 0.0 −0.2 36.02 34.80 35.61 −0.7 −0.2

Daylight-Road2

22 38.04 36.03 36.13 0.0 0.0 37.91 36.02 36.63 0.0 0.0
27 36.87 35.12 35.11 −0.1 0.0 36.95 35.30 35.84 −0.2 0.0
32 35.65 33.98 34.75 −0.4 −0.1 35.89 34.26 35.23 −0.5 −0.1
37 34.03 32.59 33.28 −0.5 −0.2 34.41 32.85 33.86 −0.7 −0.2

Roller-coaster2

22 45.17 41.14 41.18 −0.2 −0.1 44.76 41.22 42.22 −0.2 −0.1
27 42.81 39.34 39.09 −0.4 −0.3 42.70 39.57 40.13 −0.5 −0.3
32 40.19 37.40 38.54 −0.5 −0.3 40.33 37.59 39.06 −0.5 −0.3
37 37.61 35.35 36.06 −0.6 −0.4 37.92 35.45 36.98 −0.7 −0.4

Avg. - 37.86 35.14 36.07 −0.3 −0.2 37.75 35.18 36.39 −0.4 −0.2
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Figure 17. The 12th encoded frame of ToddlerFountain2 video sequence with QP = 32 under the LD 
mian10 configuration. (a) The encoded image with original HM 16.9, (b) the encoded image with 
Kim’ PVC, (c) the encoded image with proposed PVC. 
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Figure 17. The 12th encoded frame of ToddlerFountain2 video sequence with QP = 32 under the LD
mian10 configuration. (a) The encoded image with original HM 16.9, (b) the encoded image with Kim’
PVC, (c) the encoded image with proposed PVC.
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Figure 17. The 12th encoded frame of ToddlerFountain2 video sequence with QP = 32 under the LD 
mian10 configuration. (a) The encoded image with original HM 16.9, (b) the encoded image with 
Kim’ PVC, (c) the encoded image with proposed PVC. 
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Figure 18. The 47th encoded frame of Tango2 video sequence with QP = 32 under the RA mian10
configuration. (a) The encoded image with original HM 16.9, (b) the encoded image with Kim’s PVC,
(c) the encoded image with the proposed PVC.

From the objective and subjective test results, the proposed PVC scheme achieves significant
bitrate reduction at the same perceptual quality with little increment in encoder complexity compared
to the original HM 16.9, and outperforms the Kim’s PVC scheme about two times the average bitrate
reduction ratio. The superiority of the proposed PVC scheme comes from the fact that the proposed
JND model is more appropriate to UHD videos with 10-bit depth and the designed DCCF which
minimize the bitrate for different QPs under high PSNR. Thus, the proposed PVC scheme can reduce
more bitrates than Kim’s PVC scheme under the higher PSNR.

5. Conclusions

A perceptual friendly JND-based HEVC-compliant PVC scheme is proposed in this paper. To better
reflect the UHD image/video perception characteristics of HVS, a simple JGDE-S model is proposed by
appropriately subjective experiments. For example, a LM effect for UHD image/video with 10-bit depth
is modeled, and it is suppressed by GDE filter which control the extent of imperceptible noise for image.
In addition, a DCT-based saliency factor is added into proposed JND model according to the FOV of
UHD image/video. A simple transform coefficient suppression method with JND model is proposed in
harmonization with the transform and quantization process of HM16.9 in a HEVC-complaint manner.
Perceptual distortion is also appropriately compensated in the RDO process by incorporating the
proposed DCF. In order to efficiently control the extent of the distortion compensation based on
different QPs, the DCCF is also incorporated to RDO process. In objective and subjective experiments,
the proposed HEVC-compliant PVC scheme yielded a remarkable bitrate reduction of 32.98% average
for LD configuration and 28.61% average for RA configuration with a negligible subjective quality loss.
It only causes an average of 12.94% and 22.45% encoding time increase under LD and RA configuration
compared to the original HM 16.9, respectively. However, the proposed PVC scheme can reduce more
bitrates with higher objective and subjective quality assessment and is computationally faster than the
Kim’s PVC. There are still some shortages and improvements in this paper, and we conclude as follow:
(1) The proposed JND model is not considered in the chroma domain. (2) We only considered that
the encoding OPs lead to the different extent of perceptual distortion in the RDO process. The other
encoding characters are explored in our future work.
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