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Abstract: Entropy has continuously arisen as one of the pivotal issues in optimization, mainly
in portfolios, as an indicator of risk measurement. Aiming to simplify operations and extending
applications of entropy in the field of LR fuzzy interval theory, this paper first proposes calculation
formulas for the entropy of function via the inverse credibility distribution to directly calculate
the entropy of linear function or simple nonlinear function of LR fuzzy intervals. Subsequently,
to deal with the entropy of complicated nonlinear function, two novel simulation algorithms are
separately designed by combining the uniform discretization process and the numerical integration
process with the proposed calculation formulas. Compared to the existing simulation algorithms, the
numerical results show that the advantage of the algorithms is well displayed in terms of stability,
accuracy, and speed. On the whole, the simplified calculation formulas and the effective simulation
algorithms proposed in this paper provide a powerful tool for the LR fuzzy interval theory, especially
in entropy optimization.
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1. Introduction

Entropy, which made its debut in 1948, was designed by Shannon [1] to measure the randomness
or uncertainty of a random phenomenon. Since then, entropy has been extensively applied to various
fields such as physics, finance, medicine, artificial intelligence, and so on. Philippatos and Wilson [2]
scored a first by using entropy in portfolio selection problems and illustrated the construction of
mean-entropy efficient portfolios. Simonelli [3] considered the entropy as an increased portfolio
risk and verified the effectiveness of entropy. In addition, Xiao and Qin [4] employed a weighted
combination method based on the belief entropy function [5] to solve the evidence conflict problem in
multi-sensor data fusion. Guan et al. [6] presented a maximum entropy solution for implementing
active queue management. In addition, Gustafsson et al. [7] used maximum entropy to improve the
Bayesian credibility interval for classifier error rates. In the field of optimization, Zhang et al. [8]
summarized entropy used in crowd analysis and concluded that it can effectively deal with the issues
related to crowd abnormal behavior detection, crowd counting and density estimation, and crowd
motion segmentation. Khan et al. [9] emphasized the optimal estimations of auxiliary variables
including the entropy generation modeled via second thermodynamics law to solve flow problems.
Besides, Wang et al. [10] presented a Renyi mean-entropy-skewness information criterion so that the
scheduling optimization problems in flexible manufacturing systems can be handled.

It should be noted that studies above are all conducted under the probabilistic framework, which
needs to collect large amounts of sample data to figure out probability distributions. However, there
are many non-random factors in reality such as vagueness and ambiguity, associated in a natural
way with different types of linguistic expressions, which makes the research of entropy under the
probabilistic framework not yet suitable. As another study on entropy under uncertain environments,
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Zadeh [11] proposed new operations for the calculus of logic and initially mentioned entropy in his
theory of fuzzy sets in 1965. Zadeh [12] further defined the entropy as a weighted Shannon entropy
to quantify the fuzziness of an event. Moreover, Criadoa and Gachechiladzeb [13] considered the
uncertainty of possibility to describe Zadeh’s general formula for the entropy. Meanwhile, there exist
many applications of entropy under the possibility theory. For instance, when distributions were
multimodal or discontinuous, Smaldino [14] adopted entropy to characterize the uncertainty regarding
the state of the environment, which was faced by moving organisms. Liu and Zhang [15] proposed
a general multi-period fuzzy portfolio optimization model with return demand which involved the
entropy based on possibility measure to maximize both terminal and cumulative diversification.
Additionally, Yin et al. [16] provided a possibility-based robust design optimization framework in
which the entropy of the fuzzy system response was regarded as the variability index for the uncertain
structural-acoustic system.

The possibility measure has properties including normality, nonnegativity and maximality [17],
bar self-duality. Since self-duality is of utmost importance in both theory and practice, adhering to
human’s intuition to a large extent, Liu and Liu [18] creatively defined the credibility measure, which
equals the average value of the possibility measure and the necessity measure. In accordance with the
credibility measure, Li and Liu [19] introduced the entropy to depict the uncertainty associated with
fuzzy variables. Since then, a handful of theoretical research on entropy under the credibility theory
is carried out (see, e.g., [20,21]). Recently, Rahimi et al. [22] provided novel definitions of entropy of
intuitionistic fuzzy variables based on the notion of credibility under intuitionistic fuzzy environment.
According to credibility measure, Zhou et al. [23] studied the entropy of LR fuzzy numbers, and the
calculation formulas together with related concepts were proposed in great detail.

Meanwhile, the entropy derived from credibility measure was also employed in decision-making
process. Table 1 displays the application literature about credibility theory, summarizing the objects
processed by the entropy of function H[ f (ξ1, ξ2, · · · , ξn)], including the types of fuzzy variables ξi
and function f , and further considers whether the entropy of function can be clearly and analytically
expressed excluding the measure operator. Most of the current literature tackled the entropy of linear
function of fuzzy variables with the same type in portfolios, and thus the explicit expression of entropy
of function could be obtained with no difficulty from the arithmetic operation linearity of fuzzy
variables. Differently, Li [21] studied the entropy of linear function containing different types of fuzzy
variables. Since it was difficult to obtain the explicit expression of entropy in this case, fuzzy simulation
was used by Li [21] to solve this problem.

Table 1. A summary of literature on calculation of fuzzy entropy of function, H[ f (ξ1, · · · , ξn)].
Our paper improves the existing work and reduces the computation complexity via an explicit
expression for both linear and nonlinear functions involving different types of fuzzy variables.

Literature
Types of variables ξi Type of function f Expression of H[ f (ξ1, · · · , ξn)]

Same Different Linear Nonlinear Explicit Inexplicit

Huang [24]
√ √ √

Li et al. [25]
√ √ √

Jalota et al. [26]
√ √ √

Zhou et al. [27]
√ √ √

Deng et al. [28]
√ √ √

Yari et al. [29]
√ √ √

Li [21]
√ √ √

Li [21]
√ √ √ √

Our Paper
√ √ √ √ √

Fuzzy simulation is a widely accepted technique for simulating approximations, which has been
studied by plenty of scholars since it was introduced by Bruckley and Hayashi [30] to solve fuzzy
optimization problems in 1994. Liu and Iwamura [31] designed the fuzzy simulation whose basic
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idea was to convert continuous fuzzy numbers into discrete fuzzy ones by stochastically generating
sample points to deal with the fuzzy chance constrained programming. After that, Liu [32] introduced
this technique to solve different fuzzy programming problems based on the concept of credibility,
relying on randomly generating discrete membership degrees. Huang [33] then took the lead in
fuzzy simulation for entropy (FSE) based on Liu [32]’s idea, and innovatively performed stochastic
discretization simulation on the entropy-integrated function, that is, the credibility function. Later,
Li [21] also simulated the entropy of function to handle the entropy optimization models involving
entropy of general function through stochastic discretization process in [32], which assumed that the
joint credibility function was known (the simulation algorithm is denoted as FSE* in this paper). Table 2
shows the function studied in [21] and [33], as well as the principles and accuracy of the algorithms.
Since the stochastic discretization simulation in Liu [32] would inevitably lead to inaccurate and lower
membership degrees especially when the number of fuzzy variables involved in the function increases
as pointed out in Miao et al. [34], the two existing simulation algorithms FSE and FSE* are both with
low accuracy.

Table 2. A summary of current simulation algorithms for entropy of function H[ f (ξ1, · · · , ξn)].
Our paper improves the existing work with extremely high accuracy and short computing time
by presenting the uniformly discretization algorithm and the numerical integration algorithm for
monotone functions.

Literature Algorithm
Function f

Principle
Accuracy

General Monotone High Low

Huang [33] FSE
√ Stochastic discre- √

tization process

Li [21] FSE*
√ Stochastic discre- √

tization process

Our Paper UDA
√ Uniform discre-

√ √
tization process (same type) (others)

Our Paper NIA
√ Numerical √

integration

According to the literature mentioned above, there is a paucity of theoretical research of entropy
based on credibility measure. Also, the application research is basically aimed at linear functions,
merely involving simple triangular or trapezoidal fuzzy numbers of the same category, thus it is mainly
applied in portfolios. Moreover, there is no research on entropy of nonlinear function. Attracted by
this limited status, and considering that LR fuzzy intervals summarize triangle, trapezium, Gauss,
and other nonlinear curves in fuzzy set theory, this paper is aimed at improving the calculation of
fuzzy entropy of functions with respect to LR fuzzy intervals by simplifying the operation formulas
and designing novel simulation algorithms from an entirely different perspective so as to extend the
application situations of fuzzy entropy in decision-making problems. There are two main contributions
in this paper. In terms of the definition for entropy pioneered by Li and Liu [19], some calculation
formulas with analytical expressions for the entropy of fuzzy variable and function are derived
separately by using the inverse credibility distribution (ICD), which can be used to figure out the
entropy H[ f (ξ1, ξ2, · · · , ξn)] without difficulty when f is a linear function or a simple nonlinear
function. With regard to the situation when f is a complicated nonlinear function, two simulation
algorithms are designed to approximate the entropy of function on the basis of the presented calculation
formulas, including the uniform discretization algorithm (UDA) referring to the method of generating
the exact membership degree of each function value proposed by Miao et al. [34] and the numerical
integration algorithm (NIA) based on the operational law of ICD proposed by Zhou et al. [35].

