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Abstract: Entropy is an uncertainty measure of random variables which mathematically represents
the prospective quantity of the information. In this paper, we mainly focus on the estimation for the
parameters and entropy of an Inverse Weibull distribution under progressive first-failure censoring
using classical (Maximum Likelihood) and Bayesian methods. For Bayesian approaches, the Bayesian
estimates are obtained based on both asymmetric (General Entropy, Linex) and symmetric (Squared
Error) loss functions. Due to the complex form of Bayes estimates, we cannot get an explicit solution.
Therefore, the Lindley method as well as Importance Sampling procedure is applied. Furthermore,
using Importance Sampling method, the Highest Posterior Density credible intervals of entropy are
constructed. As a comparison, the asymptotic intervals of entropy are also gained. Finally, a simulation
study is implemented and a real data set analysis is performed to apply the previous methods.

Keywords: inverse Weibull distribution; entropy; progressive first-failure censored sample;
maximum likelihood estimation; asymptotic interval; Lindley method; importance sampling
procedure; highest posterior density credible interval

1. Introduction

Usually, in lifetime experiments, due to the restrictions of limited time and cost, accurate product
lifetime data cannot be observed so we have censored data. The most common censoring schemes
are so-called Type-I and Type-II censoring. In the first one, place N units in a life experiment and
terminate the experiment after a predetermined time; for the other, terminate the experiment after
the predetermined units number m has failed. Progressive censoring is a generalization of Type-II
censoring which permits the units to be randomly removed at various time points instead of the end
of the time.

Compared to conventional Type-I and Type-II censoring, progressive censoring, i.e., withdrawal
of non-failed items, decreases the accuracy of estimation. However, in certain practical circumstances,
experimenters are forced to withdraw items from tests. Thus, the application of the progressive
censoring methodology allows profiting from information related to withdrawn items.

When the above methods still fail to meet the time and cost constraints, to further improve
efficiency, other censoring schemes are successively filed by researchers. One of the successful attempts
is the first failure censoring. In this censoring scheme, N = k X n units are assigned to n groups in
random with k identical units in each group. The lifetime experiment is conducted by testing all groups
simultaneously until the first failure is observed in each group.

Since progressive censoring and first-failure censoring can both greatly enhance the efficiency
of the lifetime experiment, Ref. [1] united these two items and developed a novel censoring scheme
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called the progressive first-failure censoring. In this censoring, N = k x n samples are divided into
n disjoint groups in random with k identical units at the beginning of the life experiment, and the
experiment is terminated when the mth unit fails. When the ith unit fails, the group containing the
ith is removed together with R; randomly selected groups, and when the mth fails, all the surviving
groups are removed. Here, R = (Rj, ..., Ry;) and m are set in advance. Note that

(1) When k = 1, the progressive first failure censoring can be reduced to the well-known
progressive Type-II censoring.

(2) When Ry = Ry = - - - = Ry, = 0, this censoring becomes the mentioned first-failure censoring.

B)Whenk =1,R; =Ry = -+ = Ry—1 = 0and Ry, = n — m, this censoring corresponds to

Type-II censoring.

Since it is more efficient than other censoring schemes, many researchers have discussed the study
of the progressive first-failure censoring. Ref. [2] considered both the point and interval estimation of
two parameters from a Burr-XII distribution when both of the parameters are unknown; Ref. [3] dealt
with the reliability function of GIED (Generalized inverted exponential distribution) under progressive
first-failure censoring; Ref. [4] established different reliability sampling plans using two criteria from a
Lognormal distribution based on the progressive first-failure censoring; Ref. [5] chose a competing
risks data model under progressive first-failure censoring from a Gompertz distribution and estimated
the model using Bayesian and non-Bayesian methods; Ref. [6] considered the lifetime performance
index (Cr) under the progressive first-failure censoring schemes of a Pareto model, solved the problem
of the hypothesis testing of C, and gave a lower specification limit.

The Weibull distribution is used in a widespread manner in analyzing lifetime data. Nevertheless,
the Weibull distribution possesses a constant, decreasing or increasing failure rate function, its failure
rate function cannot be non-monotone, such as unimodal. In practice, if the research shows that the
empirical failure rate function is non-monotone, then the Inverse Weibull model is a more suitable choice
than the Weibull model. The Inverse Weibull model has a wide variety of applications in pharmacy,
economics and chemistry.

The cumulative distribution function and the probability density function of the Inverse Weibull
distribution (IWD) are separately written as

—

Flx;a,A) = e 1)
and
flxa,A) = ade Myl )

where x > 0,A > 0,a > 0, A is the scale parameter and « is the shape parameter.
The failure rate function is

ale M x—a-l

h(x;a,A) = e

One of the most important properties of the IWD is that its failure rate function can be unimodal.
Figure 1 also evidently supports this conclusion, and we can observe that the distribution whose
failure rate function is unimodal is more flexible in application.

Many researchers have studied the Inverse Weibull distribution. Ref. [7] invesigated the Bayesian
inference and successfully predicted the IWD for the type-II censoring scheme; Ref. [3] not only
considered the Baysian estimation but also the generalized Bayesian estimation for the IWD parameters;
Ref. [9] used three classical methods to estimate the parameters from IWD; Ref. [10] estimated the
unknown parameters from IWD under the progressive type-I interval censoring and chose the optimal
censoring schemes; Ref. [11] adopted two methods to get bias corrections of unknown parameters
using maximum likelihood method of the IWD.
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Figure 1. The failure rate function.

Entropy is a quantitive measure of the uncertainty of each probability distribution. For the random
variable X, of the probability density distribution f(x), the Shannon entropy, recorded as H(X), is written as:

HX) == [ fx)log(f(x))dx. ©

Many studies about entropy can be found in the literature. Ref. [12] proposed an indirect method
using a decomposition to simplify the entropy’s calculation under the progressive Type-II censoring;
Ref. [13] estimated the entropy for several exponential distributions and extended the results to other
circumstances; Ref. [14] estimated the Shannon entropy of a Rayleigh model under doubly generalized
Type-II hydrid censoring, and compared the performance by two criteria.
The Shannon entropy of the IWD is given by:
a+1

H(X) = . [v +log(A)] +1 —log(ad), 4)

where 7 is a Euler constant.

In this paper, we discuss the maximum likelihood and Bayesian estimation of the paramaters
(«, A) and entropy of IWD under progressive first-failure censoring. As far as we know, this topic is
very new and few researchers study it. However, it needs in-depth research and innovation. The rest
of this paper is elaborated as follows:

In Section 2, we derive the maximum likelihood estimation of entropy and parameters. In Section 3,
we present the asymptotic intervals for the entropy and parameters. In Section 4, we work out the
Bayesian estimation of entropy and parameters using Lindley and Importance Sampling methods.
In Section 5, a simulation study is organized to compare different estimators. In Section 6, we analyze
a real data set to explain the previous conclusions. Finally, in Section 7, a conclusion is presented.
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2. Maximum Likelihood Estimation

We consider the maximum likelihood estimates (MLEs) for the entropy and parameters of
an Inverse Weibull distribution under progressive first-failure censoring. Set XX . < XX . <
<o < X};:m:n:k be a sample from IWD under the progressive first-failure censoring (k, n,m, Ry, ..., Ry).
For simplicity, we choose x; for representing xfm:n:k, i = 1,...,m. The joint probability density

function is

fXR

Tmnk”

