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Abstract: The blind signature is widely used in cryptography applications because it can prevent
the signer from gaining the original message. Owing to the unconditional security, the quantum
blind signature is more advantageous than the classical one. In this paper, we propose a new
provable secure quantum blind signature scheme with the nonorthogonal single-photon BB84-state
and provide a new method to encode classical messages into quantum signature states. The message
owner injects a randomizing factor into the original message and then strips the blind factor from the
quantum blind signature signed by the blind signer. The verifier can validate the quantum signature
and announce it publicly. At last, the analytical results show that the proposed scheme satisfies
all of the security requirements of the blind signature: blindness, unforgeability, non-repudiation,
unlinkability, and traceability. Due to there being no use of quantum entanglement states, the total
feasibility and practicability of the scheme are obviously better than the previous ones.

Keywords: BB84-state; quantum fingerprint; quantum encryption algorithm; quantum blind
signature; unconditional security

1. Introduction

The security of classical signature cryptography depends on solving some difficult mathematical
problems, such as factoring large integers and solving the discrete logarithm. It is known that these
problems will become rather simple with the emergence of quantum computers. The quantum
algorithm proposed by Shor [1] in 1994 can solve the problem of integer factorization in polynomial
time. Accordingly, quantum cryptography will make a revolutionary impact on the classical one.
One of the known examples of quantum cryptography is the quantum key distribution (QKD) [2–5],
which offers a solution of the shared key exchange with information-theoretical security. Quite a
few branches of QKD have attracted a great deal of attention, and many effective results have been
proposed, including quantum private query (QPQ) [6–8], quantum digital signature (QDS) [9–13] and
so on.

The first QDS scheme, which is analogous to the classical Lamport’s signature scheme, was
proposed by Gottesman et al. [9] in 2001. In 2002, Zeng et al. [10] first proposed the arbitrated QDS
scheme with GHZstates based on symmetric cryptography. In 2014, Dunjko et al. [11] proposed
the first QDS scheme with no quantum memory, which made the quantum signature feasible and
practicable under the current quantum technology. Wallden et al. [12] presented a QDS scheme with
quantum-key-distribution components in 2015. In 2016, Amiri et al. [13] proposed a QDS scheme
that did not require trusted quantum channels and only relied on secret shared keys generated
using QKD. With the proposal of the measurement device-independent (MDI) QKD by Lo et al. [14],
Puthoor et al. [15] first presented an MDI-QDS scheme, which is secure against all detector side-channel
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attacks. In 2017, Yin et al. [16] and Roberts et al. [17] made the attempt to implement experimentally
the MDI-QDS.

The blind signature was first proposed by Chaum [18] in 1982. The blind signature can effectively
prevent the blind signer from getting the original message because of its blindness, so it has a wide
range of applications in the fields of E-commerce and block-chain. So far, some quantum blind
signature (QBS) schemes [19–33] have been presented. In 2009, Wen et al. [19] first proposed the weak
QBS scheme based on EPRpairs. In 2010, Su et al. [20] proposed a QBS scheme based on EPR with
two-state vector formalism, and then, Yang et al. [21] pointed out some attacks on Su’s scheme [20] and
proposed an enhanced one. However, Zhang et al. [22] declared that the dishonest signer could obtain
some secret keys in Yang’s improved scheme [21]. In 2014, Khodambashi et al. [23] proposed a sessional
QBS based on EPR, where the message signature cannot be forged by the dishonest verifier. In 2015,
Shi et al. [24] proposed a new QBS scheme with unlinkability based on EPR and quantum teleportation.
In 2017, Luo et al. [25] pointed out a security loophole of forgery in Shi’s QBS scheme [24]. With
the χ-type entangled states, Yin et al. [26] proposed a QBS scheme in 2012. With the GHZ states,
Wang et al. [27] proposed a QBS scheme in 2013. Zuo et al. [28] found that the dishonest verifier
could forge the blind signature in [19,26,27]. Accordingly, Zuo et al. [28] and Ribeiro et al. [29]
advised that a trusted center should be involved in QBS schemes. Based on offline trusted repositories,
Ribeiro et al [29] presented a perfectly secure QBS scheme, which used Bell states, unitary operations,
and so on, in 2015. With the two-photon entangled coding matrix to pass the secret shared key,
Lai et al. [30] presented a QBS scheme in 2017. Besides the above QBS schemes with multiple photons,
Wang et al. [31] proposed a fair QBS scheme with a single photon in 2010. However, He et al. [32]
and Zou et al. [33] found that this scheme was vulnerable to non-forgeability attack. All these QBS
schemes [19–33] are mainly divided into two broad categories: multi-photon entanglement QBS [19–30]
and single-photon QBS [31–33]. Unlike the proposed QBS schemes with the single photon in [31–33],
in this paper, we propose a new single-photon QBS scheme encoding with the indistinguishable
BB84-state. To guarantee the unconditional security of the proposed scheme, we employ the quantum
fingerprint [34] and Zhang et al.’s improved key-controlled-“T” quantum one time pad (QOTP) [35,36]
based on Boykin and Roychowdhury’s QOTP [37]. In the proposed scheme, we give the hypothesis that
a trusted arbitrator is known by all participants prior to the execution of the protocol. We give a proof
of the correctness of the scheme. Security analyses show that the scheme satisfies all the properties of
the blind signature: blindness, unforgeability, non-repudiation, unlinkability, and traceability.