After the brief introduction as Section 1, this paper reviews fundamental knowledge of LR fuzzy
intervals and credibility theory in Section 2. Section 3 proposes the calculation formulas for entropy
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of variable and function separately, and derives the linearity property of entropy operator. Section 4
describes the existing simulation algorithms in [21,33], and further provides two new algorithms
to simulate the entropy of function. In Section 5, some numerical experiments are conducted to
depict the performance of these algorithms from different perspectives, followed by Section 6, which
summarizes conclusions.

2. Preliminaries

In this section, we present some preliminary concepts, theorems, and examples related to LR
fuzzy intervals and monotone functions in the credibility theory, which will be employed throughout
the whole paper.

Definition 1. (Dubois and Prade [36]) L (or R) is a decreasing function from R+ → [0, 1], known as a shape
function such that

(1) L(0) = 1;
(2) L(x) < 1, ∀x > 0;
(3) L(x) > 0, ∀x < 1;
(4) L(1) = 0 [or L(x) > 0, ∀x and L(+∞) = 0].

Definition 2. (Dubois and Prade [36]) A fuzzy interval ξ is of LR-type if there exist shape functions L (for left)
and R (for right), and scalers β > 0, δ > 0 with membership function (MF)

µ(x) =



L
(

a− x
β

)
, if x < a

1, if a ≤ x ≤ a

R
(

x− a
δ

)
, if x > a,

(1)

which is denoted as ξ ∼ (a, a, β, δ)LR, where [a, a] is the core of ξ, a and a are respectively called the lower and
upper modal values, β and δ are respectively called the left-hand and right-hand spreads.

Remark 1. When a = a, the LR fuzzy interval degenerate to an LR fuzzy number, e.g., a triangular fuzzy
number or a Gaussian fuzzy number [37]. In other words, the LR fuzzy number is a special case of LR fuzzy
interval discussed in this paper.

For an LR fuzzy interval ξ defined in Definition 2, the shape functions L and R determine its
type, while the parameters a, a, β, δ determine its position and spreads. Examples 1–4 provide some
commonly used LR fuzzy intervals with the same parameter setting and the different shape functions,
including trapezoidal fuzzy numbers, parabolic fuzzy intervals, normal fuzzy intervals, and mixture
fuzzy intervals. These fuzzy intervals will be used to illustrate our work in the following sections.

Example 1. Supposing that L(x) = R(x) = max{0, 1− x}, then ξ is known as a trapezoidal fuzzy number,
denoted by T (a, a, β, δ), and its MF is (see Figure 1)

µ(x) =



x− (a− β)

β
, if a− β ≤ x < a

1, if a ≤ x ≤ a

(a + δ)− x
δ

, if a < x ≤ a + δ.

(2)
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0 a− β a a a+ δ

1

x

µ(x)

Figure 1. The MF in Example 1. µ(x) is the MF in Equation (2) of trapezoidal fuzzy number
ξ ∼ T (a, a, β, δ).

Example 2. If L(x) = R(x) = max{0, 1− x2}, then ξ is known as a parabolic fuzzy interval, denoted by
P(a, a, β, δ), and its MF is (see Figure 2)

µ(x) =



1−
(

a− x
β

)2
, if a− β ≤ x < a

1, if a ≤ x ≤ a

1−
(

x− a
δ

)2
, if a < x ≤ a + δ.

(3)

0 a− β a a a+ δ

1

x

µ(x)

Figure 2. The MF in Example 2. µ(x) is the MF in Equation (3) of parabolic fuzzy interval ξ ∼
P(a, a, β, δ).

Example 3. Suppose that L(x) = R(x) = max{0, (1− x)2}. Then ξ is known as a normal fuzzy interval,
denoted by N (a, a, β, δ), with (see Figure 3)

µ(x) =



(
x− (a− β)

β

)2

, if a− β ≤ x < a

1, if a ≤ x ≤ a(
(a + δ)− x

δ

)2

, if a < x ≤ a + δ.

(4)
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0 a− β a a a+ δ

1

x

µ(x)

Figure 3. The MF in Example 3. µ(x) is the MF in Equation (4) of normal fuzzy interval ξ ∼ N (a, a, β, δ).

Example 4. Suppose that L(x) = max{0, 1− x2} and R(x) = max{0, (1− x)2}. Then ξ is known as a
mixture fuzzy interval, denoted byM(a, a, β, δ), and its MF is (see Figure 4)

µ(x) =



1−
(

a− x
β

)2
, if a− β ≤ x < a

1, if a ≤ x ≤ a(
(a + δ)− x

δ

)2

, if a < x ≤ a + δ.

(5)

0 a− β a a a+ δ

1

x

µ(x)

Figure 4. The MF in Example 4. µ(x) is the MF in Equation (5) of mixture fuzzy interval ξ ∼
M(a, a, β, δ).

Definition 3. (Liu and Liu [18]) Assuming that ξ is a fuzzy variable with MF, µ, and B is a set, the credibility
of fuzzy event {ξ ∈ B} is defined by

Cr{ξ ∈ B} = 1
2
(

sup
x∈B

µ(x) + 1− sup
x/∈B

µ(x)
)
. (6)

Definition 4. (Liu [38]) The credibility distribution (CD) Φ : [−∞,+∞] → [0, 1] of a fuzzy variable ξ is
defined as

Φ(x) = Cr{ξ ≤ x}. (7)

As for an LR fuzzy interval ξ ∼ (a, a, β, δ)LR with MF, µ, in Equation (1), on account of
Equations (6) and (7), its CD can be derived as
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Φ(x) =



1
2

L
(

a− x
β

)
, if x < a

0.5, if a ≤ x ≤ a

1− 1
2

R
(

x− a
δ

)
, if x > a.

(8)

In view of the continuity and monotonicity of CDs of LR fuzzy intervals, Zhou et al. [35] defined
a special type of LR fuzzy interval, which is called the regular LR fuzzy interval.

Definition 5. (Zhou et al. [35]) An LR fuzzy interval ξ is said to be regular if its CD, Φ(x), is continuous on
{x|0 < Φ(x) < 1} and strictly increasing on {x|0 < Φ(x) < 0.5 or 0.5 < Φ(x) < 1}.

Definition 6. (Zhou et al. [35]) Suppose that ξ ∼ (a, a, β, δ)LR is a regular LR fuzzy interval. Then its inverse
credibility distribution (ICD) is defined as

Φ−1(α) =


a− βL−1(2α), if 0 < α < 0.5

[a, a], if α = 0.5

a + δR−1(2− 2α), if 0.5 < α < 1.

(9)

Please note that the ICD, Φ−1(α), is well defined on the domain (0, 1). If required, the open
interval can be extended by

Φ−1(0) = lim
α↓0

Φ−1(α), Φ−1(1) = lim
α↑1

Φ−1(α).

Based on Definition 5, it is clear that the four kinds of LR fuzzy intervals given in Examples 1–4
are all regular LR fuzzy intervals. Thus, in the light of Equations (8) and (9), Examples 5–8 derive their
CDs and ICDs, respectively, for our purpose.

Example 5. The CD of trapezoidal fuzzy number ξ ∼ T (a, a, β, δ) in Example 1 is (see Figure 5a)

Φ(x) =



x− (a− β)

2β
, if a− β ≤ x < a

0.5, if a ≤ x ≤ a

x− (a− δ)

2δ
, if a < x ≤ a + δ,

(10)

and its ICD is (see Figure 5b)

Φ−1(α) =


2βα + a− β, if 0 ≤ α < 0.5

[a, a], if α = 0.5

2δα + a− δ, if 0.5 < α ≤ 1.

(11)
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0 a− β a a a+ δ

1

0.5

x

Φ(x)

(a)

0

a− β

a

a

a+ δ

0.5 1
α

Φ−1(α)

(b)

Figure 5. The CD and ICD of trapezoidal fuzzy number ξ ∼ T (a, a, β, δ) in Example 5. (a) Φ(x) is the
CD in Equation (10); (b) Φ−1(α) is the ICD in Equation (11).