XR

m
(x1exm) = P T f(xi)[1 - F(x;)[FRAD=1, @)
mimin:, 1:1
where 0 < ¥ < -+ < xpy < cocand P = nn—1—-Ry)...n—m+1—Ry — -+ — Ry 1) is
a normalizing constant.
Combining (1), (2), and (5), the likelihood function (LF) is

m m
L(x|¢x, )\) _ Pkmlxm/\mei)\zlmzl x;“ Hx;a71 H(l _ e*/\x;”‘ )k(RH’l)fl. (6)
i=1 i=1
Then, the log-likelihood function is written as
m m
I(x|a,A) = logP+mlogk+mloga+mlogA—AY x7*—(a+1)) logx;
i=1 i=1
UG —
+ Y (k(R;+1) —1)log(1 —e 7). @)

i=1

For partial derivatives with respect to « and A, the corresponding score equations are

ol m oo o n Ax % log xje M "
%:;+/\in“logxi—Zlogxi—Z(k(Ri—i-l)—l) ! —)ix,’”‘ =0, 8)
i=1 i=1 i=1 T—e ™
o m d Jre M
O My Ri+1)-1)"i—— —o.
= i;xl +§1(k( i+1) )1 EpeT= 0 )

The MLEs & and A, separately, are the roots of Equations (8) and (9). The equations don’t have
an explicit solution, so we need some numerical techniques to approximate the values of these parameters.
Furthermore, according to the invariance property of MLE, we derive the ML estimator of entropy as:

N _a+1

A(X) - [v +log(A)] + 1 — log(&A). (10)

3. Confidence Intervals

3.1. Asymptotic Intervals for MLEs

The 100(1 — ¢)% confidence intervals (Cls) for the two parameters « and A can be constructed by
the asymptotic normality of MLEs with Var(&) and Var(A) which are obtained by the inverse of the
observed Fisher matrix.
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From Equation (7), find second-order partial derivatives for « and A as follows:

o = % = Ii(k(Ri 1) — 1)Axi—“ log2 xie(l?wiﬂ;g;:\;i_a B e*“f“)
e Ai"i—v‘(logxz)z,
hi= az% = iilxi—a logxi+imzl(k(Ri+1) B 1)xi_“ logxie?\(xli’*_(e_l/\::\;i—a +67Axi—a)l
lop = % = —% +i_il(k(Ri +1) —1)(‘1’%?36;”)2

The Fisher information matrix of two parameters « and A is I(«, A). Here, we approximate that (&, A)T
is a bivariate normal vector with mean («,A)T and covariance matrix I"! = I"!(a, A). As a matter
of fact, we use I~1(&, A) to make an estimation of I~ (s, A). In other words,

(&, AT 2 N[(e, )T, 17(&, D)), (11)
where
1
@i = —lho I [ m w2 ) (12)
' e —le ) an 1 T2

Thus, based on the normal approximation, the 100(1 — &)% Cls for two parameters « and A are

R+ ZepyTn, AL Zzp o (13)

Here, Z¢ /5 is the { /2 percentile of the standard normal distribution. Thus, as to obtain the approximate
estimation of the variance of entropy, we use the delta method. Let

N oH oH
/ — [ —
k4 _(aa/a/\)/ (14)
where
oH _  (a+1(y+log(d))  y+log(h) 1
o o2 ® o
O0H _ a+1 1
oA ad A
Then, the approximate estimate of Var(H) is obtained by
Var(A) = [¥'17 (&, A)¥). (15)
Therefore, we approximate that
L~ N(O1). (16)
Var(H)

The asymptotic 100(1 — &)% CI for entropy is derived as

H+ Zg o/ Var(H). (17)
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3.2. Asymptotic Intervals for Log-Transformed MLE

Ref. [15] proposed that the asymptotic CI using log-transformed MLE has a more precise coverage
probabilty. Itis clear that a, A, and entropy are all positive. Then, we obtain that 100(1 — &) % asymptotic
approximate Cls for log-transformed MLEs are

log(&) + Z§/2 T (log(&)), log(;\) + Z(;r/z Tzz(log(;\)). (18)

Thus, based on the normal approximation of log-transformed MLE, the 100(1 — ¢)% ClIs for two
parameters & and A are
. (19)

dexp[+ I, Aexp]

Zzj2/T11 n Zz 2/ T2
& A

Furthermore, a 100(1 — &)% CI for entropy is

Z Var(H
n r:/z\/AW( )}. 20)

Hexp o

4. Bayes Estimation

4.1. Prior and Posterior Distribution

Both & and A are unknown parameters, so we don’t have any conjugate prior for both « and A.
Usually, we choose independent priors of « and A which are both Gamma distributions. However,
for the Inverse Weibull distribution, it is not appropriate to choose gamma for both priors. The specific
reason is explained in detail in the Importance Sampling procedure subsection. Thus, in this case,
we consider the following prior distributions:

A possesses a Gamma prior G(a, b) with the probability density function

1 (A) &« A% lem0, (21)

« has a non-informative prior with the following probability density function

1
=Z, 22
() = - 22)
where a and b are pre-fixed to be known and positive.

Now, the joint prior distribution of the two parameters @ and A can be obtained by

a—1,—bA
7(a,A) o /\Te (23)

Then, the joint posterior PDF of two parameters « and A is derived by

B L(x|a, A)7t(a, M)
(o Alx) = Joo Jo Lx|a, A)r(a, A) dadA” 24)

4.2. Symmetric and Asymmetric Loss Functions

Choosing loss function is an important part of Bayesian inference. In this subsection, we consider
the Bayes estimation for two parameters «, A, and entropy of an IWD under both the asymmetric and
symmetric loss functions. A widely used symmetric loss function is the squared error loss function
(SELF). As for asymmetric loss functions, we choose the general entropy loss function (GELF) and
linex loss function (LLF). The SELF, LLE, and GELF are defined as
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LS(N/&) = (&_N)zz
LLOVR) = exp(p(R—) = p(R—2) -
LOR) = ()77~ qlog(y) — 1

where & means an estimate of X. In LLF and SELF, the symbols of p and g indicate the direction of the
asymmetry, and their sizes mean the different level. Neither of them are zero.
The Bayes estimates of N under above loss functions are

Ng = Ex(R|x),

R =~ loglEx(exp(—pN) )
1

Re = [Ea(R9J)] 9,

where Ey means the posterior expectation under the parameter X. Now, we can derive the Bayes
estimates of a, A, and entopy under SELF, LLF, and GELFE.
To begin with, Bayes estimate of g(«, A) under SELF is

I J5 gle, A)L(x|a, A) (e, A) dad A
fo fo \DC A)7t(a, A) dadA

8(a,A)s = (25)

Let g(a, A) takes the value of «, A, and entropy, then we can easily obtain the corresponding estimation
under SELFE.
Moreover, Bayes estimate of ¢(«, A) under LLF is

—pg(aA) M) 7m(a, A) dadA
g0, = 1ot o ¢ T LG AT )
p Jo Jo” Lx|a, A)r(a, A) dadA

] (26)

Let g(a, A) take the value of «, A, and entropy; then, we can obviously obtain the corresponding
estimation under LLE.
Finally, Bayes estimate of g(a, A) under GELF is

fo fo TL(x|a, /\)ﬂ(t’é,)\)dad)\}—
Jo fo x|zxA 72(a, ) dadA

_ | =

ga, Mg = (27)

Let g(a, A) take the value of w, A, and entropy; then, we can evidently obtain the corresponding
esitimation under GELF.