The rest of this paper is organized as follows. In Section 2, we introduce some necessary
preliminaries. In Section 3, we present the new QBS scheme with the BB84-state. Subsequently,
the security analyses of this scheme are presented in Section 4. Finally, some conclusions are drawn in
Section 5.

2. Preliminary Theory

2.1. Properties of the Blind Signature

In general, a blind signature protocol includes four stages, namely message blinding, blind
message signing, message unblinding, and signature verification. The original message owner, Alice,
first makes a blind transformation on the original message m and gets blind message m̃. Alice sends
the transformed blind data m̃ to the blind signer, Bob. Then, Bob signs the m̃ and obtains the blind
signature Sign(m̃), and the signature is sent back to Alice. Alice strips the blind factor from the
Sign(m̃) and gets the signature Sign(m) of the original message m. The verifier, Charlie, can verify the
correctness of Sign(m).

Generally speaking, a perfect blind signature should satisfy the following properties [18].

• Unforgeability: No one can generate an effective blind signature except the signer himself/herself.
This is one of the most basic requirements.
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• Non-repudiation: Once a signer has signed a message, he/she cannot deny his/her signature of
the message.

• Blindness: Although a signer has signed a message, he/she cannot get the concrete content of
the message.

• Unlinkability: Once the signature of the message is public, the signer cannot determine whether
he/she has signed the message.

• Traceability: Once a dispute happens, the verifier can trace the signature.

The blind signature satisfying the above properties is considered to be secure. These five properties
are the criteria that we should follow in designing blind signatures. The performance of the blind
signature is also judged based on these properties.

2.2. Quantum Fingerprint

The quantum fingerprint [34], proposed by Buhrman et al. in 2001, is the most appealing protocol
in quantum communication complexity (QCC) protocols [38,39]. In this model, two parties (Alice
and Bob) select separately inputs x, y ∈ {0, 1}n and send their quantum fingerprints messages to a
third party, called the Referee. The Referee must determine whether x equals y or not with a small
error probability ε. To construct a large set of nearly orthogonal quantum states explicitly, consider
an error-correcting code E : {0, 1}n −→ {0, 1}t where the distance between distinct code words
E(x) and E(y) is at least (1− δ)t, here 0 < δ < 1, c > 1, t = cn. For each x ∈ {0, 1}n, define the
(log2(t) + 1)-qubit state:

| f (x)〉 de f
=

1√
t

t

∑
i=1
|i〉|Ei(x)〉. (1)

Note that two distinct code words can be equal in at most δt positions for any x 6= y. Consequently,
each pair (| f (x)〉, | f (y)〉) has an inner product 〈 f (x)| f (y)〉 ≤ δt/t = δ. When the Referee receives
the quantum fingerprints | f (x)〉 and | f (y)〉, he measures and outputs the first qubit of the states
(H⊗ I)(c-SWAP)(H⊗ I)|0〉| f (x)〉| f (y)〉. By measuring the first qubit of this state with computational
basis {|0〉, |1〉}, the Referee outputs |1〉 (meaning that x = y) with probability (1− |〈 f (x)| f (y)〉|2)/2.
The probability is zero if x = y and at least (1− δ2)/2 if x 6= y. Thus, the test determines which case
holds with one-sided error probability (1 + δ2)/2. This error probability can be reduced to any ε > 0
by setting the fingerprint | f (x)〉 to | f (x)〉⊗l for a suitable l ∈ O(log2(1/ε)).

So far, several experiments [40–44] have reported successful attempts at implementing the
quantum fingerprint.

