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Abstract: Streamflow forecasting is vital for reservoir operation, flood control, power generation,
river ecological restoration, irrigation and navigation. Although monthly streamflow time series
are statistic, they also exhibit seasonal and periodic patterns. Using maximum Burg entropy,
maximum configurational entropy and minimum relative entropy, the forecasting models for monthly
streamflow series were constructed for five hydrological stations in northwest China. The evaluation
criteria of average relative error (RE), root mean square error (RMSE), correlation coefficient (R) and
determination coefficient (DC) were selected as performance metrics. Results indicated that the RESA
model had the highest forecasting accuracy, followed by the CESA model. However, the BESA model
had the highest forecasting accuracy in a low-flow period, and the prediction accuracies of RESA and
CESA models in the flood season were relatively higher. In future research, these entropy spectral
analysis methods can further be applied to other rivers to verify the applicability in the forecasting of
monthly streamflow in China.

Keywords: burg entropy; configurational entropy; relative entropy; spectral analysis;
streamflow forecasting

1. Introduction

Accurate streamflow forecasting is vital for flood control, reservoir management, restoration of
river environment, irrigation, and navigation, among other uses [1]. Moreover, it can also provide
guidelines for policy makers in the utilization and management of water resources and the formulation
of water environmental health protection plans. So far, the simulation of monthly streamflow is a
hotspot for hydrologic researchers but is still in exploration and development due to the limitations
of forecasting methods. As a traditional method, time series analyses such as autoregressive (AR) or
autoregressive moving average (ARMA) models are often used to simulate streamflow, but they cannot
address the issue of seasonality that exists in the monthly streamflow series [2]. Fortunately, entropy
spectral analysis can extract significant information from streamflow process and forecast monthly
streamflow accurately coupled with the time series analysis method. Actually, the spectral method has
been successfully used by some researchers for monthly streamflow forecasting with different types of
entropy including Burg entropy [3], configuration entropy [1,2], and minimum relative entropy [4,5].

Burg [6] proposed Burg entropy theory (BET) in the frequency domain and then further developed
the maximum Burg entropy spectral method (BESA) for time series forecasting. As a classic method
for hydrologic forecasting, BESA has been widely used in groundwater level forecasting [7], flood
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forecasting [8], and streamflow forecasting [3] and has shown an advantage for long-term streamflow
forecasting. However, BESA has lower resolution in determining multi-peak spectra, and the monthly
streamflow hardly exist in only one period. Maximum configuration entropy spectral method (CESA)
is a substitute for the forecasting of multi-peak spectra series.

The concept of the maximum configuration entropy spectral method (CESA) was initially
proposed by Frieden [9] in the identification of images. Thereafter, Gull and Daniell [10] applied
the concept in the field of astronomy for image reconstruction. In the field of time series analysis, the
CESA performs better than the BESA in the determination of spectral density function in the ARMA
model and the MA model but has no practical advantage in the AR model [11]. The CESA has been
applied for streamflow forecasting by Cui [2] and has shown better reliability than BESA.

As an extension of BESA, minimum relative entropy spectral analysis (RESA) proposed by
Shore [12,13] was also applied to the time series forecasting. In RESA, the spectral power was
considered as a random variable. Tzannes et al. [14] and Woodbury and Ulrych [15] developed
RESA and extended the theory and practice of minimum relative entropy. The RESA spectra have
higher resolution and are more accurate in detecting peak location than other methods for spectral
computation [16]. The RESA method has been used for monthly streamflow forecasting [4,5,16] and
has smaller errors than the other two entropy spectral methods.

However, there is very little research that has reported the application of these methods in
streamflow forecasting in China. Moreover, not many researchers have given attention to the selection
of streamflow length for a training period. Therefore, the main objectives of this paper are (1) to use
three entropy spectral methods for monthly streamflow forecasting in Northwest China, (2) to select
the appropriate training period for the models, and (3) to compare the three models and select the best
model for streamflow forecasting in Northwest China.

