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Abstract: Actual causation is concerned with the question: “What caused what?” Consider a
transition between two states within a system of interacting elements, such as an artificial neural
network, or a biological brain circuit. Which combination of synapses caused the neuron to fire?
Which image features caused the classifier to misinterpret the picture? Even detailed knowledge of the
system’s causal network, its elements, their states, connectivity, and dynamics does not automatically
provide a straightforward answer to the “what caused what?” question. Counterfactual accounts of
actual causation, based on graphical models paired with system interventions, have demonstrated
initial success in addressing specific problem cases, in line with intuitive causal judgments. Here,
we start from a set of basic requirements for causation (realization, composition, information,
integration, and exclusion) and develop a rigorous, quantitative account of actual causation, that is
generally applicable to discrete dynamical systems. We present a formal framework to evaluate these
causal requirements based on system interventions and partitions, which considers all counterfactuals
of a state transition. This framework is used to provide a complete causal account of the transition by
identifying and quantifying the strength of all actual causes and effects linking the two consecutive
system states. Finally, we examine several exemplary cases and paradoxes of causation and show
that they can be illuminated by the proposed framework for quantifying actual causation.

Keywords: graphical models; integrated information; counterfactuals; Markov condition
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1. Introduction

The nature of cause and effect has been much debated in both philosophy and the sciences.
To date, there is no single widely-accepted account of causation, and the various sciences focus on
different aspects of the issue [1]. In physics, no formal notion of causation seems to even be required for
describing the dynamical evolution of a system by a set of mathematical equations. At most, the notion
of causation is reduced to the basic requirement that causes must precede and be able to influence their
effects—no further constraints are imposed with regard to “what caused what”.

However, a detailed record of “what happened” prior to a particular occurrence rarely provides a
satisfactory explanation for why it occurred in causal, mechanistic terms (see Theory 2.2 for a formal
definition of the term “occurrence” as a set of random variables in a particular state at a particular time).
As an example, take AlphaGo, the deep neural network that repeatedly defeated human champions in
the game Go [2]. Understanding why AlphaGo chose a particular move is a non-trivial problem [3],
even though all its network parameters and its state evolution can be recorded in detail. Identifying
“what caused what” becomes particularly difficult in complex systems with a distributed, recurrent
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architecture and wide-ranging interactions, as is typical for biological (neural) networks, including
the brain [4,5].

Our interest, here, lies in the principled analysis of actual causation in discrete distributed
dynamical systems, such as artificial neural networks, computers made of logic gates, or cellular
automata, but also simple models of biological brain circuits or gene regulatory networks. In contrast
with general (or type) causation, which addresses the question of whether the type of occurrence A
generally “brings about” the type of occurrence B, the underlying notion of actual (or token) causation
addresses the question of “what caused what”, given a specific occurrence A followed by a specific
occurrence B. For example, what part of the particular pattern on the board caused AlphaGo to decide
on this particular move? As highlighted by the AlphaGo example, even with detailed knowledge of all
circumstances, the prior system state, and the outcome, there often is no straightforward answer to the
“what caused what” question. This has also been demonstrated by a long list of controversial examples
conceived, analyzed, and debated primarily by philosophers (e.g., [6–12]).

A number of attempts to operationalize the notion of causation and to give it a formal description
have been developed, most notably in computer science, probability theory, statistics [7,13–16],
the law [17], and neuroscience, (e.g., [18]). Graphical methods paired with system interventions [7]
have proven to be especially valuable for developing causal explanations. Given a causal network
that represents how the state of each variable depends on other system variables by a “structural
equation” [7], it is possible to evaluate the effects of interventions imposed from outside the network
by setting certain variables to a specific value. This operation has been formalized by Pearl,
who introduced the “do-operator”, do(X = x), which signifies that a subset of system variables
X has been actively set into state x, rather than being passively observed in this state [7]. As statistical
dependence does not imply causal dependence, the conditional probability of occurrence B after
observing occurrence A, p(B | A), may differ from the probability of occurrence B after enforcing A,
p(B | do(A)). Causal networks are a specific subset of “Bayesian” networks, that explicitly represent
causal dependencies consistent with interventional probabilities.