Example 6. The CD of parabolic fuzzy interval ξ ∼ P(a, a, β, δ) in Example 2 is (see Figure 6a)

Φ(x) =



1
2
− 1

2

(
a− x

β

)2
, if a− β ≤ x < a

0.5, if a ≤ x ≤ a

1
2
+

1
2

(
x− a

δ

)2
, if a < x ≤ a + δ,

(12)

and its ICD is (see Figure 6b)

Φ−1(α) =


a− β

√
1− 2α, if 0 ≤ α < 0.5

[a, a], if α = 0.5

a + δ
√

2α− 1, if 0.5 < α ≤ 1.

(13)

0 a− β a a a+ δ

1

0.5

x

Φ(x)

(a)

0

a− β

a

a

a+ δ

0.5 1
α

Φ−1(α)

(b)

Figure 6. The CD and ICD of parabolic fuzzy interval ξ ∼ P(a, a, β, δ) in Example 6. (a) Φ(x) is the CD
in Equation (12); (b) Φ−1(α) is the ICD in Equation (13).
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Example 7. The CD of normal fuzzy interval ξ ∼ N (a, a, β, δ) in Example 3 is (see Figure 7a)

Φ(x) =



1
2

(
x− (a− β)

β

)2

, if a− β ≤ x < a

0.5, if a ≤ x ≤ a

1− 1
2

(
(a + δ)− x

δ

)2

, if a < x ≤ a + δ,

(14)

and its ICD is (see Figure 7b)

Φ−1(α) =


a− β + β

√
2α, if 0 ≤ α < 0.5

[a, a], if α = 0.5

a + δ− δ
√

2− 2α, if 0.5 < α ≤ 1.

(15)

0 a− β a a a+ δ

1

0.5

x

Φ(x)

(a)

0

a− β

a

a

a+ δ

0.5 1
α

Φ−1(α)

(b)

Figure 7. The CD and ICD of normal fuzzy interval ξ ∼ N (a, a, β, δ) in Example 7. (a) Φ(x) is the CD
in Equation (14); (b) Φ−1(α) is the ICD in Equation (15).

Example 8. The CD of mixture fuzzy interval ξ ∼M(a, a, β, δ) in Example 4 is (see Figure 8a)

Φ(x) =



1
2
− 1

2

(
a− x

β

)2
, if a− β ≤ x < a

0.5, if a ≤ x ≤ a

1− 1
2

(
(a + δ)− x

δ

)2

, if a < x ≤ a + δ,

(16)

and its ICD is (see Figure 8b)

Φ−1(α) =


a− β

√
1− 2α, if 0 ≤ α < 0.5

[a, a], if α = 0.5

a + δ− δ
√

2− 2α, if 0.5 < α ≤ 1.

(17)
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0 a− β a a a+ δ

1

0.5

x

Φ(x)

(a)

0

a− β

a

a

a+ δ

0.5 1
α

Φ−1(α)

(b)

Figure 8. The CD and ICD of mixture fuzzy interval ξ ∼M(a, a, β, δ) in Example 8. (a) Φ(x) is the CD
in Equation (16); (b) Φ−1(α) is the ICD in Equation (17).

Definition 7. (Liu [38]) A strictly monotone function f (x1, x2, · · · , xn) is established when it is strictly
increasing in regard to x1, x2, · · · , xh and strictly decreasing in regard to xh+1, xh+2, · · · , xn, that is,

f (x1, · · · , xh, xh+1, · · · , xn) ≤ f (y1, · · · , yh, yh+1, · · · , yn) (18)

whenever xi ≤ yi for i = 1, 2, · · · , h and xi ≥ yi for i = h + 1, · · · , n, and

f (x1, · · · , xh, xh+1, · · · , xn) < f (y1, · · · , yh, yh+1, · · · , yn) (19)

whenever xi < yi for i = 1, 2, · · · , h and xi > yi for i = h + 1, · · · , n.

Theorem 1. (Zhou et al. [35]) Let ξ1, ξ2, · · · , ξn be independent regular LR fuzzy intervals with CDs,
Φ1, Φ2, · · · , Φn, respectively. If the continuous function f (x1, x2, · · · , xn) is strictly increasing in regard
to x1, · · · , xh and strictly decreasing in regard to xh+1, · · · , xn, then ξ = f (ξ1, ξ2, · · · , ξn) is a regular LR
fuzzy interval with ICD,

Ψ−1(α) = f
(
Φ−1

1 (α), · · · , Φ−1
h (α), Φ−1

h+1(1− α), · · · , Φ−1
n (1− α)

)
.

3. Calculation Formulas for Entropy of Monotone Function

This section first presents the definition of entropy of continuous fuzzy variable proposed by Li
and Liu [19]. Then, an equivalent formula for entropy of LR fuzzy interval is derived in terms of the
ICD. Ultimately, the calculation formula for entropy of monotone function of LR fuzzy intervals is
presented, and the linearity of entropy operator is also verified.

3.1. Definition and Calculation Formula for H[ξ]

Definition 8. (Li and Liu [19]) Suppose that ξ is a continuous fuzzy variable. Then the entropy of ξ is defined as

H[ξ] =
∫ +∞

−∞
S
(
Cr{ξ = x}

)
dx, (20)

where S(t) = −t ln t− (1− t) ln(1− t).

According to Equations (1) and (6), the credibility function [21] of an LR fuzzy interval
ξ ∼ (a, a, β, δ)LR is
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Cr{ξ = x} =



1
2

L
(

a− x
β

)
, if x < a

0.5, if a ≤ x ≤ a

1
2

R
(

x− a
δ

)
, if x > a.

(21)

Hence, the entropy of ξ is

H[ξ] =
∫ a

−∞
S
(

1
2

L
(

a− x
β

))
dx +

∫ a

a
S(0.5)dx +

∫ +∞

a
S
(

1
2

R
(

x− a
δ

))
dx. (22)

By using the calculation formula in Equation (22), the entropy of the four kinds of LR fuzzy
intervals mentioned above is derived and presented in Examples 9–12.

Example 9. Suppose that ξ is a trapezoidal fuzzy number in Example 1. Then its entropy can be calculated as

H[ξ] =
∫ a

a−β
S
(

x− (a− β)

2β

)
dx +

∫ a

a
S(0.5)dx +

∫ a+δ

a
S
(
(a + δ)− x

2δ

)
dx

=
∫ 0.5

0
2βS(t)dt + (a− a) ln 2−

∫ 0

0.5
2δS(t)dt

=
β + δ

2
+ (a− a) ln 2.

(23)

Assuming that a = a, which signifies that ξ is a triangular fuzzy number, its entropy is H[ξ] =
β + δ

2
.

Example 10. Suppose that ξ is a parabolic fuzzy interval in Example 2. Then its entropy can be calculated as

H[ξ] =
∫ a

a−β
S

(
1
2
− 1

2

(
a− x

β

)2
)

dx +
∫ a

a
S(0.5)dx +

∫ a+δ

a
S

(
1
2
− 1

2

(
x− a

δ

)2
)

dx

=
∫ 0.5

0
β(1− 2t)−

1
2 S(t)dt + (a− a) ln 2−

∫ 0

0.5
δ(1− 2t)−

1
2 S(t)dt

= (β + δ)

(
4
3
− π

6
− ln 2

3

)
+ (a− a) ln 2.

(24)

Assuming that a = a, which signifies that ξ is a parabolic fuzzy number, its entropy is H[ξ] = (β +

δ)(
4
3
− π

6
− ln 2

3
).

Example 11. Suppose that ξ is a normal fuzzy interval in Example 3. Then its entropy can be calculated as

H[ξ] =
∫ a

a−β
S

(
1
2

(
x− (a− β)

β

)2
)

dx +
∫ a

a
S(0.5)dx +

∫ a+δ

a
S

(
1
2

(
(a + δ)− x

δ

)2
)

dx

=
∫ 0.5

0
β(2t)−

1
2 S(t)dt + (a− a) ln 2−

∫ 0

0.5
δ(2t)−

1
2 S(t)dt

= (β + δ)

(
4
3
− 2
√

2
3

ln(3 + 2
√

2)

)
+ (a− a + β + δ) ln 2.

(25)

Assuming that a = a, which signifies that ξ is a normal fuzzy number, its entropy is H[ξ] = (β + δ)(
4
3
−

2
√

2
3

ln(3 + 2
√

2) + ln 2).
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Example 12. Suppose that ξ is a mixture fuzzy interval in Example 4. Then its entropy can be calculated as

H[ξ] =
∫ a

a−β
S

(
1
2
− 1

2

(
a− x

β

)2
)

dx +
∫ a

a
S(0.5)dx +

∫ a+δ

a
S

(
1
2

(
(a + δ)− x

δ

)2
)

dx

=
∫ 0.5

0
β(1− 2t)−

1
2 S(t)dt + (a− a) ln 2−

∫ 0

0.5
δ(2t)−

1
2 S(t)dt

= β

(
4
3
− π

6
− ln 2

3

)
+ δ

(
4
3
− 2
√

2
3

ln(2
√

2 + 3)

)
+ (a− a + δ) ln 2.