2. Methods

Suppose there is a streamflow series, y(t). Convert it to the frequency domain f. If f is considered
a random variable, the spectral density function is normalized as a probability function. Burg entropy
can then be expressed as:

HB( f ) = −
∫ W

−W
ln[p( f )]d f (1)

where W = 1/2·∆t is the Nyquist fold-over frequency and ∆t is the sampling period.
The definition of configuration entropy is similar to Burg entropy and is defined as:

HC( f ) = −
∫ W

−W
p( f ) ln[p( f )]d f (2)

With the given prior spectral density function q(f ), the relative entropy can be defined as:

HR( f ) =
∫ W

−W
q( f ) ln[q( f )/p( f )]d f (3)

The prior spectral density is like background noise in the peak of observed periodicity.
When spectral density is uniform, the relative entropy reduces to a configuration entropy.

The processes shown in Figure 1 mainly include (1) calculating parameters; (2) determining
spectral density function; (3) extending autocorrelation function; and (4) forecasting streamflow and
comparing the three methods for the selection of the most appropriate method.
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Figure 1. The flow chart of streamflow forecasting using entropy spectral method. 
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Figure 1. The flow chart of streamflow forecasting using entropy spectral method. RE: average relative
error; RMSE: root mean square error; R: correlation coefficient; DC: determination coefficient.

2.1. Deriving Spectral Density Function

In order to obtain the least biased spectral density, under some given constraints, the Burg and
configuration entropies are maximized while the relative entropy is minimized before spectral density
estimation. According to the relationship of spectral density function and autocorrelation function, the
constraints could be given as:

ρ(n) =
∫ W

−W
p( f )ei2π f n∆td f ,−N ≤ n ≤ N (4)

where i =
√
−1, ρ(n) is the autocorrelation function of n-th lag; N usually equals 1/4 to 1/2 of the

streamflow length series.
Subject to the constraints, entropy can be maximized or minimized using the Lagrangian function,

which can be formulated as:

L( f ) = H( f )−
N

∑
n=−N

λn

[∫ W

−W
p( f )ei2π f n∆td f − ρ(n)

]
(5)

where λn is the Lagrangian multiplier and H(f ) is the entropy function. The partial derivatives of L to
the spectral density are taken and then equated to zero. The least biased spectral densities obtained by
maximizing Burg entropy and configuration entropy and minimizing relative entropy respectively, are
expressed as follows:

pB( f ) = − 1
N
∑

n=−N
λn exp(−i2π f n∆t)

(6)

pC( f ) = exp(−1−
N

∑
n=−N

λnei2π f n∆t) (7)

qR( f ) = p( f ) exp

(
−1−

N

∑
n=−N

λnei2π f n∆t

)
(8)

2.2. Calculating Lagrangian Multipliers

The methods of calculating Lagrangian multipliers are different due to the variation in the forms
of spectral densities. For Burg entropy, Levinson–Burg algorithms [6,17] are applied to determine
Lagrangian multipliers. While in the case of configuration entropy and relative entropy, cepstrum
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algorithms are applied to calculate Lagrangian multipliers. By taking the inverse Fourier transform of
the log magnitude of Equation (8), we can obtain:

∫ W

−W
[1 + ln q( f )− ln p( f )]e2iπ f n∆td f =

∫ W

−W

(
−

N

∑
s=−N

λne2iπ f s∆t

)
e2iπ f n∆td f (9)

Take the prior and posterior cepstrum of autocorrelations which are transformed from the prior
and posterior spectral densities and expressed as eq(n) and ep(n) in the following equations:

eq(n) =
∫ W

−W
ln qR( f )ei2π f n∆td f (10)

ep(n) =
∫ W

−W
ln p( f )ei2π f n∆td f (11)

Then Equation (9) can be abbreviated as:

δn + eq(n)− ep(n) = −
N

∑
s=−N

λsδs−n (12)

where δn is a delta function.
Lagrangian multipliers can be solved using N linear functions from Equation (12) of the

relative entropy

λn =

{
−1− eq(n) + ep(n); n = 0
−eq(n) + ep(n) ; n 6= 0

(13)

For configuration entropy, eq = 0, Lagrangian multipliers can then be calculated by:

λn =

{
−1 + ep(n); n = 0
ep(n); n 6= 0

(14)

2.3. Forecasting Streamflow

BESA allows autocorrelation to expand as a linear combination of previous autocorrelation
parameters with predicted coefficients. ρN+k can be expressed as:

ρN+k = −
m

∑
j=1

ajρN+k−j (15)

where aj is obtained using the reflection recursion method proposed by Burg [18].
For the configurational and relative entropies, the autocorrelations are extended as:

ρN+k =
m

∑
j=1

k
N + k

e(j)ρN+k−j (16)

and

ρN+k =
ep(N + k)

2
+

m

∑
j=1

k
N + k

ep(j)ρN+k−j (17)

According to the extended autocorrelation functions, the forecasting equations of the three spectral
entropies methods are obtained as follows:

y(T + k) =
m

∑
j=1

ajy(T + k− j) (18)
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y(T + k) =
1
2

m

∑
j=1

k
T + k

e(j)y(T + k− j) (19)

y(T + k) =
Cp(T + k)

2
+

m

∑
j=1

j
m + 1

eq(j)y(T + k− j) (20)

where Cp(T + k) is the cepstrum of streamflow series, and it always equals 1
2 ep(N + k). m is the order

of the model, which is determined by BIC criteria.

BIC(m) = N ln σε
2 + m ln N (21)

where N is the length of streamflow series and σε
2 is the variance of residual of observed and

forecasted streamflow.

2.4. Evaluating the Precision of Forecasting Results

In this paper, we selected average relative error (RE), root mean square error (RMSE), correlation
coefficient (R) and determination coefficient (DC) as evaluation indicators for the forecasted results.
The RE, RMSE, R and DC are expressed as:

RE =
1
N

n

∑
t=1

∣∣∣∣ x(t)− f (t)
x(t)

∣∣∣∣ (22)

RMSE =

√√√√√ n
∑

t=1
[x(t)− f (t)]2

n− 1
(23)

R =

n
∑

t=1
(x(t)− x)

(
f (t)− f

)
[

n
∑

t=1
(x(t)− x)2 n

∑
t=1

(
f (t)− f

)2
]0.5 (24)

DC = 1−

n
∑

t=1
|x(t)− f (t)|2

n
∑

t=1
|x(t)− x|2

(25)

where x represents the average value of observed streamflow x(t), f represents the average value of
the forecasted streamflow f (t), and n is forecasting period (month). According to the “forecasting norm
for hydrology intelligence”, the determination coefficient (DC) is classified into three levels as shown
in Table 1.

Table 1. Model forecasting accuracy rating.

Criterion A B C

DC ≥0.9 0.9~0.7 0.7~0.5

3. Application

3.1. Data Preprocessing

Observed streamflow data from five hydrological stations, Yingluoxia, Zamusi, Jiutiaoling,
Xiangtang and Tangnaihai, in Northwest China were selected to verify these three spectral entropy
methods. These five hydrological stations are located in the Yellow River, Heihe River and Shiyang
River, respectively. Tangnaihai station is located at the mainstream of the Yellow River, while Xiangtang



Entropy 2019, 21, 132 6 of 13

is located at the tributary of the Yellow river. Zamusi and Jiutiaoling stations are situated on the Shiyang
River. Yingluoxia station is located at the Heihe River and it marks the boundary between the upstream
and middle reaches [1]. Basic information on the five hydrological stations are shown in Figure 2 and
Table 2.
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Table 2. Basic information of streamflow data for selected hydrologic stations [1].

Hydrologic
Station Longitude Latitude River Catchment

Area (km2)
Control

Area (km2)
Annual

Runoff (m3/s)

Yingluoxia 100◦11′ E 38◦48′ N Hei River 130,000 10.009 51
Zamusi 102◦34′ E 37◦42′ N Zamu River 851 851 8

Jiutiaoling 102◦03′ E 37◦52′ N Xiying River 1120 1077 10
Xiangtang 102◦51′ E 36◦22′ N Datong River 15.133 15,126 88
Tangnaihai 100◦09′ E 35◦30′ N Yellow River 752,443 121,972 633

The entropy spectral analysis model belongs to the autocorrelation methods, and the input data
should be a standardized stationary random sequence. To meet the requirement, the streamflow
sequences should be transformed using the Box–Cox method. Box–Cox transformation can eliminate
data skewness and make data errors present a normal distribution [17]. In addition, standardized
transformation was also performed on the sequences.