The causal network approach has also been applied to the case of actual causation [7,8,11,19–21],
where system interventions can be used to evaluate whether (and to what extent) an occurrence
was necessary or sufficient for a subsequent occurrence by assessing counterfactuals—alternative
occurrences “counter to fact” [7,22,23]—within a given causal model. The objective is to define “what it
means for A to be a cause of B in a model M” [12]. Note that counterfactuals, here, strictly refer to the
possible states within the system’s state space (other than the actual one) and not to abstract notions,
such as other “possible worlds” as in [22] (see also [7], Chapter 7). While promising results have
been obtained in specific cases, no single proposal (to date) has characterized actual causation in a
universally satisfying manner [10,12]. One concern about existing measures of actual causation is the
incremental manner in which they progress; a definition is proposed that satisfies existing examples in
the literature, until a new problematic example is discovered, at which point the definition is updated to
address the new example [11,24]. While valuable, the problem with such an approach is that one cannot
be confident in applying the framework beyond the scope of examples already tested. For example,
while these methods are well-explored in simple binary examples, there is less evidence that the
methods conform with intuition when we consider the much larger space of non-binary examples.
This is especially critical when moving beyond intuitive toy examples to scientific problems where
intuition is lacking, such as understanding actual causation in biological or artificial neural networks.

Our goal is to provide a robust framework for assessing actual causation that is based on
general causal principles, and can, thus, be expected to naturally extend beyond simple, binary,
and deterministic example cases. Below, we present a formal account of actual causation which is
generally applicable to discrete Markovian dynamical systems constituted of interacting elements
(see Figure 1). The proposed framework is based on five causal principles identified in the context of
integrated information theory (IIT)—namely, existence (here: realization), composition, information,
integration, and exclusion [25,26]). Originally developed as a theory of consciousness [27,28],
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IIT provides the tools to characterize potential causation—the causal constraints exerted by a mechanism
in a given state.

In particular, our objective is to provide a complete quantitative causal account of “what caused
what”, within a transition between consecutive system states. Our approach differs from previous
accounts of actual causation in what constitutes a complete causal account: Unlike most accounts
of actual causation (e.g., [7,10,12], but see [29]), causal links within a transition are considered from
the perspective of both causes and effects. Additionally, we not only evaluate actual causes and
effects of individual variables, but also actual causes and effects of high-order occurrences, comprising
multiple variables. While some existing accounts of actual causation include the notion of being
“part of a cause” [12,21], the possibility of multi-variate causes and effects is rarely addressed, or even
outright excluded [11].

Despite the differences in what constitutes a complete causal account, our approach remains
compatible with the traditional view of actual causation, which considers only actual causes of
individual variables (no high-order causation, and no actual effects). In this context, the main
difference between our proposed framework and existing “contingency”-based definitions is that we
simultaneously consider all counterfactual states of the transition, rather than a single contingency
(e.g., as in [8,11,19–21,30,31]). This allows us to express the causal analysis in probabilistic,
informational terms [25,32–34], which has the additional benefit that our framework naturally extends
from deterministic to probabilistic causal networks, and also from binary to multi-valued variables.
Finally, it allows us to quantify the strength of all causal links between occurrences and their causes
and effects within the transition.

In the following, we will first formally describe the proposed causal framework of actual causation.
We, then, demonstrate its utility on a set of examples, which illustrates the benefits of characterizing
both causes and effects, the fact that causation can be compositional, and the importance of identifying
irreducible causes and effects for obtaining a complete causal account. Finally, we illustrate several
prominent paradoxical cases from the actual causation literature, including overdetermination and
prevention, as well as a toy model of an image classifier, based on an artificial neural network.