(26)

Assuming that a = a, which signifies that ξ is a mixture fuzzy number, its entropy is H[ξ] =

β

(
4
3
− π

6
− ln 2

3

)
+ δ

(
4
3
+ ln 2− 2

√
2

3
ln(2
√

2 + 3)

)
.

Theorem 2. Provided that ξ is a regular LR fuzzy interval, if its entropy exists, then

H[ξ] =
∫ 1

0
Φ−1(α) ln

α

1− α
dα, (27)

where Φ−1 is the ICD of ξ.

Proof of Theorem 2. Suppose that ξ is an LR fuzzy interval represented by ξ ∼ (a, a, β, δ)LR with the
CD, Φ. According to Equations (8) and (21), we can obtain

Cr{ξ = x} =


Φ(x), if x ≤ a

1−Φ(x), if x > a.
(28)

In light of Definition 8 and the equation S(t) = S(1− t), the entropy can be easily calculated as

H[ξ] =
∫ a

−∞
S(Φ(x))dx +

∫ +∞

a
S(1−Φ(x))dx

=
∫ +∞

−∞
S(Φ(x))dx.

(29)

Thus, we have

H[ξ] =
∫ +∞

−∞
S(Φ(x))dx

=
∫ 0

−∞

∫ Φ(x)

0
S′(α)dαdx−

∫ +∞

0

∫ 1

Φ(x)
S′(α)dαdx,

(30)

where S′(α) is the derivative of S(α) with S′(α) = (−α ln α− (1− α) ln(1− α))′ = − ln
α

1− α
. By the

Fubini theorem, it immediately follows that

H[ξ] =
∫ Φ(0)

0

∫ 0

Φ−1(α)
S′(α)dxdα−

∫ 1

Φ(0)

∫ Φ−1(α)

0
S′(α)dxdα

= −
∫ 1

0
Φ−1(α)S′(α)dα

=
∫ 1

0
Φ−1(α) ln

α

1− α
dα.

(31)
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Remark 2. It should be noted that Zhou et al. [23] have verified that the calculation formulas in Equation (27)
is also effective for LR fuzzy numbers. That is, the formulas derived in Theorem 2 with respect to LR fuzzy
intervals is a generalized one involving Zhou et al. [23]’s result as a special case.

By means of Theorem 2, we can calculate the entropy of the above four types of regular LR fuzzy
intervals (see Examples 10–13) via their ICDs directly. More clearly, for a regular LR fuzzy interval
ξ ∼ (a, a, β, δ)LR, its entropy can be calculated via Equations (9) and (27) as

H[ξ] =
∫ 0.5

0

(
a− βL−1(2α)

)
ln

α

1− α
dα +

∫ 1

0.5

(
a + δR−1(2− 2α)

)
ln

α

1− α
dα. (32)

Compared with Equation (22), the calculation formula for H[ξ] in Equation (32) is much simplified.

3.2. Calculation Formula for H[ f (ξ1, ξ2, · · · , ξn)]

According to Definition 8, it is clear that the calculation of entropy in credibility theory is
complicated due to the definition itself. Hence, it is more difficult to deal with the entropy of function,
that is,

H[ f (ξ1, ξ2, · · · , ξn)] =
∫ +∞

−∞
S
(
Cr{ f (ξ1, ξ2, · · · , ξn) = x}

)
dx, (33)

which results in the limitations of the current research.
Referring to the existing literature about the entropy of function H[ f (ξ1, ξ2, · · · , ξn)], in terms of

continuous fuzzy variable ξ, Li and Liu [19] has proved that H[aξ + b] = |a|H[ξ], where aξ + b
is a linear function of the single fuzzy variable ξ. Regarding the function of fuzzy variables,
f (ξ1, ξ2, · · · , ξn), where f is an n-dimensional function, almost all the current work focuses on portfolio
selection problems to process the linear function of fuzzy variables. In addition, the fuzzy variables
involved are either triangular fuzzy numbers or trapezoidal fuzzy numbers (see, e.g., [24,27]).

Take the trapezoidal fuzzy numbers as an example to illustrate their work. Assume that
ξi ∼ T (ai, ai, βi, δi), and xi ≥ 0, i = 1, 2, · · · , n. According to the arithmetic operation linearity
of trapezoidal fuzzy numbers, it is easy to derive that

ξ1x1 + ξ2x2 + · · ·+ ξnxn ∼ T
(

n

∑
i=1

aixi,
n

∑
i=1

aixi,
n

∑
i=1

βixi,
n

∑
i=1

δixi

)
.

Then in accordance with Equation (23), the entropy of function in portfolio can be obtained as

H[ξ1x1 + ξ2x2 + · · ·+ ξnxn] =
1
2

(
n

∑
i=1

βixi +
n

∑
i=1

δixi

)
+

(
n

∑
i=1

aixi −
n

∑
i=1

aixi

)
ln 2.

To break the deadlock and apply fuzzy entropy to more range of areas besides portfolios, according
to Theorems 1 and 2, we put forward a new calculation formula for entropy of function that can be
universally applied.

Theorem 3. Let ξ1, ξ2, · · · , ξn be independent regular LR fuzzy intervals with CDs, Φ1, Φ2, · · · , Φn,
respectively. If the continuous function f (x1, x2, · · · , xn) is strictly increasing in regard to x1, · · · , xh and
strictly decreasing in regard to xh+1, · · · , xn, then the entropy of f (ξ1, ξ2, · · · , ξn) is

H[ f (ξ1, ξ2, · · · , ξn)] =
∫ 1

0
f
(
Φ−1

1 (α), · · · , Φ−1
h (α), Φ−1

h+1(1− α), · · · , Φ−1
n (1− α)

)
ln

α

1− α
dα. (34)

Proof of Theorem 3. It follows immediately from Theorems 1 and 2.
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Through this calculation formula for entropy of function, the crisp integration can be obtained by
substituting the ICDs of LR fuzzy intervals (i.e., Φ−1

i , see Equation (9) in Definition 6) into Equation (34),
which avoids the difficulty of calculating the entropy of function via the credibility measure Cr and the
function S in Equation (33). In consequence, in addition to the entropy of linear function, Equation (34)
can be also used to directly figure out some slightly more complex conditions, such as entropy of some
simple nonlinear functions of different types of fuzzy variables.

Example 13. Let ξ1 ∼ T (2, 3, 1, 1) and ξ2 ∼ P(4, 5, 2, 2) be two independent fuzzy intervals. According to
Equations (11), (13) and (34), the entropy of function f1(ξ1, ξ2) = 6ξ1 + 2ξ2 can be calculated as

H[6ξ1 + 2ξ2] =
∫ 1

0

(
6Φ−1

1 (α) + 2Φ−1
2 (α)

)
ln

α

1− α
dα

=
∫ 0.5

0

(
6× (2α + 1) + 2× (4− 2

√
1− 2α)

)
ln

α

1− α
dα

+
∫ 1

0.5

(
6× (2α + 2) + 2× (5 + 2

√
2α− 1)

)
ln

α

1− α
dα

=
50
3

+
16 ln 2

3
− 4π

3
,

(35)

and the entropy of function f2(ξ1, ξ2) = 6ξ1 ∧ 2ξ2 can be similarly obtained as

H[6ξ1 ∧ 2ξ2] =
∫ 1

0

(
6Φ−1

1 (α) ∧ 2Φ−1
2 (α)

)
ln

α

1− α
dα

=
∫ 0.5

0

(
6× (2α + 1) ∧ 2× (4− 2

√
1− 2α)

)
ln

α

1− α
dα

+
∫ 1

0.5

(
6× (2α + 2) ∧ 2× (5 + 2

√
2α− 1)

)
ln

α

1− α
dα

=
32
3
− 2 ln 2

3
− 4π

3
.

(36)

3.3. Linearity Property of Entropy Operator

In the following, we further verify the linearity of entropy operator with respect to regular fuzzy
intervals based on Theorem 3.