Obviously, the Bayesian estimation cannot be accurately expressed in a closed form.
Hence, we recommend using Lindley method as well as Importance Sampling procedure to derive the
Bayesian estimation.

4.3. Lindley Approximation

The Bayes estimates are in the shape of a specific ratio of two integals which can’t be reduced
to a closed form. Therefore, we utilize Lindley approximation method to derive the Bayes estimates.
For the (N1, X;), the Bayesian estimate is

¢ =g(Ry,Ry) +0.5(S + I3pl1p + loz[o1 + 121012 + 112051) + p1S12 + 02501, (28)
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where
2 2 0;.il
S=Y Y wgm, = itj=30j=0123,
LLom by
_ 9 _ 08 _ %

Pi = aNi/ w; = TNZ" (Uij = aNlaN], o= log H(NllNz)r

2
Sij = witi + wTi,  lij = wii(wiTi + wjTj),  Ojj = 3wiTiTyj + wj (Tt + 277).

All terms are estimated by MLEs of ®; and N,. For our problem, we take ¢ for the estimation of
(X1, N;) = (a,A). Then, we obtain

2m e 3 u A3x 3% og® xje M "
by = “FH+AY xtlog’xi+ ) (k(Ri+1) — 1) 11 o
i=1 i=1 —e i
3A3x —30¢ 10g3 xleszx;* 2)‘3xi—30¢ IOgS xiefi%)\xi""
TEP=ra (1—e ity 7
m X3 e—AY " (1 + e "
lg = + k(Ri+1) —1)— E s ):
1:1 (1 —e M )3
o A2x; 3% log? xe —At
by = le"‘log x,+2 (Ri+1)—1) B i
- 1—e M
3A%x; 3% log? xie*y"‘f_tY 2A2x73% log? x;e 3" 3Ax; 2 log? xje M
(1 _ E_Ax;a)z (1 At )3 1—e ™"
B 3)\3(;2“ log2 xl‘e—Z)\x;rX x;a 1Og2 xie—/\xiﬂx
(1 _67/\)(;&)2 1 _ei/\x’_—a 7

m x; 3 log xie M (2x (e M — 1) — A (e M 41
hy = ,;(k(Ri +1)—1)— Z ( (le(/\xla _ 1) 3) ( >) ’

Pl = T s Pz =

(1) Squared error loss function

Taking g(a, A) = « or A, the Bayesian estimates of two parameters « and A under SELF, separately,
are obtained by

=
|

s = &+05[thl0 + mole + 31Tk + (Tt + 273 ) 2] + e + Ti2p2, (29)

s = A+05[m1mials0 + Thlos + (11T + 215 )la1 + 3T l12] + 2101 + T22p02- (30)

>

Next, we derive Bayes estimate of entropy under SELE. We consider that
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a+1

g A) = [y +1og(A)] + 1~ log(ad),
(a+1)(y+1log(A))  r+logA) 1
w = — > + - =,
o w i
Wy = a+1 B l
aA A
w1 = % + (2(0:;1) - ;2) (v +log(A)),
Wy = ! LH
A2 xAZ’
Wi = (Uzl:i—tH—l
aA  a2A

The Bayes estimator of entropy can be obtained as earlier, and it is given by
Hs(X) = H(X)+05[winm + 2wipTis + wata + Lo (w1 T + @2Ti1T12)

+1 (B T Tz + w2 (T T2 +275)) + 2 (Bwata T + wi (T2t +2737))

Hoa (W23, + 1T T2)] + p1 (@111 + W) + pa(wWa T + W1T12).- (31)
(2) Linex loss function

For parameter «, taking ¢(#, A) = &, we can obtain that
wp=—pe P, wp=pet,  wp=wn=wp=w=0.
Utilizing the above expression in Equation (28), the Bayesian estimate of « is derived by
1 —pa 2
&, = > log{e P* + 0.5[w11T11 + w1 T3y 130 + W11 Ta2loz + 3w T11 T2l
(2t + 213 Jwiha] + @1T1101 + WiTizp2}- (32)

The Bayesian estimate of A is obtained likewise:

1 s
AL = —; log{e pA + 0.5[(4)221'22 + wrT1T12l30 + CU2T222103 + (T11T22 + 2T122)w2121

+3T22T21w2112] + w101 + (/JZTZZPZ}- (33)
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Next, we derive the Bayesian estimate of entropy. It is clear that

g(lxl /\) — epr(X),
w; — _pe—pH[_(“+1)(7;-108(A))+’Y+10g()\)_1],
14 14 [
w2 pe ( A A)’
_ a+1 + log(A + log(A 1
wy = prerH[-! )(z2 og(A) , 7 Zg( )7;]2
_pr2(@+1)(y +1og(A))  2(y+log(d) 1
—pe PH] 3 - 2 + 3l
2
_ 2 —pH 0(+171 B —pH 70(+1 i
w2 pe (m x) e Az T az)
> g e+l 1 (a+1)(y+1log(A))  y+log(A) 1
wu = n et (S -3 ) A

_ 1 a+1
_pe PH [ — _
pe (a)\ aZA ) '
The requested estimation of entropy can be derived in a similar method.

1 A
HL(X) = —? log{e pH + 0.5[&]11’(11 + 2w T2 + Wy Ty + 130(61)1’1’121 + wZTnTu)

+112 (Bwr T o1 + w1 (T T11 +273))) + o1 (Bwr i1 Tz + wa (T11 T2 + 2745

los(waTh + w11 ™2)] + p1(w1T11 + WaT) + p2(waTaz + wiT12) }- (34)

(3) General entropy loss function

For the parameter «,
gwA) = a, w=—qa T, wn=qq+1)aTT?, wip = wy = wy =w, = 0.
Applying the above expression in Equation (28), the Bayesian estimate of « is derived by

ap = {&77+05[wnm + withlao + w1t Tolos + 3wt Tialn + (T2t + 273 )wi ).
1

+wiTiner +wiTie2} 9. (35)
The approximate Bayes estimator of A is computed likewise.

Ap = {AT4+05[wanmn + waTi Tialso + waThlos + (T11T22 + 275 )walat + 30T walia).
1

+wrtarp1 + wrtaopa} 1. (36)
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Finally, we derive Bayesian estimate of entropy under GELF:

11 of 21

gla,A) = H(X)™,
o = g DO TIogA) | g tlog(h) 1
« o «
g +1 1
B R -
“2 1 ( %) /\) /
g a+1)(y +log(A +log(A 1
wy = q<q+1)H q 2[7( )(');(2 g( ))+'Y ag( )7E]2
2 1 log(A 2 log(A 1
_gH T (a + )(73+ og(A)) _ 2(r+ gg( ) 1
o o o
2
- S L e i (N s
wn = qlq+DH ( aa a) T a2 Tz
_ _ g2 e+l 1N, (af+1)(y+log(A))  y+log(d) 1
w12 wn =q(q+1)H ( )| 2 + p, .
1 x+1
— q-1
75 (a)\ a2A >
The Bayes estimator of entropy under GELF can be calculated as earlier, and it is given by
HE(X) = {H(X)iq + 0.5[6011”[11 4+ 2w T2 + W T + l3o(w1T121 + sznle)
+151 (Bwi T Tip + @2 (T11 T2 + 2T02) ) + li2 (B Tn o + w1 (Tt +2737))
1
103(w2T3) + W1 T1 )] + p1(wW1Ti1 + wWaTa1) + P2 (wWoTn + wiT2)} 7. (37)

4.4. Importance Sampling Procedure

Using the Lindley approximation method, we can get the Bayesian estimates of the unknown
parameters and entropy. Although the Lindley method can make point estimation, it cannot determine
the Highest Posterior Density (HPD) credible intervals. Thus, we recommend using the Importance
Sampling to get Bayesian estimates and to derive HPD credible intervals as well.