2. Theory

Integrated information theory is concerned with the intrinsic cause-effect power of a physical
system (intrinsic existence). The IIT formalism [25,27] starts from a discrete distributed dynamical
system in its current state and asks how the system elements, alone and in combination (composition),
constrain the potential past and future states of the system (information), and whether they do so above
and beyond their parts (integration). The potential causes and effects of a system subset correspond to
the set of elements over which the constraints are maximally informative and integrated (exclusion).
In the following we aim to translate the IIT account of potential causation into a principled, quantitative
framework for actual causation, which allows for the evaluation of all actual causes and effects within
a state transition of a dynamical system of interacting elements, such as a biological or artificial neural
network (see Figure 1). For maximal generality, we will formulate our account of actual causation in
the context of dynamical causal networks [32,34,35].
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Figure 1. Realization: Dynamical causal network and transition. (A) A discrete dynamical system
constituted of two interacting elements: An OR- and AND-logic gate, which are updated synchronously
at every time step, according to their input-output functions. Arrows denote connections between the
elements. (B) The same system can be represented as a dynamical causal network over consecutive time
steps. (C) The system described by its entire set of transition probabilities. As this particular system is
deterministic, all transitions have a probability of either p = 0 or p = 1. (D) A realization of a system
transient over two time steps, consistent with the system’s transition probabilities: {(OR, AND)t−1 =

10} ≺ {(OR, AND)t = 10}.

2.1. Dynamical Causal Networks

Our starting point is a dynamical causal network: A directed acyclic graph (DAG) Gu = (V, E)
with edges E that indicate the causal connections among a set of nodes V and a given set of background
conditions (state of exogenous variables) U = u (see Figure 1B). The nodes in Gu represent a set of
associated random variables (which we also denote by V) with state space Ω = ∏i ΩVi and probability
function p(v|u), v ∈ Ω. For any node Vi ∈ V, we can define the parents of Vi in Gu as all nodes with
an edge leading into Vi,

pa(Vi) = {Vj | eji ∈ E}.

A causal network Gu is dynamical, in the sense that we can define a partition of its nodes V into
k + 1 temporally ordered “slices”, V = {V0, V1, . . . , Vk}, starting with an initial slice without parents
(pa(V0) = ∅) and such that the parents of each successive slice are fully contained within the previous
slice (pa(Vt) ⊆ Vt−1, t = 1, . . . , k). This definition is similar to the one proposed in [32], but is stricter,
requiring that there are no within-slice causal interactions. This restriction prohibits any “instantaneous
causation” between variables (see also [7], Section 1.5) and signifies that Gu fulfills the Markov property.
Nevertheless, recurrent networks can be represented as dynamical causal models when unfolded in
time (see Figure 1B) [20]. The parts of V = {V0, V1, . . . , Vk} can thus be interpreted as consecutive time
steps of a discrete dynamical system of interacting elements (see Figure 1); a particular state V = v,
then, corresponds to a system transient over k + 1 time steps.

In a Bayesian network, the edges of Gu fully capture the dependency structure between nodes
V. That is, for a given set of background conditions, each node is conditionally independent of every
other node, given its parents in Gu, and the probability function can be factored as

p(v | u) = ∏
i

p(vi | pa(vi), u), v ∈ Ω.

For a causal network, there is the additional requirement that the edges E capture causal
dependencies (rather than just correlations) between nodes. This means that the decomposition
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of p(v | u) holds, even if the parent variables are actively set into their state as opposed to passively
observed in that state (“Causal Markov Condition”, [7,15]),

p(v | u) = ∏
i

p
(
vi | do(pa(vi), u)

)
, v ∈ Ω.

As we assume, here, that U contains all relevant background variables, any statistical
dependencies between Vt−1 and Vt are, in fact, causal dependencies, and cannot be explained by
latent external variables (“causal sufficiency”, see [34]). Moreover, because time is explicit in Gu and
we assume that there is no instantaneous causation, there is no question of the direction of causal
influences—it must be that the earlier variables (Vt−1) influence the later variables (Vt). By definition,
Vt−1 contains all parents of Vt for t = 1, . . . , k. In contrast to the variables V within Gu, the background
variables U are conditioned to a particular state U = u throughout the causal analysis and are,
otherwise, not further considered.

Together, these assumptions imply a transition probability function for V, such that the nodes at
time t are conditionally independent given the state of the nodes at time t− 1 (see Figure 1C),

pu(vt | vt−1) = p(vt | vt−1, u)

= ∏
i

p
(
vi,t | vt−1, u

)
= ∏

i
p
(
vi,t | do(vt−1, u)

)
, ∀ (vt−1, vt) ∈ Ω.