To test whether transformed sequences were stable, we verified the unit root of sequences.
If the unit root exists in the sequence, it is not a stationary random sequence and vice versa [19].
The adftest function in the econometric toolbox of MATLAB 2010b (2010b, MathWorks, Beingjing,
China, https://ww2.mathworks.cn/products/matlab-online.html) was used to test whether the unit
root exists. The adftest function assumes that the unit root does not exist in the sequence. If the
hypothesis is true, the logical value of H is 1 and the confidence can be returned. If the hypothesis
is false, the logical value of H is 0. The test results of all transformed streamflow sequences for five
hydrological stations show that all the sequences are stable and homogeneous (Table 3).

Table 3. Adftest test results of monthly streamflow in each hydrologic station.

Hydrologic Stations Yingluoxia Zamusi Jiutiaoling Xiangtang Tangnaihai

Returned value 1 1 1 1 1
p Value 0.001 0.001 0.001 0.001 0.001

Confidence coefficient (%) 99.9 99.9 99.9 99.9 99.9

https://ww2.mathworks.cn/products/matlab-online.html
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3.2. Determining Training Period

In previous research, the training periods were always less than 100 months, and very few papers
discussed the influence of the training period on the forecasted results. In this paper, we selected the
observed streamflow data from the years 2008 to 2012 as the validation period. Additionally, observed
data from 3 to 40 months were selected as a training period to evaluate the influence of the training
period on forecasted results. In order to determine the period of models, the relationship between the
different training periods and the optimal order of the models are explained in Figure 3. As seen in
Figure 3, when the training period is short, the optimal fitting order of models is lower, and then the
optimal order of models tends to be stable with the increase of training period.
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Beyond that, the relationship between the training period and the DC of the validation period
were explored (Figure 4). The forecasting effect is weak and not stable enough when the training
period is less than 15 years. However, increase in the training period increases and stabilizes the DC.
In order to make use of the expert opinion to increase the forecasting precision, the calibration period
was determined as 26 years.
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Figure 4. Evaluation index (DC) corresponding to different lengths of calibration period. (a) Yingluoxia
station; (b) Jiutiaoling station; (c) Zamusi station; (d) Xiangtang station; (e) Tangnaihai station.

3.3. Estimating Spectral Density

Spectral analysis is a powerful method employed to check the periodicity by finding out the
frequency of spectrum peaks. The spectral densities estimated by these three spectral entropy methods
were compared to the spectral density estimated by fast Fourier transform (FFT) (Figure 5). Five
representative rivers were chosen to show the ability of BESA, CESA, and RESA to estimate the
spectral densities. For RESA, a prior spectral density function was hypothesized from data information.
The determination process of prior spectral density functions is described in Appendix A. It can be
discovered from Figure 5 that all of the stations displayed a peak at frequency 1/12. On the other hand,
there were other peaks near frequency 1/4th and 1/6th in the spectral density at Zamusi, Jiutiaoling
and Tangnaihai stations.
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Figure 5. Spectral density estimated by BESA, CESA, RESA and fast Fourier transform(FFT) method for
five hydrological stations in Northwest China. (a) Yingluoxia station; (b) Jiutiaoling station; (c) Zamusi
station; (d) Xiangtang station; (e) Tangnaihai station.

For uni-peak streamflow series, the BESA, CESA, and RESA can check the periodicity equally
as well as FFT. However, for multi-peak streamflow series, the BESA did not perform as effectively
in detecting the principal periodicity. On the contrary, the CESA and RESA correctly checked the
most significant peak at the 1/12th frequency. However, CESA always neglects all secondary spectral
peaks to keep the peak at 1/12th most significant. The RESA detected less significant peaks, and was
consistent with the FFT results.



Entropy 2019, 21, 132 9 of 13

In order to examine whether this variation would affect the forecasting precision, we used these
three methods to forecast streamflow in five hydrological stations for selecting the optimal model in
northwest China.