To begin with, let’s solve the doubts before. If we choose two Gammas for prior distributions,
record itas « ~ G(a,b) and A ~ G(c,d). Then, the joint prior distribution is

m(a,A) o a0 TembaymelpmdA

Correspondingly, the joint posterior distribution is

m m
a a L
7T(1X,/\|X) o« gMta—1ymtc—1,—ba—dA ,—AYL, x; Hxi_al_[(lfe_)\xi )k(R,+1) 1
i=1 i=1
m
q(mta)=1,—a(b+ ¥}, log(x;)) y (m+c)—1,—A(d+EL; x; H 1—6 Ax;*Vk(Ri+1)—1

i=1

m
= Ga(m +61,b + Zlog(xi))GMac(m + C’d+ in_a)Q
i=1 i=1

(a, M),

1 (L e R
(d+ Y% x;
We observe that G, seems like Gamma distribution, but the second parameter b + " ; log(x;) can

not be proven to be strictly positive, so it cannot be considered to be a Gamma distribution. Obviously,
it is not possible to generate its random samples according to the Gamma distribution, and it is also

where Q(a,A) =

“)m-&-c
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difficult to generate its random samples using other methods. Therefore, it is not appropriate to choose
both Gammas as priors.

Then, we return to the prior distribution we selected before. To implement the Importance
Sampling, the joint posterior distribution can be adapted as

m(a, A|X) o aMTIamEaTlmbh, —AL % ﬁxi—“ Im—[(l _ e—)\xi_“)k(Ri-i-l)—l
i=1 i=1
_ (b +Z1 1 l )m+ﬂ /\m+a—1e—)\(b+):,,m:1 x;a) « am— ll—[l 1 1
F(m+a) (b+z )m+u
% ﬁ(l _ ef)\x[_”‘)k(R,-Jrl)fl
= filAa)fa(a)Q(a, A),
where fi (&, A) is a Gamma function G(m +a,b + Y12 x;*) and
o= lH .
f(a) =K =15 (38)
(b4 Xy x;)mre
Here, K is a normalizing constant and
mn —
Q(Dé,)\) — H(l _ 67/\3(1' )k(RH’l)*l. (39)

i=1

Note that, in order to get the Bayesian estimates of parameters using the Importance Sampling,
we demand to produce corresponding samples from f;(A|a) and f,(«). It is uncomplicated and clear
to produce samples from f(A|«) because it is a simple Gamma distribution. As for producing samples
from f>(«), we have a Lemma.

Lemma 1. f,(«) is log-concave.

Proof.
m
log(fa(a)) o (m—1)log(a —Dchog x;) — (m+a) log(b—l—in_“)
i=1 i=1
?log(fr(a)) m—1 LN log?(x;)
a2z - e LGy

Since m is a postive number, the second-order partial derivative of log(f2(«)) is constantly negative.
Thereby, f>(«) is log-concave. [

Then, using the approach originally proposed by [16], we can easily produce samples from f,(«).
Using the following steps, we can produce several samples from the request scenario:

1. Produce « from fp(«).
2. Produce A from Gy (m +a,b+ YL x;7%).
3. Repeat Step 1 and 2 to derive (a1, A1), (22, A2), ..., (@p, Ap)-

Then, the required Bayesian estimate of U(«,A) can be represented by

Y M B, A1) Q(wy, /\i)'
Zf\il Q(lxi/ /\1)

(40)
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Furthermore, samples produced above can also be chosen to establish the HPD intervals for the
parameters and entropy. Suppose that 0 < p < 1, and U, makes P(U(a,A) < U) = p. For a given
p, we purpose an approach to make a estimation of U, and then to establish the HPD intervals for
U(a, A).

Firstly, we suppose

o= Q) oy (41)

M Qe Ay’
For simplicity, we replace U(a;,A;) with U;.  Then, sort {(U1,%),...,(0ym,0m)} into
{(6(1)119(1))r ey (U(M)/ﬁ(M))}r where U(l) < e K 19(M) and U(l) is related to 19(1) fori=1,..., M.
Then, the Bayesian estimate of Uy, is ZAS,, = O(m,), where My, is an integer which satifies

M, Mp+1
Y9h<p< ) B (42)
i=1 i=1

Therefore, a 100(1 — &)% HPD interval of U(a, A) can be derived by (3, 65+1_5) for 6 = 91y, 1) +

19(2),...,2;\111_’: 8(;)- Finally, a 100(1 — ¢)% HPD interval of U(a,A) transforms (65*,85*“7@),

where 0* makes
Bsei1-p < Bsr1-p — Vs (43)

for all 4.
The next section will use Monte Carlo simulation to numerically and systematically compare
previously proposed estimators.

5. Simulation Results

We will use the Monte Carlo simulation method to analyze the behavior of different estimators
obtained by the above sections based on the expected value (EV) and mean squared error (MSE).
The progressive first-failure censored samples are produced from different censoring schemes of
(k,n,m,Rq,...,Ry) and various parameter values from the IWD by using the algorithm originally
proposed by [17].

In general, we let « = 2, A = 1, and correspondingly the entropy is 1.172676. We use the
‘optim” command in the R software (version 3.6.1, Lucent Technologies, Mary Hill, NJ, USA) to get
the approximate MLEs of &, A, and entropy presented in Table 1. The Bayesian estimates under
both asymmetric and symmetric loss functions are precisely computed by the Lindley method
and Importance Samplings. For the Bayes estimation, we assign the value of hyperparameters
asa=1,b=1for Tables 2-7 and a = 0,b = 0 for Tables 8 and 9. Under the LLF, we let p = 0.5
and p = 1. Under the GELF, we choose g = —0.1 and g = 1. We derive 95% asymmetric intervals
of parameters using the MLEs and log-transformed MLEs and 95% HPD intervals. Pay attention
that, for simplicity, the censoring schemes are presented by abbreviations such as (0 * 5) represents
(0,0,0,0,0) and ((1,0) * 2) represents (1,0,1,0). Tables 2—6 and 8 present the Bayes estimation of «,
A, and entropy using the Lindley method. The Bayes estimation based on Importance Samplings is
shown in Tables 7 and 9. In Table 10, the interval estimation of entropy is presented.



Entropy 2019, 21, 1209 14 of 21

Table 1. Maximum likelihood estimates of &, A, and entropy whena =2, A =1, H = 1.172676.