(1)

To reiterate, a dynamical causal network Gu describes the causal interactions among a set
of nodes (the edges in E describe the causal connections between the nodes in V) conditional
on the state of the background variables U, and the transition probability function pu(vt | vt−1)

(Equation (1)) fully captures the nature of these causal dependencies. Note that pu(vt|vt−1) is
generally undefined in the case where pu(vt−1) = 0. However, in the present context, it is defined
as pu(vt|vt−1) = pu(vt|do(vt−1)) using the do(vt−1) operation. The interventional probability
pu(vt|do(vt−1)) is well-defined for all vt−1 ∈ Ω and can typically be inferred from the mechanisms
associated with the variables in Vt.

In summary, we assume that Gu fully and accurately describes the system of interest for a given
set of background conditions. In reality, a causal network reflects assumptions about a system’s
elementary mechanisms. Current scientific knowledge must inform which variables to include,
what their relevant states are, and how they are related mechanistically [7,36]. Here, we are primarily
interested in natural and artificial systems, such as neural networks, for which detailed information
about the causal network structure and the mechanisms of individual system elements is often
available, or can be obtained through exhaustive experiments. In such systems, counterfactuals
can be evaluated by performing experiments or simulations that assess how the system reacts to
interventions. The transition probabilities can, in principle, be determined by perturbing the system
into all possible states while holding the background variables fixed and observing the resulting
transitions. Alternatively, the causal network can be constructed by experimentally identifying the
input-output function of each element (i.e., its structural equation [7,34]). Merely observing the
system without experimental manipulation is insufficient to identify causal relationships in most
situations. Moreover, instantaneous dependencies are frequently observed in (experimentally obtained)
time-series data of macroscopic variables, due to unobserved interactions at finer spatio-temporal
scales [37]. In this case, a suitable dynamical causal network may still be obtained, simply by
discounting such instantaneous dependencies, since these interactions are not due to the macroscopic
mechanisms themselves.

Our objective, here, is to formulate a quantitative account of actual causation applicable to any
predetermined, dynamical causal network, independent of practical considerations about model
selection [12,36]. Confounding issues due to incomplete knowledge, such as estimation biases of
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probabilities from finite sampling, or latent variables, are, thus, set aside for the present purposes.
To what extent and under which conditions the identified actual causes and effects generalize across
possible levels of description, or under incomplete knowledge, is an interesting question that we plan
to address in future work (see also [38,39]).

2.2. Occurrences and Transitions

In general, actual causation can be evaluated over multiple time steps (e.g., considering indirect
causal influences). Here, however, we specifically focus on direct causes and effects without
intermediary variables or time steps. For this reason, we only consider causal networks containing
nodes from two consecutive time points, V = {Vt−1, Vt}, and define a transition, denoted by vt−1 ≺ vt,
as a realization V = v with v = (vt−1, vt) ∈ Ω and pu(vt|vt−1) > 0 (see Figure 1D).

Note that our approach generalizes, in principle, to system transitions across multiple (k > 1) time
steps, by considering the transition probabilities pu(vt | vt−k), instead of pu(vt | vt−1), in Equation (1).
While this practice would correctly identify counterfactual dependencies between vt−k and vt, it ignores
the actual states of the intermediate time steps (vt−k+1, . . . , vt−1). As a consequence, this approach
cannot, at present, address certain issues regarding causal transitivity across multiple paths, incomplete
causal processes in probabilistic causal networks [40], or causal dependencies in non-Markovian
systems.

Within a dynamical causal network Gu = (V, E) with V = {Vt−1, Vt}, our objective is to determine
the actual cause or actual effect of occurrences within a transition vt−1 ≺ vt. Formally, an occurrence is
defined to be a sub-state Xt−1 = xt−1 ⊆ Vt−1 = vt−1 or Yt = yt ⊆ Vt = vt, corresponding to a subset
of elements at a particular time and in a particular state. This corresponds to the general usage of the
term “event” in the computer science and probability literature. The term “occurrence” was chosen,
instead, to avoid philosophical baggage associated with the term “event”.