2.3. Improved QOTP Encryption

In 2003, Boykin and Roychowdhury presented the QOTP encryption [37], which is used to
encrypt securely n-qubit quantum states with the secret classical 2n-bit key. Denote the n-qubit

quantum message by |P〉 =
n⊗

i=1
|Pi〉 and the n-qubit ciphertext message by |C〉 =

n⊗
i=1
|Ci〉, where

|Pi〉 = αi|0〉 + βi|1〉, |Ci〉 = α′i|0〉 + β′i|1〉, |αi|2 + |βi|2=|α′i|2 + |β′i|2 = 1, i ∈ [1, n]. With the secret

classical 2n-bit key k, the QOTP encryption Ek on |P〉 can be described by Ek|P〉=
n⊗

i=1
σ

k2i
x σ

k2i−1
z |Pi〉 and

the corresponding decryption Dk on |C〉 by Dk|C〉=
n⊗

i=1
σ

k2i−1
z σ

k2i
x |Ci〉. Since the original QOTP [37] is

a bitwise protocol, Zhang et al. [35,36] pointed out that it would encounter forgery attack when it is
used in the quantum signature. Now, some improved QOTP encryption schemes have been proposed,
such as those in [35,36,45]. Since the location permutation of the quantum state is supplemented in
the original QOTP, the improved QOTP schemes are no longer the bitwise encryption and provide
higher security.

In order to use the improved QOTP to encrypt the classical message, some methods must be
used to transform the classical message to the quantum one. Here, we give a simple example to
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demonstrate this one-to-one correspondence between them. Let us denote the n-bit classical message

by M = M1M2 · · ·Mi · · ·Mn and its corresponding n-qubit quantum one by |M〉=
n⊗

i=1
|Mi〉i, where

i ∈ [1, n]. When i is odd, encode Mi with the rectilinear basis, namely |0〉i = |0〉, |1〉i = |1〉. When i is
even, encode Mi with the diagonal basis, namely |0〉i = |+〉, |1〉i = |−〉. According to the parity of
the position of each quantum state, a different basis is used to measure the decrypted quantum state,
so that the classical message can be recovered when decrypting. Because of the permutation of the
quantum position, attacker cannot obtain M from the disordered quantum ciphertext by measurement
without the secret key. For the sake of brevity and readability, the improved QOTP encryption on
classical M is denoted by Ek(M) with the secret key k. Once the length of the message M exceeds n,
we can divide M into several segments of length n and then encrypt them separately.

3. Quantum Blind Signature Scheme

We first give an encoding method of BB84-state so as to establish the one-to-one correspondence
between the classical bit and the quantum one. With the BB84-state encoding, we then propose our
new QBS scheme.

3.1. BB84-State Encoding

Let p = (p1, p2, · · · , pn), q = (q1, q2, · · · , qn), r = (r1, r2, · · · , rn) ∈ {0, 1}n, where pi is the ith-bit
in p (qi, ri in q, r, respectively), i ∈ [1, n]. We give an encoding rule that maps (pi, qi) to a quantum
BB84-state in set {|+〉, |−〉, |0〉, |1〉} and define:

|ϕ〉pi ,qi

de f
=


|+〉 (pi = 0, qi = 0),

|−〉 (pi = 1, qi = 1),

|0〉 (pi = 1, qi = 0),

|1〉 (pi = 0, qi = 1).

(2)

For n-qubit |ϕ〉p,q, we define:

|ϕ〉p,q
de f
= ⊗n

i=1|ϕ〉pi ,qi . (3)

According to Equation (2), it is easy to draw the following conclusions, where ⊕ is the
exclusive-or (XOR) operation and the symbol∼= denotes the equivalence relation between two quantum
states, which are different from constant coefficient (for instance, |+〉 ∼= −|+〉).

Corollary 1. |ϕ〉pi ,qi =

{
|0〉, |+〉 (qi = 0)

|1〉, |−〉 (qi = 1)
.

Corollary 2. |ϕ〉pi ,qi =

{
|+〉, |−〉 (pi ⊕ qi = 0)

|0〉, |1〉 (pi ⊕ qi = 1)
.

Corollary 3. X|ϕ〉pi ,qi
∼=


|+〉 (pi = 0, qi = 0)

|−〉 (pi = 1, qi = 1)

|1〉 (pi = 1, qi = 0)

|0〉 (pi = 0, qi = 1)

.



Entropy 2019, 21, 336 5 of 13

Corollary 4. Z|ϕ〉pi ,qi
∼=


|−〉 (pi = 0, qi = 0)

|+〉 (pi = 1, qi = 1)

|0〉 (pi = 1, qi = 0)

|1〉 (pi = 0, qi = 1)

.

Corollary 5. Hri |ϕ〉pi ,qi = |ϕ〉pi⊕ri ,qi .

Corollary 6. Yri |ϕ〉pi ,qi = ζri(3+2pi)|ϕ〉pi⊕ri ,qi⊕ri
∼= |ϕ〉pi⊕ri ,qi⊕ri , where ζ is an imaginary unit satisfying

ζ2 = −1.

3.2. The Proposed Quantum Blind Signature Scheme

Substituting the quantum states for all or part of the classical messages, the so-called QBS inherits
the definition and signature framework of the classical one. The QBS could achieve unconditional
security through a combination of quantum theory and classical cryptography. The proposed signature
scheme consists of the initial phase, the blinding phase, the signing phase, the unblinding phase, and
the verifying phase.