& A a
EV MSE EV MSE EV  MSE

1 50 25 (250%24) 20608 0.1032 1.0144 00452 1.1558 0.0670
((5,0*4)*5) 21496 0.1788 0.9940 0.0309 1.1029 0.0840

(0*24,25)  2.0880 0.0932 1.0017 0.0342 1.1302 0.0535

50 40  (10,0*39) 2.0845 0.0734 09989 0.0271 1.1271 0.0406
((2,047)*5)  2.0743 0.0813 09888 0.0227 1.1327 0.0467

(0*39,10)  2.0470 0.0534 1.0097 0.0189 1.1550 0.0309

70 35 (35,0%34) 21255 0.0880 1.0047 0.0383 1.1063 0.0537
((5,0*4)*7)  2.0550 0.0552 1.0227 0.0210 1.1565 0.0326

(0*34,35)  2.0575 0.0758 09953 0.0193 1.1458 0.0423

60  (10,0*59) 2.0653 0.0517 09864 0.0232 1.1307 0.0330
((2,0711)*5) 2.0330 0.0428 1.0140 0.0201 1.1644 0.0281

(0*59,10)  2.0573 0.0430 1.0016 0.0179 1.1418 0.0245

2 50 25 (25,0%24) 21001 0.0966 09731 0.0251 1.1107 0.0535
((5,0*4)*5) 21413 0.1461 09711 0.0244 1.0936 0.0740

(0°24,25) 21629 02070 09762 0.0291 1.0930 0.0972

50 40  (10,0%39)  2.0889 0.0698 09832 0.0206 1.1182 0.0393
((2,0°7)*5)  2.0724 0.0711 09806 0.0201 1.1295 0.0453

(0*39,10)  2.1180 0.0805 09901 0.0150 1.1059 0.0405

70 35  (35,0°34) 20745 00601 09968 0.0180 1.1331 0.0359
((5,0*4)*7)  2.0583 0.0724 09984 0.0214 1.1493 0.0508

(0*34,35)  2.0766 0.0677 09763 00211 1.1251 0.0474

60  (10,0*59)  2.0632 0.0433 09939 0.0157 1.1364 0.0290
((2,0*11)*5)  2.0334 0.0437 09965 0.0109 1.1578 0.0274

(0*59,10)  2.0729 0.0486 1.0039 0.0108 1.1358 0.0253

k n m Scheme

Table 2. Bayes estimates under squared error loss function of &, A, and entropy based on the Lindley
method whena =2, A =1, H = 1.172676.

a A

kg As Hg
EV MSE EV MSE EV MSE

1 50 25 (25 0*24) 22344 0.2017 09661 0.0588 1.0599 0.0921
((5, 0*4)*5) 2.1080 0.1418 0.9837 0.0426 1.1472 0.0803

(0%24, 25) 2.0959 0.1121 1.0408 0.0314 1.1760 0.0580

50 40 (10, 0*39) 2.0758 0.0733 1.0173 0.0306 1.1606 0.0408
((2,077)*5)  2.1015 0.1029 0.9813 0.0245 1.1317 0.0463

(0*39, 10) 2.0258 0.0545 1.0285 0.0202 1.1950 0.0309

70 35 (35, 0*34) 2.1470 0.1065 0.9908 0.0343 1.1081 0.0520
((5,0%4)*7)  2.0725 0.0526 0.9906 0.0245 1.1497 0.0341

(0*34, 35) 2.0965 0.0957 1.0092 0.0197 1.1497 0.0434

60 (10, 0*59) 2.0641 0.0629 1.0127 0.0145 1.1597 0.0296
((2,0*11)*5) 2.0570 0.0494 1.0030 0.0213 1.1562 0.0282

(059, 10) 2.0804 0.0583 1.0096 0.0193 1.1446 0.0271

2 50 25 (25, 0*24) 22127 0.1435 09194 0.0337 1.0417 0.0718
((5,0%4)*5) 22911 0.2474 0.8959 0.0544 0.9955 0.1181

(0%24, 25) 21768 0.2299 09492 0.0426 1.0994 0.1140

50 40 (10, 0*39) 2.0954 0.0742 0.9941 0.0238 1.1370 0.0416
(2,077)*5)  2.0976 0.0861 0.9950 0.0208 1.1396 0.0455

(0*39, 10) 2.0270 0.0710 0.9985 0.0158 1.1846 0.0403

70 35 (35, 0*34) 21225 0.0827 09672 0.0296 1.1084 0.0520
((5,0%4)*7) 22037 0.1643 09314 0.0271 1.0547 0.0783

(0*34, 35) 22001 0.1821 0.9282 0.0288 1.0602 0.0865

60 (10, 0*59) 2.0760 0.0456 0.9823 0.0111 1.1343 0.0247
((2,011)*5) 2.0626 0.0355 0.9911 0.0115 1.1456 0.0216

(0*59, 10) 2.0435 0.0336 0.9932 0.0124 1.1584 0.0219

k n m Scheme
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Table 3. Bayes estimates under Linex loss function of &, A, and entropy based on Lindley method when
a=2,A=1,H=1172676, p = 0.5.

N

&y AL Hp

k n m Scheme
EV MSE EV MSE EV MSE
1 50 25 (25, 0*24) 22130 0.1582 09521 0.0410 1.01956 0.0779
((5, 0*4)*5) 2.0874 0.1221 1.0328 0.0403 1.1179 0.0812
(0*24, 25) 2.0444 0.0899 1.0462 0.0178 1.1481 0.0492
50 40 (10, 0*39) 2.0680 0.0751 1.0147 0.0218 1.1304  0.0401
((2,0*7)*5)  2.0646 0.0749 0.9963 0.0287 1.1206  0.0508
(0*39, 10) 2.0381 0.0577 1.0329 0.0239 1.1528  0.0326
70 35 (35, 0*34) 2.1109 0.0786 0.9403 0.0384 1.0715 0.0534
((5,0*4)*7)  2.0306 0.0765 1.0153 0.0280 1.1483  0.0530
(0%34, 35) 1.9981 0.0595 1.0039 0.0179 1.1604 0.0438
60 (10, 0*59) 2.0524 0.0427 1.0046 0.0216 1.1334  0.0251
((2,0%11)*5) 2.0499 0.0486 1.0067 0.0167 1.1384 0.0307
(0*59, 10) 2.0310 0.0338 1.0409 0.0161 1.1648 0.0194
2 50 25 (250724) 22816 02478 09043 00398 09843  0.1064
((5,0%4)*5) 21778 0.1469 0.9258 0.0383  1.0027  0.1004
(0*24, 25) 2.2197 0.2339 0.9383 0.0437  0.9691 0.1609
50 40 (10, 0*39) 2.0708 0.0677 0.9765 0.0183 1.1097  0.0423
((2,0*7)*5)  2.0240 0.0883 0.9993 0.0232 1.1492  0.0593
(0*39, 10) 2.0107 0.0686 1.0028 0.0151 1.1563  0.0460
70 35 (35, 0*34) 21340 0.0954 09516 0.0280 1.0795  0.0574
((5,0*4)*7) 2.1215 0.0939 0.9524 0.0264 1.0562 0.0713
(0*34, 35) 2.1197 0.1146 0.9626 0.0204  1.0481 0.0754
60 (10, 0*59) 2.0395 0.0466 1.0138 0.0136 1.1510  0.0308
((2,0*11)*5) 2.0500 0.0510 0.9821 0.0150 1.1255  0.0376
(0*59, 10) 2.0368 0.0402 1.0013 0.0126 1.1407  0.0261

Table 4. Bayes estimates under Linex loss function of &, A, and entropy based on Lindley method when
a=2,A=1H=1172676,p = 1.