2.3. Cause and Effect Repertoires

Before defining the actual cause or actual effect of an occurrence, we first introduce two definitions
from IIT which are useful in characterizing the causal powers of occurrences in a causal network:
Cause/effect repertoires and partitioned cause/effect repertoires. In IIT, a cause (or effect) repertoire
is a conditional probability distribution that describes how an occurrence (set of elements in a state)
constrains the potential past (or future) states of other elements in a system [25,26] (see also [27,41] for
a general mathematical definition). In the present context of a transition vt−1 ≺ vt, an effect repertoire
specifies how an occurrence xt−1 ⊆ vt−1 constrains the potential future states of a set of nodes Yt ⊆ Vt.
Likewise, a cause repertoire specifies how an occurrence yt ⊆ vt constrains the potential past states of
a set of nodes Xt−1 ⊂ Vt−1 (see Figure 2).

The effect and cause repertoire can be derived from the system transition probabilities in
Equation (1) by conditioning on the state of the occurrence and causally marginalizing the variables
outside the occurrence Vt−1 \ Xt−1 and Vt \Yt (see Discussion 4.1). Causal marginalization serves to
remove any contributions to the repertoire from variables outside the occurrence by averaging over all
their possible states. Explicitly, for a single node Yi,t, the effect repertoire is:

π(Yi,t | xt−1) =
1
|ΩW | ∑

w∈ΩW

pu (Yi,t | do (xt−1, W = w)) , (2)

where W = Vt−1 \ Xt−1 with state space ΩW . Note that, for causal marginalization, each possible state
W = w ∈ ΩW is given the same weight |ΩW |−1 in the average, which corresponds to imposing a
uniform distribution over all w ∈ ΩW . This ensures that the repertoire captures the constraints due
to the occurrence, and not to whatever external factors might bias the variables in W to one state or
another (this is discussed in more detail in Section 4.1).
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In graphical terms, causal marginalizing implies that the connections from all Wi ∈ W to Yi,t
are “cut” and independently replaced by an un-biased average across the states of the respective
Wi, which also removes all dependencies between the variables in W. Causal marginalization, thus,
corresponds to the notion of cutting edges proposed in [34]. However, instead of feeding all open
ends with the product of the corresponding marginal distributions obtained from the observed joint
distribution, as in Equation (7) of [34], here we impose a uniform distribution p = 1

|ΩW |
, ∀w ∈ ΩW ,

as we are interested in quantifying mechanistic dependencies, which should not depend on the
observed joint distribution.
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Figure 2. Assessing cause and effect repertoires. (A) Example effect repertoires, indicating how the
occurrence {ORt−1 = 1} constrains the future states of ORt (left) and (OR, AND)t (right) in the causal
network shown in Figure 1. (B) Example cause repertoires indicating how the occurrences {ORt = 1}
(left) and {(OR, AND)t = 10} (right) constrain the past states of ORt−1. Throughout the manuscript,
filled circles denote occurrences, while open circles denote candidate causes and effects. Green shading
is used for t, blue for t− 1. Nodes that are not included in the occurrence or candidate cause/effect are
causally marginalized.

The complementary cause repertoire of a singleton occurrence yi,t, using Bayes’ rule, is:

π(Xt−1 | yi,t) = ∑
w∈ΩW

pu (yi,t | do (Xt−1, W = w))

∑z∈ΩVt−1
pu (yi,t | do (Vt−1 = z))

.

In the general case of a multi-variate Yt (or yt), the transition probability function pu(Yt | xt−1)

not only contains dependencies of Yt on xt−1, but also correlations between the variables in Yt due to
common inputs from nodes in Wt−1 = Vt−1 \ Xt−1, which should not be counted as constraints due
to xt−1. To discount such correlations, we define the effect repertoire over a set of variables Yt as the
product of the effect repertoires over individual nodes (Equation (2)) (see also [34]):

π(Yt | xt−1) = ∏
i

π(Yi,t | xt−1). (3)

In the same manner, we define the cause repertoire of a general occurrence yt over a set of variables
Xt−1 as:

π(Xt−1 | yt) =
∏i π(Xt−1 | yi,t)

∑x∈ΩXt−1
∏i π(Xt−1 = x | yi,t)

. (4)