3.2.1. Initial Phase

According to the different responsibilities in our proposed QBS scheme, there are five different
roles: message owner, blind signer, verifier, arbitrator, and external attacker. Let Alice be the original
message owner, Bob the blind signer, Charlie the signature verifier, Trent the arbitrator, and Eve
the malicious external attacker. In the scheme, we give the hypothesis that Trent is known by all
participants prior to the execution of the protocol and acts as the trusted arbitrator. In the remainder of
this paper, we abbreviate Alice to A, Bob to B, Charlie to C, Trent to T, and Eve to E just for brevity. C
shares each 2n-bit secret key kAC and kBC with A and B, respectively. T shares each 2n-bit secret key
kAT and kCT with A and C, respectively. At the same time, A shares a 2n-bit secret key kAB with B.
These keys can be generated in a secure manner, e.g., direct face-to-face contact and QKD protocols
with unconditional security such as [2–5].

3.2.2. Blinding Phase

Step B1. The message owner A first prepares the original message m of the n-bit string. Then, A
selects randomly the blind factor w of the n-bit string and blinds m to blind message m̃ based on the
formula m̃ = m⊕ w.

Step B2. According to Equations (2) and (3), A generates n-qubit blind states |ϕ〉m̃⊕k′AB ,m̃ with
the n-bit blind message m̃ and key k′AB, where the n-bit k′AB is derived from the 2n-bit shared key
kAB satisfying k′ABi

= kAB2i ⊕ kAB(2i+1)
, i ∈ [1, n]. According to Equation (1), A generates quantum

fingerprint | f (m̃)〉 for blind message m̃. With the shared key kAC and kAB, A applies the improved
QOTP [35,36,45], which is described in Subsection 2.3, to encrypt her classical message m and blind
factor w, and then obtains EkAB(EkAC (m||w)), where the notation || denotes the concatenation of strings.

Step B3. A denotes SignAB
de f
= {|ϕ〉m̃⊕k′AB ,m̃, | f (m̃)〉, EkAB(EkAC (m||w))} and transmits SignAB

⊗2

to B through the quantum channel, where SignAB
⊗2 represents two copies of SignAB.

3.2.3. Signing phase

Step S1. Analogous to the method in Step B1, B obtains the n-bit key k′AB from the shared
2n-bit key kAB between A and B. If the k′ABi

is zero, B selects the diagonal basis {|+〉, |−〉}, otherwise
rectilinear basis {|0〉, |1〉}. According to this basis rule, B measures all the qubits of the indistinguishable
BB84-state |ϕ〉m̃⊕k′AB ,m̃ corresponding in SignAB and gets the blind message m̃′ with the key k′AB.
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Step S2. According to Equation (1), B generates quantum fingerprint | f (m̃′)〉. B then compares
the generated | f (m̃′)〉 with state | f (m̃)〉 from SignAB and judges whether they are equal based on
quantum fingerprint theory in [34]. If they are not equal, then B stops the scheme, otherwise draws the
conclusion m̃′ = m̃ and goes on.

Step S3. B first selects randomly two n-bit strings u and v. According to Equation (2) and
Equation (1), B then generates respectively the QBS BB84-state |ϕ〉m̃⊕u,v and quantum fingerprint
| f (u||v||m̃)〉 with u, v, and m̃. With the shared key kBC, B encrypts his strings u and v and then gets
EkBC (u, v). From the receiving SignAB, B decrypts the EkAB(EkAC (m||w)) with his shared key kAB and
gets EkAC (m||w), then encrypts it with his shared key kBC and obtains EkBC (EkAC (m||w)). B denotes

SignBC
de f
= {| f (u||v||m̃)〉, EkBC (u, v), EkBC (EkAC (m||w))}.

Step S4. B transmits SignBC
⊗2 and |ϕ〉m̃⊕u,v

⊗2 to A through the quantum channel.

3.2.4. Unblinding Phase

Step U1. After receiving the blind signature |ϕ〉m̃⊕u,v for blind message m̃ signed by B, A applies
Hw to |ϕ〉m̃⊕u,v with her blind factor w and gets Hw|ϕ〉m̃⊕u,v, which is a quantum signature for
the original message m. With the shared key kAC, A generates EkAC (Hw|ϕ〉m̃⊕u,v) and EkAC (m||w).

A denotes SignAC
de f
= {EkAC (Hw|ϕ〉m̃⊕u,v), EkAC (m||w)}.

Step U2. A generates EkAT (SignAC
⊗2, SignBC

⊗2) and transmits it to T through the quantum
channel.