A

ay AL Hp

k n m Scheme
EV MSE EV MSE EV MSE
1 50 25 (25, 0*24) 2.1496 0.1350 0.9629 0.0401 1.0428 0.0820
((5,0*4)*5)  2.0804 0.1463 0.9815 0.0299 1.0748 0.0918
(0*24, 25) 2.0503 0.1180 0.9795 0.0242 1.0841 0.0776
50 40 (10, 0*39) 2.0666 0.0616 0.9813 0.0219 1.0951 0.0386
((2,0*7)*5)  1.9808 0.0456 1.0134 0.0264 1.1622 0.0361
(0*39, 10) 1.9998 0.0621 0.9873 0.0212 1.1399 0.0387
70 35 (35, 0*34) 2.0950 0.0773 0.9541 0.0268 1.0763 0.0522
((5,0*4)*7)  2.0371 0.0789 1.0013 0.0279 1.1188 0.0582
(0%34, 35) 2.0219 0.0803 0.9998 0.0227 1.1258 0.0527
60 (10, 0*59) 2.0313 0.0506 1.0027 0.0198 1.1376 0.0315
((2,0*11)*5) 2.0001 0.0318 1.0277 0.0148 1.1677 0.0204
(0%59, 10) 2.0261 0.0351 0.9998 0.0165 1.1373 0.0246
2 50 25 (25, 0*24) 22680 0.2586 0.9074 0.0519 0.9806 0.1179
((5,0*4)*5)  2.2524 0.2212 0.8923 0.0428 0.9330 0.1395
(0%24, 25) 2.0967 0.1157 0.9810 0.0261 1.0361 0.0977
50 40 (10, 0*39) 2.0814 0.0862 0.9833 0.0188 1.0953 0.0521
((2,0*7)*5)  2.0593 0.0611 0.9871 0.0182 1.0984 0.0439
(0*39, 10) 2.0500 0.0721 0.9917 0.0180 1.1071 0.0463
70 35 (35, 0*34) 2.1056 0.0793 0.9481 0.0263 1.0777 0.0511
((5,0*)*7) 21197 0.0956 0.9439 0.0253 1.0379 0.0719
(0*34, 35) 2.1511 0.1295 0.9289 0.0283 0.9942 0.1018
60 (10, 0*59) 2.0718 0.0585 0.9880 0.0112 1.1082 0.0341
((2,0*11)*5)  2.0307 0.0325 0.9969 0.0157 1.1305 0.0275
(0*59, 10) 2.0047 0.0377 0.9980 0.0086 1.1502 0.0244
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Table 5. Bayes estimates under general entropy loss function of «, A, and entropy based on Lindley
method whena =2, A =1, H = 1.172676,q = —1.

a

& AE Hg
k n m Scheme
EV MSE EV MSE EV MSE
1 50 25 (25, 0*24) 21851 0.1656 0.9729 0.0465 1.0717 0.0836
((5,0*4)*5)  2.1052 0.1308 1.0073 0.0338 1.1198 0.0752
(0*24, 25) 2.0534 0.1109 1.0234 0.0261 1.1560 0.0658
50 40 (10, 0*39) 2.0594 0.0689 1.0143 0.0261 1.1506 0.0413
((2,0*7)*5) 2.0614 0.0712 1.0119 0.0245 1.1462 0.0415
(0%39, 10) 2.0633 0.0681 1.0261 0.0240 1.1509 0.0370
70 35 (35, 0*34) 2.1183 0.0919 0.9937 0.0335 1.1141 0.0537
((5,0*4)*7) 2.1049 0.0935 0.9901 0.0237 1.1083 0.0551
(0*34, 35) 2.0446 0.0722 1.0231 0.0193 1.1599 0.0425
60 (10, 0*59) 2.0523 0.0465 1.0110 0.0181 1.1503 0.0277
((2,0*11)*5) 2.0430 0.0464 1.0095 0.0178 1.1542 0.0271
(0*59, 10) 2.0618 0.0485 1.0082 0.0148 1.1421 0.0259
2 50 25 (25, 0%24) 22669 0.2137 09171 0.0473 1.0112 0.1030
((5,0%4)*5) 22491 0.2490 0.9215 0.0479 0.9851 0.1427
(0*24, 25) 21992  0.2334 0.9415 0.0398 1.0039 0.1497
50 40 (10, 0*39) 2.0818 0.0682 0.9962 0.0212 1.1280 0.0425
((2,047)*5)  2.0767 0.0692 09840 0.0183 1.1189 0.0447
(0*39, 10) 2.0587 0.0744 1.0054 0.0185 1.1421 0.0470
70 35 (35, 0%34) 21613 0.1117 09523 0.0303 1.0780 0.0605
((5, 0*4)*7) 2.1648 0.1226 09517 0.0281 1.0462 0.0780
(0*34, 35) 21292  0.1189 0.9641 0.0220 1.0611 0.0780
60 (10, 0*59) 2.0542 0.0417 09938 0.0124 1.1399 0.0258
((2,0*11)*5) 2.0565 0.0438 0.9956 0.0132 1.1369 0.0291
(0*59, 10) 2.0348 0.0379 1.0018 0.0105 1.1532 0.0247

Table 6. Bayes estimates under general entropy loss function of «, A, and entropy based on Lindley
method whena =2,A =1, H = 1.172676, g = 1.

A

133 AE Hg

k n m Scheme
EV MSE EV MSE EV MSE
1 50 25 (25, 0*24) 2.1650 0.1665 0.9330 0.0504 1.0151 0.0994
((5,0*4)*5)  2.0679 0.1155 0.9738 0.0313 1.0612 0.0821
(0%24, 25) 2.0317 0.1087 0.9940 0.0260 1.0870 0.0766
50 40 (10, 0*39) 2.0382 0.0669 0.9939 0.0272 1.1139 0.0441
((2,0*7)*5)  2.0330 0.0671 0.9970 0.0249 1.1153 0.0448
(0*39, 10) 2.0324 0.0637 1.0074 0.0252 1.1214 0.0418
70 35 (35, 0*34) 2.0978 0.0928 0.9587 0.0344 1.0717 0.0625
((5,0%4)*7)  2.0388 0.0741 0.9898 0.0233 1.1017 0.0532
(0%34, 35) 2.0043 0.0717 1.0062 0.0193 1.1306 0.0500
60 (10, 0*59) 2.0321 0.0459 0.9930 0.0182 1.1275 0.0297
((2,0*11)*5) 2.0211 0.0442 09973 0.0166 1.1354 0.0297
(0%59, 10) 2.0218 0.0409 0.9885 0.0150 1.1301 0.0261
2 50 25 (25, 0%24) 22187 0.2059 09119 0.0460 1.0028 0.1030
((5,0*4)*5)  2.2251 0.2610 0.8957 0.0460 0.9578 0.1374
(0%24, 25) 2.1907 0.3101 09161 0.0445 0.9604 0.1458
50 40 (10, 0*39) 2.0566 0.0584 0.9736 0.0199 1.0934 0.0436
((2,0*7)*5)  2.0458 0.0657 0.9806 0.0185 1.0978 0.0485
(0*39, 10) 2.0331 0.0610 0.9853 0.0172 1.1046 0.0460
70 35 (35, 0*34) 2.1365 0.0959 0.9330 0.0282 1.0494 0.0610
((5,0*4)*7) 21308 0.1119 0.9401 0.0275 1.0275 0.0790
(0*34, 35) 2.0924 0.1064 0.9493 0.0247 1.0351 0.0814
60 (10, 0*59) 2.0312 0.0370 0.9843 0.0126 1.1230 0.0276
((2,0*11)*5) 2.0426 0.0439 09803 0.0132 1.1110 0.0326
(0*59, 10) 2.0048 0.0361 0.9973 0.0109 1.1427 0.0258
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Table 7. Bayes estimates of entropy using Importance Sampling whena =2, A = 1, H = 1.172676.