We can also define unconstrained cause and effect repertoires, a special case of cause or effect
repertoires where the occurrence that we condition on is the empty set. In this case, the repertoire
describes the causal constraints on a set of the nodes due to the structure of the causal network,
under maximum uncertainty about the states of variables within the network. With the convention
that π(∅) = 1, we can derive these unconstrained repertoires directly from the formulas for the cause
and effect repertoires, Equations (3) and (4). The unconstrained cause repertoire simplifies to a uniform
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distribution, representing the fact that the causal network itself imposes no constraint on the possible
states of variables in Vt−1,

π(Xt−1) = |ΩXt−1 |
−1. (5)

The unconstrained effect repertoire is shaped by the update function of each individual node
Yi,t ∈ Yt under maximum uncertainty about the state of its parents,

π(Yt) = ∏
i

π(Yi,t) = ∏
i
|ΩW |−1 ∑

w∈ΩW

pu(Yi,t | do(W = w)), (6)

where W = Vt−1 \ Xt−1 = Vt−1, since Xt−1 = ∅.
In summary, the effect and cause repertoires π(Yt | xt−1) and π(Xt−1 | yt), respectively,

are conditional probability distributions that specify the causal constraints due to an occurrence on the
potential past and future states of variables in a causal network Gu. The cause and effect repertoires
discount constraints that are not specific to the occurrence of interest; possible constraints due to
the state of variables outside of the occurrence are causally marginalized from the distribution, and
constraints due to common inputs from other nodes are avoided by treating each node in the occurrence
independently. Thus, we denote cause and effect repertoires with π, to highlight that, in general,
π(Yt | xt−1) 6= p(Yt | xt−1). However, π(Yt | xt−1) is equivalent to p(Yt | xt−1) (the conditional
probability imposing a uniform distribution over the marginalized variables), in the special case that
all variables Yi,t ∈ Yt are conditionally independent, given xt−1 (see also [34], Remark 1). This is the
case, for example, if Xt−1 already includes all inputs (all parents) of Yt, or determines Yt completely.

An objective of IIT is to evaluate whether the causal constraints of an occurrence on a set of nodes
are “integrated”, or “irreducible”; that is, whether the individual variables in the occurrence work
together to constrain the past or future states of the set of nodes in a way that is not accounted for
by the variables taken independently [25,42]. To this end, the occurrence (together with the set of
nodes it constrains) is partitioned into independent parts, by rendering the connection between the
parts causally ineffective [25,26,34,42]. The partitioned cause and effect repertoires describe the residual
constraints under the partition. Comparing the partitioned cause and effect repertoires to the intact
cause and effect repertoires reveals what is lost or changed by the partition.

A partition ψ of the occurrence xt−1 (and the nodes it constrains, Yt) into m parts is defined as:

ψ(xt−1, Yt) = {(x1,t−1, Y1,t), (x2,t−1, Y2,t), . . . , (xm,t−1, Ym,t)}, (7)

such that {xj,t−1}m
j=1 is a partition of xt−1 and Yj,t ⊆ Yt with Yj,t ∩ Yk,t = ∅, j 6= k. Note that this

includes the possibility that any Yj,t = ∅, which may leave a set of nodes Yt \
⋃m

j=1 Yj,t completely
unconstrained (see Figure 3 for examples and details).

The partitioned effect repertoire of an occurrence xt−1 over a set of nodes Yt under a partition ψ is
defined as:

π(Yt | xt−1)ψ =
m

∏
j=1

π(Yj,t | xj,t−1)× π

Yt \
m⋃

j=1

Yj,t

 . (8)

This is the product of the corresponding m effect repertoires, multiplied by the unconstrained
effect repertoire (Equation (6)) of the remaining set of nodes Yt \

⋃m
j=1 Yj,t, as these nodes are no longer

constrained by any part of xt−1 under the partition.
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Figure 3. Partitioning the repertoire π(Yt | xt−1). (A) The set of all possible partitions of an occurrence,
Ψ(xt−1, Yt), includes all partitions of xt−1 into 2 ≤ m ≤ |xt−1| parts, according to Equation (7); as well
as the special case ψ = {(xt−1,∅)}. Considering this special case a potential partition has the added
benefit of allowing us to treat singleton occurrences and multi-variate occurrences in a common
framework. (B) Except for the special case when the occurrence is completely cut from the nodes it
constrains, we generally do not consider cases with m = 1 as partitions of the occurrence. The partition
must eliminate the possibility of joint constraints of xt−1 onto Yt. The set of all partitions Ψ(Xt−1, yt)

of a cause repertoire π(Xt−1 | yt) includes all partitions of yt into 2 ≤ m ≤ |yt| parts, according to
Equation (9), and, again, the special case of ψ = {(∅, yt)} for m = 1.