3.4. Streamflow Forecasting Analysis

Streamflow was forecasted using three spectral entropy methods for five hydrological stations
(Figures 6 and 7) with a validation period of five years. The results indicated that the forecasting
accuracy was worse in Tangnaihai station where the DC is less than 0.6 (Table 4) and belongs to level C
compared with the other four stations. The reason for this may be that the catchment area of Tangnaihai
station is much wider than other stations. Moreover, the intensive anthropogenic activities might also
have a severe impact on the streamflow of Tangnaihai station. Therefore, it is difficult to accurately
forecast streamflow with only streamflow from previous months using autoregression-based models.
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Figure 6. Streamflow forecasting using entropy spectral methods for five hydrological stations.
(a) Yingluoxia station; (b) Jiutiaoling station; (c) Zamusi station; (d) Xiangtang station;
(e) Tangnaihai station.

Table 4. Three models’ performance metrics in each of the selected hydrological station.

Hydrological
Station

BESA CESA RESA

RE RMSE
m3/s R DC RE RMSE

m3/s R DC RE RMSE
m3/s R DC

Yingluoxia 0.173 18.348 0.934 0.859 0.194 16.807 0.942 0.882 0.196 16.571 0.944 0.885
Zamusi 0.216 3.395 0.924 0.734 0.259 3.303 0.892 0.748 0.268 3.521 0.876 0.714

Jiutiaoling 0.224 4.972 0.911 0.716 0.273 4.771 0.911 0.739 0.276 4.592 0.911 0.758
Xiangtang 0.260 27.237 0.924 0.797 0.232 25.760 0.907 0.818 0.234 22.636 0.928 0.859
Tangnaihai 0.315 303.303 0.765 0.545 0.324 302.749 0.780 0.547 0.326 291.922 0.796 0.579

By comparing the forecasting accuracy of the three models for five hydrological stations during
the validation period, we discovered that the rank of forecasting accuracy with the evaluation criteria
of DC, RMSE and R for the three models was in the order RESA > CESA > BESA for Yingluoxia station
(Table 4). However, for Zamusi station of Shiyang River, the accuracy of the CESA model was higher
than the other models (Table 4, Figure 6). For the remaining three hydrological stations, the accuracy
was similar for the three models, and the RESA model was more accurate than CESA and BESA models
using DC, RMSE and R criteria. However, the RE between the observed streamflow and forecasted
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streamflow using BESA was smaller than other methods. The reason for this is that RE reflects the
linear error between observed values and forecasted values, while the RMSE, R and DC reflect the
quadratic power error between observed values and forecasted values. When the forecasting error of
the flood season was smaller, the RMSE, R and DC would be effective. However, when the forecasting
error of the non-flood season were smaller, RE would be better.
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Figure 7. Comparison between observed and forecasted streamflow. (a) Yingluoxia station;
(b) Jiutiaoling station; (c) Zamusi station; (d) Xiangtang station; (e) Tangnaihai station.

To verify this conjecture, the whole period was divided into flood season from July to October
and low-flow season from January to June, November, and December in each year. We extracted the
forecasted streamflow of the non-flood season and compared it with the observed streamflow in the
five stations (Table 5). As shown, BESA performs better than other methods. During the low flow
season, the advantage of BESA over the others was significant, where the streamflow was forecasted
close to the observation. However, the overall forecasting accuracy of the RESA model and the CESA
model was higher. At the same time, because the streamflow forecasting itself serves as the optimal
allocation of water resources, the annual or flood runoff prediction was more meaningful. As a whole,
the RESA model can better adapt to the streamflow forecasting for the five hydrological stations in
northwest China. Combining precipitation as a predictor, selecting one or more models with high
accuracy in the flood season, and using the entropy spectrum model and its combination [1] to forecast
streamflow could be a future research direction.

Table 5. Three models’ performance in non-flowed metrics in each selected hydrological station.

Hydrological
Station

BESA CESA RESA

RE RMSE
m3/s R DC RE RMSE

m3/s R DC RE RMSE
m3/s R DC

Yingluoxia 0.179 8.01 0.943 0.870 0.239 10.54 0.939 0.787 0.231 10.51 0.943 0.788
Zamusi 0.224 3.00 0.936 0.726 0.255 3.15 0.901 0.692 0.263 3.47 0.887 0.665

Jiutiaoliing 0.229 4.02 0.863 0.654 0.257 4.42 0.864 0.631 0.268 4.40 0.864 0.636
Xiangang 0.245 12.72 0.857 0.807 0.233 13.11 0.841 0.750 0.259 15.36 0.847 0.683

Tangnaihai 0.261 153.08 0.802 0.630 0.276 165.70 0.813 0.567 0.284 158.23 0.827 0.605
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4. Conclusions

In this paper, the BESA, CESA, and RESA models were applied for spectral analysis and
streamflow forecasting in northwest China using monthly streamflow data from five hydrological
stations. The estimated spectral density and prediction accuracy of the three methods were compared
based on the optimal length of the training period. The spectral density functions of the BESA, CESA
and RESA was smoother than that of FFT, and all of them can clearly estimate the 12 month primary
period of monthly streamflow sequence without deviation.