& A a

k n m Scheme
EV MSE EV MSE EV MSE
1 50 20 (25,0%24) 1.9669 0.0354 1.0756 0.0442 1.2513 0.0515
((5,0*4)*5) 2.1832 0.1383 09757 0.0158 1.0812 0.0541
(0*24,25) 23923 0.2330 0.7339 0.0888 0.8277 0.1595
40  (10,0*39) 2.0855 0.0981 0.9509 0.0273 1.1185 0.0581
((2,0*7)*5) 1.9456 0.0653 1.0425 0.0276 1.2487 0.0469
(0*39,10) 2.0585 0.0842 0.9507 0.0112 1.1295 0.0404
70 35 (35,0*34) 1.9673 0.0651 1.0978 0.0322 1.2603 0.0394
((5,0*4)*7) 2.0998 0.0486 09782 0.0276 1.1113 0.0344
(0*34,35) 25157 04768 0.5967 0.1736 0.7008 0.2817
60  (10,0*59) 2.0269 0.0396 0.9868 0.0126 1.1607 0.0241
(2,0*11)*5) 2.0078 0.0532 1.0068 0.0168 1.1859 0.0332
(0*59,10) 2.0724 0.0658 1.0103 0.0211 1.1454 0.0411
2 50 20 (25,0%24) 21260 0.2079 09434 0.0668 1.1016 0.1009
((5,0*4)*5) 2.6489 0.5789 0.6052 0.1803 0.6469 0.3286
(0*24,25) 29631 1.1193 0.4039 0.3610 0.3852 0.6440
40  (10,0*39) 2.1428 0.0810 0.9432 0.0319 1.0652 0.0461
((2,0*7)*5) 2.3493 0.1862 0.7244 0.0821 0.8441 0.1309
(0*39,10) 2.6610 0.5367 0.5761 0.1890 0.6142 0.3376
70 35 (35,0*34) 21796 0.1064 0.8989 0.0276 1.0292 0.0588
((5,0*4)*7) 2.6541 0.6279 0.5527 0.2119 0.6106 0.3630
(0*34,35) 3.4169 2.2878 0.3225 0.4658 0.1931 0.9953
60  (10,0*59) 23722 0.2157 0.8339 0.0343 0.8916 0.1065
(2,0*11)*5) 2.3814 0.2175 0.7520 0.0709 0.8410 0.1383
(0*59,10) 2.5075 0.3113 0.5588 0.1969 0.6621 0.2744

17 of 21

Table 8. Bayes estimates under squared error loss function of &, A, and entropy based on Lindley
method whena =2,A =1, H=1.172676,a=0,b =0.

g As Hs

k n m Scheme
EV MSE EV MSE EV MSE
1 50 25 (25, 0%24) 22082 0.1731 0.9569 0.0536 1.0672 0.0787
((5, 0*4)*5) 21024 0.1236 0.9973 0.0416 1.1521 0.0662
(0%24, 25) 2.0783 0.1237 1.0246 0.0238 1.1815 0.0582
50 40 (10, 0*39) 2.0949 0.0851 1.023 0.0292 1.1532 0.0451
((2,0*7)*5)  2.0902 0.0972 0.9888 0.0285 1.1425 0.0508
(0%39, 10) 2.0758 0.0824 1.0027 0.0221 1.1562 0.0428
70 35 (35, 0*34) 2.1123 0.1186 0.9734 0.0373 1.1249 0.0657
((5,0*4)*7)  2.0675 0.0990 1.0265 0.0318 1.1784 0.0568
(0*34, 35) 2.1062 0.0865 0.9807 0.0240 1.1291 0.0463
60 (10, 0*59) 2.0682 0.0551 1.0043 0.0167 1.1510 0.0276
((2,0*11)*5) 2.0541 0.0431 0.9952 0.0156 1.1539 0.0247
(0*59, 10) 2.0748 0.0538 1.0180 0.0165 1.1509 0.0222
2 50 25 (25, 0%24) 22764 0.2065 09113 0.0472 1.0064 0.0986
((5,0*4)*5) 22915 0.2881 09119 0.0457 1.0105 0.1247
(0*24,25) 23071 03355 09011 00517 1.0025 0.1374
50 40 (10, 0*39) 2.1238 0.0700 0.9925 0.0168 1.1177 0.0346
((2,0*7)*5)  2.1110 0.0938 0.9750 0.0207 1.1219 0.0469
(0*39, 10) 2.0765 0.0510 0.9861 0.0173 1.1425 0.0307
70 35 (35, 0*34) 2.1629 0.1071 0.9576 0.0288 1.0813 0.0565
((5,0*4)*7) 21607 0.1463 0.9504 0.0327 1.0879 0.0772
(0*34, 35) 2.2537 0.2629 0.9120 0.0419 1.0277 0.1145
60 (10, 0*59) 2.0990 0.0515 09743 0.0140 1.1164 0.0283
((2,0*11)*5) 2.0752 0.0477 09701 0.0127 1.1294 0.0269
(0%59, 10) 2.0546 0.0430 0.9995 0.0117 1.1562 0.0242
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Table 9. Bayes estimates of entropy using Importance Sampling procedure when o« = 2, A = 1,
H =1.172676,a=0,b=0.

A a

k n m Scheme
EV MSE EV MSE EV MSE
1 50 20 (25,0%24) 21546 0.0591 0.9475 0.0543 1.0537 0.0301
((5,0*4)*5) 21046 0.1199 09566 0.0590 1.1089 0.0660
(0%24, 25) 2.7585 0.8718 0.6468 0.1665 0.6350 0.3742
40 (10, 0*39) 2.0418 0.0899 1.0567 0.0224 1.1962 0.0442
((2,0*7)*5) 1.8975 0.0288 0.9704 0.0148 1.2355 0.0202
(0*39, 10) 2.1062 0.0727 09991 0.0073 1.1174 0.0283
70 35 (35, 0*34) 19718 0.1112 09444 0.0184 1.1922 0.0584
((5,0*4)*7) 23056 0.1741 0.7991 0.0659 0.9122 0.1166
(0*34, 35) 2.7018 0.7250 0.6630 0.1638 0.6451 0.3327
60  (10,0*59) 2.0047 0.0227 09513 0.0100 1.1534 0.0145
(2,0*11)*5) 21170 0.0385 1.0260 0.0253 1.1187 0.0257
(0*59, 10) 22110 0.0863 0.9931 0.0333 1.0456 0.0425
2 50 20 (25,0%24) 1.9963 0.0733 09162 0.0192 1.1582 0.0606
((5,0%*4)*5) 2.4657 0.5400 0.6098 0.1706 0.7529 0.2983
(0%24, 25) 3.3960 2.3295 0.3504 0.4319 0.2260 0.9416
40 (10, 0*39) 21716 0.1174 0.8572 0.0299 1.0177 0.0751
((2,0*7)*5) 2.3431 0.1821 0.7332 0.0891 0.8470 0.1384
(0*39, 10) 2.8361 0.8668 0.5793 0.1938 0.5556 0.4241
70 35 (35,0*34) 2.1448 0.1080 0.8393 0.0426 1.0286 0.0901
((5,0%4)*7) 2.7725 09165 0.5504 0.2145 0.5769 0.4258
(0*34, 35) 2.2137 0.0890 0.7790 0.0574 0.9444 0.0715
60  (10,0%*59) 22492 0.1525 0.8417 0.0456 0.9597 0.0910
(2,0*11)*5) 2.2767 0.1454 0.7159 0.0887 0.8728 0.1198
(0*59, 10) 2.7964 0.6670 0.5519 0.2037 0.5436 0.4008

Table 10. Average length and coverage probability of 95% asymptotic intervals/highest posterior

density credible intervals of paramater « and entropy whena =2, A =1, H = 1.172676, k = 1.