Theorem 4. Let ξ1, ξ2, · · · , ξn be independent regular LR fuzzy intervals. If their entropies exist, then for any
real numbers c1, c2, · · · , cn, we have

H[c1ξ1 + c2ξ2 + · · ·+ cnξn] = |c1|H[ξ1] + |c2|H[ξ2] + · · ·+ |cn|H[ξn]. (37)

Proof of Theorem 4. Without loss of generality, we only demonstrate the case n = 2. Suppose that c1

and c2 are two real numbers, and ξ1 and ξ2 are two independent regular LR fuzzy intervals with ICDs,
Φ−1

1 and Φ−1
2 , respectively. If c1 ≥ 0 and c2 ≥ 0, it follows from Theorem 3 that

H[c1ξ1 + c2ξ2] =
∫ 1

0

(
c1Φ−1

1 (α) + c2Φ−1
2 (α)

)
ln

α

1− α
dα

= c1

∫ 1

0
Φ−1

1 (α) ln
α

1− α
dα + c2

∫ 1

0
Φ−1

2 (α) ln
α

1− α
dα

= c1H[ξ1] + c2H[ξ2] = |c1|H[ξ1] + |c2|H[ξ2].

(38)
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Similarly, if c1 ≤ 0 and c2 ≥ 0, we have

H[c1ξ1 + c2ξ2] =
∫ 1

0

(
c1Φ−1

1 (1− α) + c2Φ−1
2 (α)

)
ln

α

1− α
dα

= −c1

∫ 1

0
Φ−1

1 (α) ln
α

1− α
dα + c2

∫ 1

0
Φ−1

2 (α) ln
α

1− α
dα

= −c1H[ξ1] + c2H[ξ2] = |c1|H[ξ1] + |c2|H[ξ2].

(39)

It is easy to derive that the equality H[c1ξ1 + c2ξ2] = |c1|H[ξ1] + |c2|H[ξ2] also holds for the other
two cases (i.e., c1 ≥ 0 and c2 ≤ 0; c1 ≤ 0 and c2 ≤ 0).

Example 14. Let ξ1 ∼ T (2, 3, 1, 1) and ξ2 ∼ P(4, 5, 2, 2). In view of Theorem 4 and Examples 9 and 10,
the entropy of 6ξ1 + 2ξ2 can be derived as

H[6ξ1 + 2ξ2] = 6H[ξ1] + 2H[ξ2] =
50
3

+
16 ln 2

3
− 4π

3
, (40)

which is consistent with the result of Example 13.

4. Simulation Algorithms for Entropy of Monotone Function

The calculation formula proposed in the above section can be used to directly calculate the entropy
of linear function or simple nonlinear function. However, when the function becomes comparatively
complicated or the quantity of fuzzy variables contained in the function increases, it becomes difficult
to directly derive the entropy of function via the formula. In this case, designing effective simulation
algorithms is a general and better choice instead of computing straightforwardly. This section first
introduces two existing simulation algorithms by the stochastic discretization process, and then
separately proposes two new simulation algorithms through the methods of uniform discretization
and numerical integration, respectively.

4.1. FSE

By using the stochastic discretization simulation method introduced in [32], Huang [33] proposed
the FSE through randomly generating the MF and CF in the light of the extension principle of Zadeh.

FSE in [33] is employed to approximate the fuzzy entropy H[ f (ξ1, ξ2, · · · , ξn)], where f is a
real-valued function, and ξ1, ξ2, · · · , ξn are independent fuzzy variables. Let u1s, u2s, · · · , uns (s =

1, 2, · · · , K) be respectively generated from the ε-level sets of ξ1, ξ2, · · · , ξn, where K is a sufficiently
large integer, and ε is a sufficiently small positive number. Denote us = (u1s, u2s, · · · , uns) and
vs = µ1(u1s) ∧ µ2(u2s) ∧ · · · ∧ µn(uns) for s = 1, 2, · · · , K. Thus, the credibility function can be
approximately formulated as

L =
1
2

(
max

1≤s≤K
{vs | f (us) = r}+ 1− max

1≤s≤K
{vs | f (us) 6= r}

)
, (41)

which can be simplified as

L =
1
2

max
1≤s≤K

{vs | f (us) = r}. (42)

Subsequently, by approximating the integration based on the sample points generated above, the
detailed fuzzy simulation procedure of FSE is designed and described in Algorithm 1 below. Please note
that in this simulation algorithm, there are two approximation processes which may produce errors,
including randomly generating the discrete MF and randomly simulating the integration.
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Algorithm 1 Fuzzy Simulation for Entropy, FSE, Huang [33]

Step 1. Initialize the numbers of sample points K and integration points N, and a sufficiently small positive

number ε. Set H = 0 and g = 0.

Step 2. Randomly generate real numbers uis such that µi(uis) ≥ ε, i = 1, 2, · · · , n, s = 1, 2, · · · , K, respectively.

Step 3. Set p = min
1≤s≤K

f (us), and q = max
1≤s≤K

f (us).

Step 4. Randomly generate r from [p, q].

Step 5. Calculate Hg = −t ln t− (1− t) ln (1− t), where t = Cr{ f (ξ1, ξ2, · · · , ξn) = r} is estimated via
Equation (42).

Step 6. Set H ← H + Hg. If g < N, let g = g + 1 and go to Step 4.

Step 7. Return H · (q− p)/N as the estimated value of H[ f (ξ1, ξ2, · · · , ξn)].

Li [21] also developed an algorithm FSE* to simulate the entropy of function, H[ f (ξ1, ξ2, · · · , ξn)],
in which the process of randomly generating sample points of continuous fuzzy numbers was the same
as FSE. The essential difference between the two algorithms was the calculation of the joint credibility
function Cr{ f (ξ1, ξ2, · · · , ξn) = x}. In FSE, the credibility function is estimated via Equation (42),
whereas in FSE*, it is assumed to be predetermined by the decision-maker, which is impractical and
difficult to perform.

4.2. UDA

Since FSE and FSE* both stemmed from the stochastic discretization process in [32], which has been
verified by Miao et al. [34] to bring potential significant errors in most cases. To provide a superior
approximate value of H[ f (ξ1, ξ2, · · · , ξn)], this section innovatively proposes a novel simulation
method by performing the sampling experiments uniformly and then acquiring the fairly accurate
membership degrees on account of the following theorem.

Theorem 5. (Miao et al. [34]) Let ξ1, ξ2, · · · , ξn be independent regular LR fuzzy intervals. If the continuous
function f (x1, x2, · · · , xn) is strictly increasing in regard to x1, x2, · · · , xh and strictly decreasing in regard to
xh+1, xh+2, · · · , xn, then the MF of the fuzzy interval f (ξ1, ξ2, · · · , ξn) is

µ(x) = µ1(x1) |x= f (x1,x2,··· ,xn), (x1,x2,··· ,xn) ∈ L or R, (43)

where µ1 is the MF of ξ1,

L = {(ξL
1 (α), · · · , ξL

h (α), ξR
h+1(α), · · · , ξR

n (α)) : 0 ≤ α ≤ 1},

R = {(ξR
1 (α), · · · , ξR

h (α), ξL
h+1(α), · · · , ξL

n(α)) : 0 ≤ α ≤ 1},
(44)

and [ξL
i (α), ξR

i (α)] is the α-level of ξi, i = 1, 2, · · · , n.

Theorem 5 tells us that the exact membership degree of any point in the two sets L or R can
be achieved by means of that of the first fuzzy variable, µ1(x1), which motivates us to discretize the
continuous fuzzy interval f (ξ1, ξ2, · · · , ξn) by generate sample points uniformly from L orR, instead
of the stochastic discretization process used in FSE and FSE*.

Suppose that f (x1, x2, · · · , xn) is a continuous function which is strictly increasing in regard
to x1, · · · , xh and strictly decreasing in regard to xh+1, · · · , xn, and ξi ∼ (ai, ai, βi, δi)LR are regular
LR fuzzy intervals, i = 1, 2, · · · , n. Then separately divide the two close intervals [ai − βi, ai] and
[ai, ai + δi] into k equal pieces, and denote the s-th point of [ai − βi, ai] as xL

is and the (k-s)-th point of
[ai, ai + δi] as xR

is, that is,
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xL
is = ai − βi + βi ×

s
k

, s = 0, 1, · · · , k,

xR
is = ai + δi − δi ×

s
k

, s = 0, 1, · · · , k.
(45)

For convenience, denote

XL
s = (xL

1s, · · · , xL
hs, xR

h+1s, · · · , xR
ns), s = 0, 1, · · · , k,

XR
s = (xR

1s, · · · , xR
hs, xL

h+1s, · · · , xL
ns), s = 0, 1, · · · , k,

X = { f (XL
s ), f (XR

s ), s = 0, 1, · · · , k}.