Step U3. T decrypts the received EkAT (SignAC
⊗2, SignBC

⊗2) and gets SignAC
⊗2 and SignBC

⊗2.
Then, T performs the C-SWAPtest [34] to compare the two copies of SignAC in SignAC

⊗2. The same test
is also done on SignBC

⊗2. Once an unequal result of the comparison occurs, T draws the conclusion
that the signature is invalid and aborts the process. After T finishes the comparison tests successfully,
he preserves one copy of SignAC and SignBC to be prepared to solve disputes when they arise in
the future. Finally, T generates EkCT (SignAC, SignBC) with another copy of SignAC and SignBC and
transmits it to C through the quantum channel.

3.2.5. Verifying Phase

Step V1. C first gets SignAC and SignBC from the received EkCT (SignAC, SignBC) with his shared
key kCT . Then, C decrypts the EkBC (EkAC (m||w)) in SignBC with his shared key kBC, gets E′kAC

(m||w),
and performs the C-SWAP test [34] to compare it with EkAC (m||w) in SignAC. If the result of the
comparison is not equal, C draws the conclusion that the signature is invalid and aborts the process.
Otherwise, C then applies the key-controlled-“T” QOTP to decrypt EkAC (m||w) with his shared key
kAC and finally gets (m, w).

Step V2. After getting EkBC (u, v) from the SignBC, C decrypts EkBC (u, v) with his shared key kBC
and then gets (u, v).

Step V3. From the received SignAC, C decrypts EkAC (Hw|ϕ〉m̃⊕u,v) with his shared key kAC
and gets Hw|ϕ〉m̃⊕u,v. With the m obtained in Step V1, C applies Hm to Hw|ϕ〉m̃⊕u,v and gets
HmHw|ϕ〉m̃⊕u,v.

Step V4. With the u, v obtained in Step V2, C performs single-particle measurements on the
n-qubit Hm Hw|ϕ〉m̃⊕u,v obtained in Step V3 and gets u′, v′. The rules of measurement are as follows.
According to Corollary 2, C uses diagonal basis {|+〉, |−〉} to measure the BB84-state if ui ⊕ vi = 0,
otherwise rectilinear basis {|0〉, |1〉}. Based on the measurement result and Equation (2), C can deduce
the corresponding u′i, v′i. C aborts the process if ui 6= u′i or vi 6= v′i for some i ∈ [1, n], otherwise goes on.

Step V5. C generates quantum fingerprint | f (u||v||(m⊕ w))〉 with the deduced (u, v) and (m, w)
and then compares it with | f (u||v||m̃)〉 in SignBC from B. If the result of comparison is equal, C draws
the conclusion that the signature is valid, otherwise declares that the signature is not valid.

Step V6. According to Equation (2), C regenerates the quantum BB84-state signature |ϕ〉m⊕u,v

with the known m, u, and v. C announces publicly the QBS correctness and declares the signature
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{m, |ϕ〉m⊕u,v} to the public.
The whole flow-process diagram of the proposed QBS scheme is given in Figure 1.

Figure 1. The flow-process diagram of the proposed QBS scheme. Alice blinds the message m with
blind factor w and passes m̃ to Bob. With the proposed encoding method of the BB84-state, Bob
signs m̃ with u and v and then sends the blind signature |ϕ〉m̃⊕u,v back to Alice. Two copies of the
unblinding signature are sent to Trent. After Trent’s identical verification for the two signatures, one of
the signatures is transmitted to Charlie. Once Charlie verifies the validity of the signature, he publishes
the signature {m, |ϕ〉m⊕u,v}.

4. Security Analyses

In this section, we show that the proposed scheme is correct and satisfies the properties of blind
signatures described in the preliminary section.

4.1. Correctness

Theorem 1. The QBS scheme is correct.

Proof. We prove the correctness of the scheme in two cases.

(1) B can correctly recover the blind message m̃ from A.

In the blinding phase, B received the |ϕ〉m̃⊕kAB ,m̃ from A. According to Corollary 2, the correct
chosen basis (diagonal or rectilinear) to measure |ϕ〉m̃i⊕kABi

,m̃i
is determined by (m̃i⊕ kABi )⊕ m̃i = kABi .

In the cases in which A is an honest blind message sender and no eavesdropper E exists in the quantum
channel, as long as B measures |ϕ〉m̃⊕kAB ,m̃ in the correct basis determined by the shared key kAB, B will
always get the correct blind message m̃ with the probability one by comparison of his measurement
results with Equation (2). However, if A is not an honest blind message sender or eavesdropper E
exists in the quantum channel, B will find, with high probability, a contradiction with the measurement
results and aborts.

(2) C can correctly validate the quantum signature Hw|ϕ〉m̃⊕u,v for A’s original message m.