Hyr Hyir (Log) His
n m Scheme
AL CP AL CP AL CP
50 25 (25, 0%24) 1.0168 0954 1.0665 0.940 0.9695 0.936
((5,0%4)*5)  1.0244 0972 1.0820 0.958 0.7538 0.824
(5*5,0*20)  1.0409 0.950 1.1055 0.934 0.9725 0.948
50 40 (10, 0*39) 0.8054 0950 0.8264 0952 0.7751 0.936
((2,0*7)*5)  0.7991 0962 0.8198 0.942 0.7532 0.936
(2*5,0*35) 0.8086 0956 0.8306 0.948 0.7769 0.952
70 35 (35, 0%34) 0.8523 0946 0.8778 0942 0.8176 0.938
((7,0%6)*5)  0.8666 0964 0.8933 0962 0.8216 0.952
(5*7,0%28)  1.0202 0.952 0.8694 0.954 0.8202 0.936
70 60 (10, 0*59) 0.6554 0962 0.6657 0960 0.6344 0.944
((2,0*11)*5) 0.6515 0946 0.6617 0950 0.6230 0.936
(2*5,0%55)  0.6541 0.960 0.6642 0.958 0.6342 0.944

As a whole, the EVs and MSEs of parameters and entropy all significantly decrease as the sample
size n increases. In Tables 1-9, set m and n invariant, the EVs and MSEs of parameters and entropy
both decrease as the group size k increases. Furthermore, set k and n invariant, the EVs and MSEs of
parameters and entropy both decrease as m increases. Bayesian estimates with a = 1,b = 1 perform
more precise than a = 0,b = 0, which is so-called non-informative. Using MLE and Bayes estimation
based on the Lindley method is better than the Importance Sampling procedure. Bayes estimation
using the Lindley method is a little bit more precise than the MLE. For LLF, choosing p = 1 seems to
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be better than p = 0.5. For GELF, 4 = —1 competes as well as 4 = 1. In Tables 7 and 9, we observe that
the few censoring schemes such as (0 * 24,25) and (0 * 34,35) do not compete well.

In Table 10, the average length (AL) narrows down as the sample size n increases.
Moreover, HPD intervals are more precise than confidence intervals based on AL. For confidence
intervals, using log-transformed MLEs performs much better than MLEs. In almost all circumstances,
the coverage probability (CP) of entropy derived here achieve their specified confidence intervals.

6. Real Data Analysis

We will analyze a real data set and apply the approaches put forward in the sections above.
The data set was analyzed by [7,18]. The data show the surviving days of guinea pig injected with
vairous species of tubercle bacilli. The quantity of regimen is the logarithmic of the quantity of bacillary
units in 0.5 mL of the challenging solution. The sample size is 72 which are listed below: 12, 15, 22, 24,
24,32,32,33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67,
68,70,70,72,73,75,76,76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146,
175,175, 211, 233, 258, 258, 263, 297, 341, 341, 376 (unit: days).

Before analyzing the data, we want to test if the IWD matches the complete data well. To begin
with, from [7], we conclude that the failure rate function of this data are unimodal, so it is scientific
and reasonable to analyze the data using IWD. Then, we choose various approaches to analyze the
goodness of fit of IWD using the MLE. We compute the —In(L) and Kolmogorov-Smirnov (K-S)
statistics with its associated p-value represented in Table 11. According to the p-value, the IWD fits the
complete data well.

Table 11. Summary for model fit using — In L, K-S statistic and associated p-value.

Distribution MLEs InL K-S p-Value
Inverse Weibull ~ (&,A) = (1.415,283.837) 395.649 0.152 0.0728836

Now, we can consider the censoring data to illustrate the previous approaches. To generate the
first-failure censored sample, we randomly sort the given data into n = 36 groups with k = 2 identical
units in each group, and we can get the first-failure censored sample: 12, 15, 22, 24, 32, 32, 33, 34, 38, 38,
43,44, 48, 52, 54, 55, 56, 58, 58, 60, 60, 61, 63, 65, 65, 68, 70, 70, 73, 76, 84, 91, 109, 110, 129, 143. Then, we
produce samples using three diffrent progressive first-failure censoring which are (18,0 % 17), (1 % 18)
and (0 % 17,18) from the above sample with m = 18. The results are organized in Table 12.

Table 12. Progressive first-failure censored sample in the given censoring scheme when k = 2, n = 36,

m =18.
Scheme Sample
R1=(18,0%17) 12,24,32,32,34, 38, 54, 55, 58, 60, 61, 65, 68, 70, 91, 109, 110, 143
R2 = (1*18) 12,15, 22, 24, 32, 32, 33, 34, 38, 43, 44, 54, 55, 58, 60, 65, 68, 70

R3 = (0*17, 18) 12, 15,22, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 54, 55, 56, 58

In Table 13, for MLE, we calculate the EVs, MSEs, and confidence intervals of the parameters
and entropy; for Bayes estimation, we obtain the EVs, MSEs, and HPD intervals of entropy and two
parameters. The estimates of &, A, and entropy using the MLE and the Importance Sampling method
are relatively close.



Entropy 2019, 21, 1209 20 of 21

Table 13. Point and interval estimation of parameters and entropy using MLE and Bayes methods.

Estimates R1 R2 R3
&pmL 1.17 (0.87, 1.59) 1.073 (0.78, 1.48) 0.95 (0.68, 1.33)
AML 123.79 (33.88,452.35)  88.46 (26.28,297.76)  61.08 (19.07, 195.67)
Aumr 6.01 (5.36, 6.75) 6.22 (5.50, 7.04) 6.57 (5.77,7.48)
&g 1.10 (0.94, 1.42) 1.13 (0.98, 1.38) 1.20 (1.14,1.21)
Als 123.47 (42.40,304.71)  100.64 (45.80,205.23)  99.12 (72.85, 106.27)
Hig 6.30 (5.56, 7.18) 5.68 (5.68, 5.68) 5.52 (5.36, 5.55)

7. Conclusions

In this article, the problem of statistical inference on the parameters and entropy of IWD under
progressive first-failure censoring has been considered. Both the maximum likelikood estimation and
Bayesian estimation are investigated. For Bayesian estimation, we apply the Lindley and Importance
Sampling method to approximate the Bayesian estimates under both asymmetric and symmetric
loss functions. We construct the approximate intervals based on MLEs and Log-transformed MLEs.
In addition, we use the Importance Sampling method to derive the HPD intervals. Then, we compare
the performance of estimates through EV and MSE. Although we have considered the estimation of
entropy under progressive first-failure censoring scheme as much as possible, using a similar method,
this censoring scheme can be widely extended to other more efficient and complex censoring schemes.
This direction is still very promising and requires more attention and work.
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