(46)

Thus, based on Theorem 5, for any r ∈ X, the credibility function of f (ξ1, ξ2, · · · , ξn),
Cr{ f (ξ1, ξ2, · · · , ξn) = r}, can be well approximated by the following formula

C =



1
2

µ1(xL
1s), if r < f (XL

k ) and r = f (XL
s )

0.5, if r ∈ [ f (XL
k ), f (XR

k )]

1
2

µ1(xR
1s), if r > f (XR

k ) and r = f (XR
s ).

(47)

Subsequently, according to Equations (33) and (47), through the discretization method mentioned
above, the UDA is designed in Algorithm 2 as follows. Figure 9a,b explain the simulation process of
UDA with the trapezoidal fuzzy numbers when k is set to 10.

Algorithm 2 Uniform Discretization Algorithm, UDA

Step 1. Initialize the number of sample points K. Set H = 0, s = 0, and k =
K
2

.

Step 2. Set s = s + 1 and calculate H = H + (−t ln t− (1− t) ln(1− t))ws, where t =
1
2

µ1(xL
1s),

ws = f (XL
s )− f (XL

s−1).

Step 3. If s ≤ k, go to Step 2. Otherwise, set s = 0 and go to Step 4.

Step 4. Set s = s + 1 and calculate H = H + (−t ln t− (1− t) ln(1− t))wk−s, where t =
1
2

µ1(xR
1s),

wk−s = f (XR
s )− f (XR

s−1).

Step 5. If s ≤ k, go to Step 4. Otherwise, go to Step 6.

Step 6. Calculate H = H + S(0.5)wk, where wk = f (XR
k )− f (XL

k ).

Step 7. Return H as the estimated value of H[ f (ξ1, ξ2, · · · , ξn)].

Although both FSE and UDA estimate the entropy of function by using the discretization process
and the calculation formula in Equation (33), there are two underlying differences between them.
One is the sampling method for discretization of continuous fuzzy intervals. FSE generates sample
points randomly with a less accurate MF, while UDA generates sample points uniformly, outputting a
pretty accurate MF. The other is the integration simulation process, the performance of which will be
demonstrated in the next section.
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Figure 9. (a) Discretization process of UDA. The horizontal axis represents the function of fuzzy
variables, and the left and right sides of this set variable are respectively cut into uniform parts.
The vertical axis represents the membership of the first fuzzy variable. (b) Calculation process of UDA.
The small area with color is the simulation value, the bottom is the spacing of the adjacent set function
and the height is the integrand function, adding from the two sides to the middle.

4.3. NIA

As proved above, the entropy of function of regular LR fuzzy intervals can be calculated via an
integration involving its ICD in integrand (see Theorem 3). Based on this calculation formula (i.e.,
Equation (27)), a NIA is suggested to simulate the entropy of monotone function efficiently.

Suppose that f (x1, x2, · · · , xn) is strictly increasing in regard to x1, · · · , xh and strictly
decreasing in regard to xh+1, · · · , xn, and ξ1, ξ2, · · · , ξn are regular LR fuzzy intervals with ICDs,
Φ−1

1 , Φ−1
2 , · · · , Φ−1

n , respectively. Then in view of Theorem 3, the entropy can be simulated as

the numerical integration of function f
(
Φ−1

1 (α), · · · , Φ−1
h (α), Φ−1

h+1(1− α), · · · , Φ−1
n (1− α)

)
ln

α

1− α
.

To further reduce the deviation, the median values of two sample points are used to simulate the above
integrand. More concretely, divide the close interval [0, 1] into K equal pieces, and integrate the above
function for α = (2s− 1)/2K, s = 1, 2, · · · , K. Taking the trapezoidal fuzzy numbers as an example,
Figure 10a,b explain the simulation process of NIA when K is set to 20. The detailed procedure is
described in Algorithm 3 as follows.

Algorithm 3 Numerical Integration Algorithm, NIA

Step 1. Initialize the number of sample points K. Set H = 0 and s = 1.

Step 2. Set α = (2s− 1)/2K. For each 1 ≤ i ≤ h, let xi = Φ−1
i (α), and for each h + 1 ≤ i ≤ n,

let xi = Φ−1
i (1− α).

Step 3. Reset H = H + f (x1, x2, · · · , xn) ln
α

1− α
/K and s = s + 1.

Step 4. If s ≤ K, go to Step 2. Otherwise, return H as the estimated value of H[ f (ξ1, ξ2, · · · , ξn)].

NIA provides a new method to simulate the entropy of monotone function, which is slightly
different from FSE and UDA as it substantially simulates the entropy through the ICD rather than the
credibility function. As seen from the process of the algorithms, compared to UDA, the accuracy of the
results of NIA is apparently improved since the simulation errors only come from the process of the
integral simulation. When K tends to be infinite, the simulation results of NIA will definitely approach
the real value of the entropy H[ f (ξ1, ξ2, · · · , ξn)].
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Figure 10. (a) Discretization process of NIA. The abscissa of the discrete points is the midpoint
of the adjacent sample points, and the ordinate is the value of f

(
Φ−1

1 (α), · · · , Φ−1
h (α), Φ−1

h+1(1 −
α), · · · , Φ−1

n (1− α)
)

corresponding to the midpoint. (b) Calculation process of NIA. The small area
with color is the simulation value, the bottom is the spacing of the adjacent sample points and the
height is the integrand function, adding from 0 to 1.

5. Numerical Experiments

In this section, a series of experiments on different types of fuzzy intervals with same parameters
a, a, β, δ shown in Table 3 are conducted in C language and run in the same environment, a windows
10 platform PC with processor speed of 2.50 GHz.

Table 3. Parameter settings of LR fuzzy intervals ξ1, ξ2, · · · , ξ10 used in Examples 15–18. Please note
that ξ1, ξ2, · · · , ξ10 in each example represents different types of LR fuzzy intervals, but with the same
parameters, a, a, β, δ, for the sake of simplicity on the symbols.

No. a, a, β, δ No. a, a, β, δ

ξ1 3, 5, 2, 3 ξ6 4, 8, 1, 2
ξ2 4, 7, 2, 2 ξ7 3, 5, 1, 1
ξ3 5, 6, 3, 4 ξ8 5, 7, 1, 2
ξ4 7, 8, 4, 1 ξ9 2, 6, 1, 2
ξ5 3, 4, 2, 3 ξ10 3, 6, 1, 4

Next, we will give four examples to compare the efficiency of FSE, UDA, and NIA from three
perspectives, separately studying the influence of the changes in the number of fuzzy intervals,
the types of fuzzy intervals and functions on the algorithm results, and further explore the applicable
conditions of the three algorithms. Besides, the parameters involved in the algorithms are fixed, in
which the numbers of sample points and integration points are both set to be 10,000. To reasonably
compare the results simulated by FSE, UDA, and NIA, the simulation error is measured by error =
|simulation value − exact value|/exact value × 100%, where the exact results in all examples are
calculated according to Theorem 3.

Example 15. This example is used to verify the stability and precision of algorithms when calculating the
entropy of a single fuzzy variable, H[ξ].

Assume that ξ1 is an LR fuzzy interval with a, a, β, δ listed in Table 3. Firstly, we run FSE,
UDA, and NIA 20 times on the trapezoidal fuzzy number to figure out the estimated entropy H[ξ1],
and record their simulation results in Table 4, respectively.
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Table 4. Results and their descriptive statistics by running FSE, UDA, and NIA 20 times in Example 15.
The results of UDA and NIA keep unchanged, while those of FSE fluctuate with a small coefficient
of variation.

Algorithm FSE UDA NIA

3.881256 3.883001 3.886641 3.886641 3.886052 3.886052
3.897752 3.890260 3.886641 3.886641 3.886052 3.886052
3.899839 3.861699 3.886641 3.886641 3.886052 3.886052
3.889567 3.880707 3.886641 3.886641 3.886052 3.886052

20 results 3.880670 3.881301 3.886641 3.886641 3.886052 3.886052
of H[ξ1] 3.888158 3.885380 3.886641 3.886641 3.886052 3.886052

3.892246 3.897574 3.886641 3.886641 3.886052 3.886052
3.887110 3.868030 3.886641 3.886641 3.886052 3.886052
3.881969 3.889256 3.886641 3.886641 3.886052 3.886052
3.876045 3.877455 3.886641 3.886641 3.886052 3.886052

Mean 3.884464 3.886641 3.886052
Variance 0.000086 0 0

Coefficient of variation 0.002387 0 0

The mean, variance, and coefficient of variation are obtained by descriptive statistics. Here, the
coefficient of variation is the ratio of standard deviation to mean, reflecting the dispersion degree
of observations. From Table 4, we can get the conclusion that the algorithms of UDA and NIA are
extremely stable and constant, since the two algorithms will output a unique result according to their
respective principles, and the stability of FSE is acceptable as well with a quite small coefficient of
variation 0.002387.