After recovering the blind message m̃ from |ϕ〉m̃⊕kAB ,m̃, B signs m̃ with his u and v and gets QBS
|ϕ〉m̃⊕u,v based on Equation (2). Once A gets the QBS |ϕ〉m̃⊕u,v from B, she strips the blind factor w by
applying Hw to |ϕ〉m̃⊕u,v and gets quantum signature Hw|ϕ〉m̃⊕u,v. In fact, according to Corollary 5, A
obtains the result:

Hw|ϕ〉m̃⊕u,v = |ϕ〉(m̃⊕u)⊕w,v = |ϕ〉(m⊕w)⊕u⊕w,v = |ϕ〉m⊕u,v.
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In Step V3, after receiving EkAC (Hw|ϕ〉m̃⊕u,v) from A, C decrypts it and gets Hw|ϕ〉m̃⊕u,v with his
shared key kAC, then applies Hm to Hw|ϕ〉m̃⊕u,v to generate Hm Hw|ϕ〉m̃⊕u,v, i.e.,

HmHw|ϕ〉m̃⊕u,v = Hm|ϕ〉m⊕u,v = |ϕ〉(m⊕u)⊕m,v = |ϕ〉u,v.

With the decrypted u and v from B, C selects a suitable basis and measures HmHw|ϕ〉m̃⊕u,v(namely,
|ϕ〉u,v). It is obvious that the measurement results must match u and v. Thus, we can draw
the conclusion that C can correctly validate the quantum signature Hw|ϕ〉m̃⊕u,v for A’s original
message m.

4.2. Against External Attack

It is impossible for external attacker E to attack a legitimate signature. Being external, the attacker
has less available resources than A or B. The only way for him/her to obtain information is to intercept
the quantum states or eavesdrop on the quantum channel. In the proposed scheme, there are three
forms of quantum states on the quantum channel: quantum fingerprint states, BB84-states, and
encrypted quantum states.

For the quantum fingerprint in the quantum channel, it is impossible for E to deduce conversely
the original input on the basis of [34]. At the same time, if any quantum states are measured or
replaced, this attack is detected by participants’ comparison of quantum fingerprint states. Therefore,
it is impossible for E to forge the scheme by attacking the quantum fingerprint states.

Both BB84-states and encrypted quantum states, which are n-qubit tensor products, consist
of elements in set {|+〉, |−〉, |0〉, |1〉}. Assuming that the secret keys and signature parameters are
uniformly distributed, each qubit is randomly located in one of two conjugate bases. Thus, the quantum
states are essentially the same as the BB84 QKD one. According to the quantum indistinguishability,
non-cloning, and immeasurability, E cannot distinguish the nonorthogonal states. E cannot perform
the correct unitary operation for each photon. In terms of mathematical probability, he/she only
speculates each photon state with the correct probability 1

4 . Therefore, the probability of misjudgment
for n photons is:

P = 1− (
1
4
)n. (4)

Obviously, this probability infinitely tends to one with the increase of n. E cannot obtain any
message from the transmitted particles yet. Consider the density matrix of n particles,

ρ = (
1
4
)n(|+〉〈+|+ |−〉〈−|+ |0〉〈0|+ |1〉〈1|)⊗n =

1
2n I. (5)

This illustrates that the quantum states distribute in a uniform way so that no information might
be leaked to the eavesdropper E. Consequently, external attack would not take effect.

4.3. Blindness

In the blinding phase, A sends the BB84-state |ϕ〉m̃⊕kAB ,m̃, which contains blind message m̃, to B.
To measure |ϕ〉m̃⊕kAB ,m̃ using the corresponding basis matching the shared key kAB, B can recover the
blind message m̃ from A. For m̃ = m⊕ w; thus, B cannot recover m directly from known m̃ without w.

However, the blind signer B has two strategies to find some original message if A’s quantum
signature is transmitted in the form Hw|ϕ〉m̃⊕u,v (namely,|ϕ〉m⊕u,v) in SignAC. B’s first strategy is to
measure A’s |ϕ〉mi⊕ui ,vi with computational basis {|0〉, |1〉} or diagonal basis {|+〉, |−〉}. Suppose
ui = vi = 0; once B measures the |ϕ〉mi⊕ui ,vi (namely, |ϕ〉mi ,0) with the computational basis and gets
the measurement result |1〉, he can come to the conclusion that |ϕ〉mi ,0 cannot be |0〉 and must be |+〉.
This shows that Alice’s original message must be mi = 0. On average, Bob’s strategy thus reveals 1

4 n
bits of A’s original message. The result is the same for the use of the diagonal basis. B’s second strategy
is to perform the C-SWAP test [34] between his |ϕ〉m̃i⊕ui ,vi

and A’s |ϕ〉mi⊕ui ,vi if B can certainly confirm
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that A’s stripped signature |ϕ〉mi⊕ui ,vi corresponds to his blind signature |ϕ〉m̃i⊕ui ,vi
. According to the

comparison result, B can come to the conclusion that mi = m̃i (mi = m̃i ⊕ 1) if |ϕ〉m̃i⊕ui ,vi
=|ϕ〉mi⊕ui ,vi

(|ϕ〉m̃i⊕ui ,vi
6= |ϕ〉mi⊕ui ,vi ), and then, B can get A’s original message mi.