However, the spectral density function of BESA could not detect the other significant secondary
periods, while that of CESA could detect the secondary periods for multi-period sequences despite a
certain degree of leakage. By comparing these three entropy spectral methods, we discovered that all
of these methods could forecast streamflow accurately. Among them, the RESA model has the highest
prediction accuracy, followed by the CESA model.

Due to the lack of data, this paper only applied the entropy spectral theory to the monthly
streamflow forecasting of few rivers in northwest China. In future research, three entropy spectral
analysis methods can further be applied to other rivers to verify the applicability of the three entropy
spectral analysis methods in the forecasting of monthly streamflow in China.
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Appendix A. Determination of the Prior Spectral Density Function for RESA Method

In this paper, the spectral density of the monthly streamflow sequence in each hydrological station
was estimated to determine the major periods and their intensity. The prior spectral density for RESA
was determined based on the estimated spectral density of CESA. Through the spectrum analysis of
BESA and CESA, it can be found that all sequences have significant period of 12 months. There are
6 months and 4 months minor periods in most hydrological stations. Based on the spectral estimation
values of each hydrological station, the prior spectral density functions mainly consist of six types.
The specific settings are shown in Table A1.

Table A1. Hypothesis on the prior spectral density.

Number Period Spectral Density Function

Assumption 1 None p( f ) = 1
Assumption 2 12 months p( f ) = p, p(1/12)= 1000× p
Assumption 3 12 months, 6 months p( f ) = p, p(1/12)= 900× p, p(1/6)= 100× p
Assumption 4 12 months, 4 months p( f ) = p, p(1/12)= 900× p, p(1/4)= 100× p
Assumption 5 12 months, 4 months, 6 months p( f ) = p, p(1/12)= 900× p, p(1/6) = p(1/4)= 50× p
Assumption 6 12 months, 4 months, 6 months p( f ) = p, p(1/12)= 900× p, p(1/4)= 75∗p, p(1/6)= 25× p

Note: 1 =
∫

p( f )d f .

To find the optimal prior spectral density function for RESA, the Itakura–Saito distance (I–S)
between the CESA spectral density and the prior RESA spectral density are calculated. The formula
for solving I–S distance of two discrete sequences is as follows:

DI–S = ∑
[

P1( f )
P2( f )

− log
P1( f )
P2( f )

− 1
]

(A1)
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where P1( f ) and P2( f ) are spectral functions of two different sequences, DI–S represents I–S distance
of two spectral functions.

The smaller the I–S distance values are, the smaller the difference between the two spectral density
functions is. The distance between the estimated CESA spectral function of each hydrological station
and the assumed I–S is shown in Table A2. For each hydrological station, the hypothesis corresponding
to the minimum I–S distance is the closest to the spectral density estimated by CESA, which should be
taken as the prior spectral density function. Results are shown in Table A2.

Table A2. Itakura–Saito distance between CESA spectral density and each hypothesis spectral density for RESA.

Hydrologic
Station

Assumption
1

Assumption
2

Assumption
3

Assumption
4

Assumption
5

Assumption
6

Yingluoxia 3.4663 1.4495 1.4536 1.4638 1.4636 1.4629
Zamusi 3.2100 1.3080 1.2888 1.2735 1.2508 1.2502
Jiutiaoling 3.5851 1.3211 1.2961 1.2622 1.2267 1.2303
Xiangtang 3.2742 1.3225 1.3227 1.3274 1.3237 1.3230
Tangnaihai 3.1384 1.4834 1.4239 1.4790 1.4158 1.4163

Note: Boldface represents the optimal spectral density functions for RESA in five hydrologic stations.
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