Subsequently, by employing the three simulation algorithms, the simulation and exact results for
entropy of ξ1 on four types of LR fuzzy intervals are obtained and shown in Table 5 and Figure 11,
where each simulation result is reported as the average of 20 simulated trials.

Table 5. Comparative results in Example 15. FSE, UDA, and NIA are respectively run to simulate the
entropy of a single fuzzy interval, H[ξ1], and their simulation results, running time and simulation
errors are reported.

Variable Type of ξ1 Trapezoidal Parabolic Normal Mixture

Exact value 3.886294 4.279722 3.209027 3.637305

Result 3.884464 4.281979 3.210540 3.640210
FSE Time (s) 0.674900 0.681300 0.692800 0.687000

Error (%) 0.047095 0.052737 0.047148 0.079867

Result 3.886641 4.280068 3.209374 3.637651
UDA Time (s) 0.000040 0.000340 0.000240 0.000230

Error (%) 0.008929 0.008085 0.010813 0.009513

Result 3.886052 4.279479 3.208780 3.637060
NIA Time (s) 0.003700 0.004600 0.003400 0.004100

Error (%) 0.006227 0.005678 0.007697 0.006736

Table 5 and Figure 11 show that NIA performs best on simulation results compared with the other
two algorithms, while UDA runs fastest for its algorithm principle using the first membership value
to represent all, which can be verified by the following examples. For an individual fuzzy interval,
although the simulation errors of FSE are several times more than those of the other two algorithms,
the precision of FSE is still acceptable with a maximum error 0.079867%. In terms of the speed of
operation, the maximum computing time of FSE is 0.6928s, which is far worse than UDA and NIA.
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Figure 11. Simulation errors of FSE, UDA, and NIA in Example 15. Simulation errors of UDA and NIA
are close, and those of FSE are acceptable.

Example 16. This example is used to verify the stability and precision of algorithms when calculating the entropy
of function, H[ f (ξ1, ξ2, · · · , ξn], where ξi are LR fuzzy intervals belonging to the same type, i = 1, 2, · · · , n.

Let f (x1, x2, · · · , x10) = x1 + x2 + · · ·+ x10, and ξ1, ξ2, · · · , ξ10 be regular LR fuzzy intervals with
a, a, β, δ listed in Table 3. Firstly, analogously, we run FSE, UDA, and NIA 20 times on the trapezoidal
fuzzy numbers to estimate the entropy H[ f (ξ1, ξ2, · · · , ξn)] = H[ξ1 + ξ2 + · · ·+ ξ10], and then record
their simulation results in Table 6, together with some descriptive statistics.

Table 6. Results and their descriptive statistics by running FSE, UDA, and NIA 20 times in Example 16.
The results of UDA and NIA keep unchanged, while those of FSE fluctuate with a small coefficient
of variation.

Algorithm FSE UDA NIA

23.307949 24.033430 36.945296 36.945296 36.940132 36.940132
23.942192 22.959617 36.945296 36.945296 36.940132 36.940132
24.237903 25.027487 36.945296 36.945296 36.940132 36.940132
23.309498 22.736498 36.945296 36.945296 36.940132 36.940132

20 results 26.859123 25.222795 36.945296 36.945296 36.940132 36.940132
of H[ξ1 + · · ·+ ξ10] 23.594754 22.614552 36.945296 36.945296 36.940132 36.940132

23.345227 24.837568 36.945296 36.945296 36.940132 36.940132
24.326482 24.137683 36.945296 36.945296 36.940132 36.940132
23.162334 22.738563 36.945296 36.945296 36.940132 36.940132
21.964390 24.077345 36.945296 36.945296 36.940132 36.940132

Mean 23.821770 36.945296 36.940132
Variance 1.178396 0 0

Coefficient of variation 0.045569 0 0

From Table 6, the stability of UDA and NIA keeps perfect, exporting only one result for all trials,
but that of FSE becomes weaker obviously when compared to Example 15. To avoid contingency and
enhance persuasiveness, in the following experiments, we always run FSE 20 times and then report
their average as the final result.



Entropy 2019, 21, 289 22 of 28

Furthermore, for exploring the accuracy of the three simulation algorithms, the (average)
simulation results of the entropy H[ξ1 + ξ2 + · · ·+ ξ10] on four types of LR fuzzy intervals by running
FSE, UDA, and NIA are presented in Table 7 and Figure 12.

Table 7. Comparative results in Example 16. FSE, UDA, and NIA are respectively run to simulate
the entropy of function, H[ξ1 + ξ2 + · · ·+ ξ10], where ξi are with the same type, and their simulation
results, running time and simulation errors are reported.

Variable Type of ξi Trapezoidal Parabolic Normal Mixture

Exact value 36.942385 40.247176 31.253340 35.107841

Result 23.821770 25.051830 22.224826 20.640324
FSE Time (s) 0.5103000 0.5352000 0.5416000 0.5341000

Error (%) 35.516428 37.755061 28.888157 41.208792

Result 36.945296 40.250086 31.256251 35.110752
UDA Time (s) 0.0002200 0.0002500 0.0002500 0.0002300

Error (%) 0.0078800 0.0072300 0.0093140 0.0082920

Result 36.940132 40.244923 31.251054 35.105569
NIA Time (s) 0.0051000 0.0059000 0.0062000 0.0060000

Error (%) 0.0060990 0.0055980 0.0073140 0.0064710

By observing Table 7 and Figure 12, with regard to the addition function f with respect to the
same type of LR fuzzy intervals, NIA still performs best at simulation results, followed by UDA,
and FSE has the worst performance, with a maximum error of 41.208792%, while the highest errors of
UDA and NIA are just 0.009314% and 0.007314%, respectively. In addition, the comparative analysis of
the running time demonstrates that UDA is still the most advantageous, followed by NIA, while FSE
is far behind, hundreds of times slower.
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Figure 12. Simulation errors of FSE, UDA, and NIA in Example 16. Simulation errors of UDA and NIA
are close, and those of FSE are poor.

Example 17. This example is used to verify the precision of algorithms when calculating the entropy of function,
H[ f (ξ1, ξ2, · · · , ξn], where ξi are LR fuzzy intervals belonging to different types, i = 1, 2, · · · , n.
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Let f (x1, x2, · · · , x10) = x1 + x2 + · · ·+ x10, and ξ1, ξ2, · · · , ξ10 be regular LR fuzzy intervals with
a, a, β, δ listed in Table 3. To investigate the performance of the three algorithms for calculating the
entropy of function involving different types of fuzzy intervals, in this example, we assume that the
first five fuzzy intervals, ξ1, ξ2, · · · , ξ5, belong to the same type, and the last five, ξ6, ξ7, · · · , ξ10, are
another kind of the same type. For instance, ξi, i = 1, 2, · · · , 5, are all trapezoidal fuzzy numbers,
and ξi, i = 6, 7, · · · , 10, are all parabolic fuzzy intervals, which is denoted as “T& P” for simplicity.
As for different combinations of different types of LR fuzzy intervals, FSE, UDA, and NIA are run to
export the (average) simulation results of the entropy H[ξ1 + ξ2 + · · ·+ ξ10], and the results are shown
in Table 8 and Figure 13.

Table 8. Comparative results in Example 17. FSE, UDA, and NIA are respectively run to simulate
the entropy of function, H[ξ1 + ξ2 + · · ·+ ξ10], where ξi are with different types, and their simulation
results, running time, and simulation errors are reported.

Variable Type of ξi T&P T&N T&M P&N P&M N&M

Exact value 38.201353 34.775130 35.845825 36.820953 37.891648 32.324035

Result 24.091137 22.123835 23.302385 21.688004 23.030277 21.278486
FSE Time (s) 0.5094000 0.5084000 0.5042000 0.5116000 0.5101000 0.5286000

Error (%) 36.936430 36.380295 34.992750 41.098743 39.220704 34.171319

Result 36.945296 36.945296 36.945296 40.250086 40.250086 31.256251
UDA Time (s) 0.0002200 0.0002200 0.0002200 0.0002500 0.0002500 0.0002500

Error (%) 3.2879910 6.2405690 3.0672220 9.3129940 6.2241630 3.3033750

Result 38.199100 34.772864 35.843563 36.818687 37.889386 32.321752
NIA Time (s) 0.0054000 0.005800 0.0054000 0.0055000 0.0059000 0.0060000

Error (%) 0.0058980 0.0065160 0.0063090 0.0061530 0.0059680 0.0070620
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Figure 13. Simulation errors of FSE, UDA, and NIA in Example 17. Simulation errors of UDA are
worse than those of NIA, and those of FSE are quite large up to 41%.