To avoid the two extreme strategies of B existing in his blind signature and A’s stripped one,
the quantum signature Hw|ϕ〉m̃⊕u,v is encrypted with the key kAC in the proposed scheme, and then,
EkAC (Hw|ϕ〉m̃⊕u,v) is transmitted to C in Step U2. In such circumstances, the two strategies of B become
invalid. Thus, our proposed scheme meets the standard of blindness.

4.4. Unforgeability

There are two kinds of forgeries. One forgery is done by the internal participants and the other
by the external attacker E. The attacks of the internal participants involve message owner A, blind
signer B, and the signature verifier C. With the following analyses, it can be shown that the two kinds
of forgery cannot forge legitimate signatures so as to achieve the purpose of passing C’s verification.

The message owner A cannot forge the quantum signature. For the blind message m̃ = m1 ⊕ w1

corresponding to original message m1 and blind factor w1, A would reach her purpose of forgery if she
succeeds in forging message pair (m2, w2) to replace the true message (m1, w1) and making C validate
it. Obviously, m1 ⊕ w1 must be equal to m2 ⊕ w2, otherwise C will find the inconformity in Step V5.
There are two ways for A to forge. One way is that A prepares the original message pair (m1, w1)
in Step B1 and EkAB(EkAC (m1, w1)) in Step B2 and at the same time generates EkAC (Hw2 |ϕ〉m̃⊕u,v)

and EkAC (m2, w2)} in Step U1. In this way, C will find that (m1, w1) is not equal (m2, w2) and
abort this signature. Thus, this strategy is unsuccessful. Another way for A’s forgery is to generate
EkAC (Hw2 |ϕ〉m̃⊕u,v) and EkAC (m1, w1)} in Step U1. This way can pass C’s examination in Step V1, but
C would still find this strategy in Step V3 and Step V4. In Step V3, C applies Hm1 to Hw2 |ϕ〉m̃⊕u,v
and gets:

Hm1 Hw2 |ϕ〉m̃⊕u,v = |ϕ〉m1⊕w2⊕m̃⊕u,v = |ϕ〉m1⊕w2⊕(m1⊕w1)⊕u,v = |ϕ〉w1⊕w2⊕u,v.

Obviously, if the w1 is not equal w2 and thus w1 ⊕ w2 ⊕ u is not equal to u, C would find this
strategy with the examination in Step V4 for this way. Thus, the two forgery ways for A are not
effective, and the unforgeability of the proposed scheme holds.

It is impossible for the blind signer B to forge a legitimate signature. The forgery way of B is
to masquerade as the message owner A to sign the message alone and attempt to let the verifier C
verify this forged signature. At first, B generates the forged message m′ and the blind parameter w′.
Then, B takes the place of A to get the unblinding quantum signature Hw′ |ϕ〉m̃′⊕u,v = |ϕ〉m′⊕u,v in
Step U1. According to our scheme, m′ and w′ must be encrypted with the shared key kA′C, and then,
EkA′C

(m′, w′) will be transmitted to C. In Step V1, C decrypts EkA′C
(m′, w′) with the shared key kAC,

but C cannot get the correct m′ and w′ because of B’s random guess key kA′C. In Step V4, C will find
the forgery trick because the equations are not satisfied.

The signature verifier C cannot forge the quantum signature. After the arbitrator T receives the
two copies of signatures EkAT (SignAC

⊗2, SignBC
⊗2) encrypted with the shared key kAT from A, he

retains one copy and then encrypts another to C with shared key kCT . If C forges a blind signature and
tries to cheat the message owner A, it will cause a dispute. In this dispute, T can judge that C is the
forger. This is because T retains a legitimate signature. According to the signature data provided by C,
T can regenerate C’s signature. With the C-SWAP test [34], T can compare the preserved signatures
with C’s forged signature and will find the inconformity, so C’s forgery strategy fails. Therefore, with
the help of the trusted arbitrator T, C’s forgery strategy is not feasible.

4.5. Non-Repudiation

There are three possible ways for participants to repudiate the quantum signature afterwards.
The first way is that A, the original message owner, repudiates that she has ever blinded message m
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to m̃ with random w in the blinding phase and stripped blind factor w from blind signature in the
unblinding phase. The second way is that B, the blind signer, repudiates that he has signed the blind
message m̃ with the random parameters u and v. The third way is that the signature verifier C denies
that he has verified the legitimate signature from message owner A.

For A, she cannot repudiate her blinding behavior because she transmits the blind message m̃
encoding the quantum BB84-state with the shared key kAB and the quantum fingerprint | f (m̃)〉 to B in
the blinding phase. She cannot also repudiate her unblinding behavior because she encrypts the blind
factor w with shared key kAC and transmits EkAC (m||w) to C in the unblinding phase.

For B, he encrypts his blind signature parameters u and v with the shared key EkBC and passes
EkBC (u, v) to C, so he cannot repudiate the behavior of his choosing of the parameters. Meanwhile, in
the verifying phase, C generates | f (u||v||(m⊕ w))〉 and compares it to the receiving | f (u||v||m̃) from
B and thus further validates the signature parameters {w, u, v} and denies A’s repudiation and B’s one
as a whole.

For C, his undeniable attribute is determined by his declaration behavior in the verifying phase.
That is to say, in several consecutive judgments, once C announces the correct judgment of the signature,
he cannot deny all previous declarations including this one. The received EkCT (SignAC, SignBC), which
is encrypted with his shared key kCT , comes from the trusted arbitrator T. In Step V1 of the verifying
phase, it indicates that the EkAC (m||w) is equal in SignAC and SignBC. C confirms the fact of C not
aborting the signature verification procedure. If so, C can not deny this verification step. In Step V4 of
the verifying phase, C performs single-particle measurements on the quantum signature and deduces
B’s signature parameters u′ and v′. C would aborts the process if he finds disagreement between
the derivative results (u′, v′) and received results (u, v). Thus, C cannot deny his actions in this step.
In Step V5 of the verifying phase, C validates the quantum fingerprint and judge A’s blind parameter
w. Similarly, his announcement for A’s blindness cannot be disavowed. In the whole process, it shows
that C has accepted the process of signature verification and cannot deny his validation fact if C does
not abandon the verification in the verifying phase.

4.6. Unlinkability

Once the original message m and its quantum signature |ϕ〉m⊕u,v are public, the proposed scheme
guarantees that the blind signer B cannot determine whether the open message m is associated with
the blind message m̃ or not. Suppose C opens publicly two different signatures {m1, |ϕ〉m1⊕u,v} and
{m2, |ϕ〉m2⊕u,v}; the blind signer B can certainly validate the correctness of each signature with the
open m1 (m2) and his secret u and v. Meanwhile, B can recover his blind signature {m̃, |ϕ〉m̃⊕u,v} with
A’s blind message m̃ and B’s (u, v). Because B does not know A’s blind factors w1 and w2, facing the
open messages m1 and m2, B cannot be sure whether his blind message m̃ is associated with the open
message m1 or m2 besides only verifying the correctness of these signatures. Thus, this proposed
scheme is shown to admit the property of unlinkability.

4.7. Traceability

The scheme is verified to satisfy the security demand of full traceability. Under the supervision of
trusted arbitrator T, the verifier C is provided with traceability when the dispute occurs. Because the
message owner A’s blind parameter w and original message m are all encrypted and transmitted to C,
C can trace the whole original message sender A’s process. At the same time, C is traceable to B’s blind
signature process because B’s blind signature parameters u and v are also encrypted and transmitted
to C. Thus, this signature scheme satisfies the condition of traceability.

5. Conclusions

In this paper, we presented a new provable QBS scheme with the nonorthogonal single-photon
BB84-state. We supposed that the arbitrator was trusted by everyone. Following the classical blind
signature, our scheme consisted of the initial, blinding, signing, unblinding, and verifying phases.
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The original message owner was responsible for the blinding and unblinding messages. The duty of
blind signer was to sign the blinding message without knowing the original message. When a dispute
occurred, the trusted arbitrator could open the quantum signature to identify the original message
owner, blind signer, or signature message verifier. Based on quantum indistinguishability, the quantum
encryption algorithm, the quantum fingerprint, and so on, the scheme provided unconditional
security. Differing from the previous QBS schemes with some security vulnerability in basis security
requirements, the security analyses showed that the proposed scheme satisfied the five properties of the
blind signature protocol. Therefore, our scheme could be safely applied in some special environments.

Based on the current development level of quantum experiment technology, it is not ideal enough
to achieve multi-photon quantum entanglement in practice. Our scheme uses only the single-photon
BB84-state instead of quantum multi-photon entanglement states. Therefore, under the current
technology and experiment condition, our scheme is realizable. The technical threshold is low, so our
scheme is practical and feasible.

Until now, all the current quantum signature schemes, including our proposed QBS scheme,
have used quantum symmetric encryption technology, which would lead to some problems, such as
the management, storage, and transmission of shared keys. It will be more convenient to realize the
quantum signature if it does not rely on the quantum encryption technology, but quantum public-key
cryptography as the classical signature. However, the current quantum public-key cryptography is
still in the initial stage of research and not yet mature for use in the quantum digital signature. It is
believed that the quantum signature will become more concise and easier to realize with the continuing
development of quantum public-key cryptography in the future.
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