From and Table 8 and Figure 13, we can find that NIA has an overwhelming superiority on
accuracy compared with the other two algorithms in this case, while FSE still performs worst with the
maximal error 41.098743%. It is worth noting that the accuracy of UDA is reduced when the function
f includes different types of fuzzy intervals. In this situation, the method which helps UDA take an
absolute advantage in speed, that is, to use the membership of the first fuzzy interval to represent all,
may lead to a big error up to 9.312994%. In other words, UDA cannot effectively estimate the entropy
of function involving different combinations of different types of fuzzy intervals.
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Example 18. This example is used to further verify the precision of algorithms when calculating the entropy
of function, H[ f (ξ1, ξ2, · · · , ξn], where ξi belong to different types, i = 1, 2, · · · , n, and f is a more complex
function compared with Example 17.

Let f (x1, x2, · · · , x10) = x1 ∧ x2 ∧ · · · ∧ x10, and the other conditions are the same as Example 17.
The (average) simulation results for entropy H[ξ1∧ ξ2∧ · · · ∧ ξ10] with respect to different combinations
of different types of LR fuzzy intervals are shown in Table 9 and Figure 14.

Table 9. Comparative results in Example 18. FSE, UDA, and NIA are respectively run to simulate
the entropy of function, H[ξ1 ∧ ξ2 ∧ · · · ∧ ξ10], where ξi are with different types, and their simulation
results, running time, and simulation errors are reported.

Variable Type of ξi T&P T&N T&M P&N P&M N&M

Exact value 3.158177 2.813635 2.994500 2.917810 3.021154 2.904143

Result 2.814814 2.557482 2.705171 2.609910 2.730920 2.635169
FSE Time (s) 0.546500 0.557900 0.547100 0.546200 0.552400 0.548000

Error (%) 10.872190 9.103988 9.662014 10.552435 9.606726 9.261734

Result 3.037040 3.037040 3.037040 3.230935 3.230935 2.690357
UDA Time (s) 0.000260 0.000240 0.000240 0.000250 0.000250 0.000250

Error (%) 3.835662 7.940085 1.420604 10.731508 6.943737 7.361414

Result 3.158004 2.813461 2.994326 2.917636 3.020980 2.903969
NIA Time (s) 0.005400 0.005400 0.005300 0.006100 0.006300 0.006200

Error (%) 0.005478 0.006184 0.005811 0.005963 0.005759 0.005991

From Table 9 and Figure 14, we can get similar conclusions as the previous example. In terms
of accuracy, NIA performs best, while FSE and UDA perform not very well. For NIA, both accuracy
and the operation speed are extremely excellent. However, for UDA, although it has an outstanding
running speed, it cannot figure out an acceptable estimation result with good precision when different
types of fuzzy variables are involved in the function. As for FSE, there is no reason to choose it either
in terms of accuracy or speed.
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Figure 14. Simulation errors of FSE, UDA, and NIA in Example 18. Simulation errors of FSE and UDA
are obviously greater than those of NIA.
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From Examples 15–18, it can be concluded that NIA is the best algorithm when considering the
precision and stability, whether it is simulating the entropy of individual fuzzy interval or monotone
function. All the estimation errors of the results by running NIA are less than 0.008%, and the maximal
running time is less than 0.007s. The speed of UDA is most advantageous, nearly ten times faster than
NIA, but its simulation results are rather poor when the estimated function involves different types
of fuzzy intervals, and it is only applicable to the simulation of functions regarding the same type of
fuzzy intervals. Compared with the proposed two new algorithms for entropy simulation, the existing
algorithm FSE is bad in any case, which will report the estimation result with the maximal error of
greater than 40%.

6. Conclusions

Motivated by the limitation of the current literature, this paper aims to improve the calculation
of entropy of function, H[ f (ξ1, ξ2, · · · , ξn)], to extend the application scope of fuzzy entropy in the
decision-making optimization problems. In our paper, all the fuzzy variables ξi are assumed to be
regular LR fuzzy intervals, a type of commonly used fuzzy variables, involving triangular fuzzy
numbers and trapezoidal fuzzy numbers as special cases. In addition, the function f is considered
to be a strictly monotone function with respect to all the fuzzy variables, and most of the functions
involved in real application problems meet this condition. Thus, the simplified calculation formulas as
well as the simulation algorithms based on the formulas can provide a valuable reference to entropy
optimization from a new perspective, supplementing the existing measures such as mean and variance
to extend the applications of LR fuzzy intervals.

Table 10 summarizes most work referred to in this paper, in which the colored methods (i.e., the
calculation formula Equation (34), the simulation algorithms UDA and NIA) are contributions of our
paper, while Equation (33) and FSE come from literature [19,33], respectively. The relevant research can
be mostly divided into two parts from the perspective of processing objects. On the one hand, as for
the entropy of linear or simple nonlinear function f , the calculation formulas Equations (33) and (34)
can be directly used to obtain the entropy H[ f (ξ1, ξ2, · · · , ξn)]. Compared with Equation (33), our
calculation formula Equation (34) replaced the credibility function by the ICD, which greatly simplifies
the integrand by removing the function S contained in the original definition (see Definition 8).
Correspondingly, Equation (34) can solve all the linear functions and some simple nonlinear functions
effortlessly, but Equation (33) can only deal with linear functions f (ξ1, ξ2, · · · , ξn) = a1ξ1 + a2ξ2 +

· · ·+ anξn, with the constraint that ξi belong to the same type of fuzzy variables, e.g., they are all
triangular or trapezoidal fuzzy numbers.

Table 10. A summary of the methods for calculating the entropy H[ f (ξ1, ξ2, · · · , ξn] referred to in this
paper, including the calculation formulas and the simulation algorithms. The colored methods are
contributions of the current paper.

Object Means Methodology Mechanism Characteristic

Linear or Equation (33) credibility function Complex operation (limiting to
simple Calculation linear applications)

nonlinear formula Equation (34) inverse credibility Simplified operation (extending
function distribution to nonlinear applications)

FSE Equation (33) & Low precision & speed

stochastic discretization (acceptable precision only for a
Complicated Simulation single fuzzy variable)

nonlinear algorithm UDA Equation (33) & High speed (high precision only
function uniform discretization for the same type)

NIA Equation (34) & High precision & speed (high
numerical integration precision for all conditions)



Entropy 2019, 21, 289 26 of 28

On the other hand, regarding complicated nonlinear function f , using Equation (34) becomes
incredibly difficult even with the help of software packages such as MATLAB. Therefore, fuzzy simulation,
a widely used technique for obtaining an approximation, is introduced to deal with this issue based on the
above calculation formulas and some discretization sampling procedures. The representative simulation
algorithm in the current literature, FSE, was proposed by Huang [33], which is based on Equation (33) and
the stochastic discretization process presented by Liu [32]. Due to the complexity of Equation (33) and
the inaccuracy of Liu [32]’s method, FSE can return satisfactory results stably only when calculating the
entropy of an individual fuzzy variable, H[ξ], with an estimation error of less than 0.08% (see Table 9 in
Example 15), whereas for other situations, the performance of FSE is rather poor, possibly reporting results
with errors of greater than 40% (see Tables 7–9 in Examples 16–18), and simultaneously the running time
is hundreds of times more than our algorithms.

The proposed two algorithms in this paper have different mechanisms. Inspired by Theorem 5
presented by Miao et al. [34], the first proposed simulation algorithm, UDA, generates sample points
from the possible range of each fuzzy variable uniformly, and then estimates the entropy of function
via Equation (33) by using the membership of the first fuzzy variable, µξ1(x1), to approximate that of
f (ξ1, ξ2, · · · , ξn). For this reason, UDA has the absolute advantage in computing speed. The running
time of UDA in all the examples is less than 0.0004 s, ten times faster than NIA and hundreds of times
than FSE. However, this simplification may also cause potential errors of greater than 10% when the
MFs of ξi differ greatly from each other (see Tables 8 and 9 in Examples 17–18).

The second simulation algorithm designed in this paper, NIA, is based on Equation (34)
represented by the ICD. After dividing the close interval [0, 1] into sufficiently small equal pieces, NIA
computes the numerical integration of each area via the median values of two sample points. Since the
error of NIA just comes from the integration simulation, the performance of NIA is extremely excellent
both in accuracy and speed. Even though its operation speed is worse than UDA, the running time
is also acceptable. Thus, as concerning the universality of applications, NIA will be recommended
preferentially because of its highest accuracy (all errors are less than 0.008%), best stability (always
output only one result), and acceptable speed (all computing times are less than 0.007s).
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