In the same way, a partition ψ of the occurrence yt (and the nodes it constrains Xt−1) into m parts
is defined as:

ψ(Xt−1, yt) = {(X1,t−1, y1,t), (X2,t−1, y2,t), . . . , (Xm,t−1, ym,t)}, (9)

such that {yi,t}m
i=1 is a partition of yt and Xj,t−1 ⊆ Xt−1 with Xj,t−1 ∩Xk,t−1 = ∅, j 6= k. The partitioned

cause repertoire of an occurrence yt over a set of nodes Xt−1 under a partition ψ is defined as:

π(Xt−1 | yt)ψ =
m

∏
j=1

π(Xj,t−1 | yj,t)× π

Xt−1 \
m⋃

j=1

Xj,t−1

 , (10)

the product of the corresponding m cause repertoires multiplied by the unconstrained cause repertoire
(Equation (6)) of the remaining set of nodes Xt−1 \

⋃m
j=1 Xj,t−1, which are no longer constrained by any

part of yt due to the partition.

2.4. Actual Causes and Actual Effects

The objective of this section is to introduce the notion of a causal account for a transition of interest
vt−1 ≺ vt in Gu as the set of all causal links between occurrences within the transition. There is a
causal link between occurrences xt−1 and yt if yt is the actual effect of xt−1, or if xt−1 is the actual cause
of yt. Below, we define causal link, actual cause, actual effect, and causal account, following five causal
principles: Realization, composition, information, integration, and exclusion.

Realization. A transition vt−1 ≺ vt must be consistent with the transition probability function of
a dynamical causal network Gu,

pu(vt|vt−1) > 0.

Only occurrences within a transition vt−1 ≺ vt may have, or be, an actual cause or actual effect
(This requirement corresponds to the first clause (“AC1”) of the Halpern and Pearl account of actual
causation [20,21]; that is, for C = c to be an actual cause of E = e, both must actually happen in the
first place.)

As a first example, we consider the transition {(OR, AND)t−1 = 10} ≺ {(OR, AND)t = 10},
shown in Figure 1D. This transition is consistent with the conditional transition probabilities of the
system, shown in Figure 1C.

Composition. Occurrences and their actual causes and effects can be uni- or multi-variate. For a
complete causal account of the transition vt−1 ≺ vt, all causal links between occurrences xt−1 ⊆ vt−1

and yt ⊆ vt should be considered. For this reason, we evaluate every subset of xt−1 ⊆ vt−1 as
occurrences that may have actual effects and every subset yt ⊆ vt as occurrences that may have actual
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causes (see Figure 4). For a particular occurrence xt−1, all subsets yt ⊆ vt are considered as candidate
effects (Figure 5A). For a particular occurrence yt, all subsets xt−1 ⊆ vt−1 are considered as candidate
causes (see Figure 5B). In what follows, we refer to occurrences consisting of a single variable as
“first-order” occurrences and to multi-variate occurrences as “high-order” occurrences, and, likewise,
to “first-order” and “high-order” causes and effects.

AND

OR

AND

OR

occurrences	that	may	have	an	effect occurrences	that	may	have	a	cause

OR

AND AND

OR

AND

OR

AND

OR

t–1 t

?

Transition	!"#$ ≺ !"

?
?

?
?

?

Figure 4. Considering the power set of occurrences. All subsets xt−1 ⊆ vt−1 and yt ⊆ vt are considered
as occurrences which may have an actual effect or an actual cause.

In the example transition shown in Figure 4, {ORt−1 = 1} and {ANDt = 0} are first-order
occurrences that could have an actual effect in vt, and {(OR, AND)t−1 = 10} is a high-order occurrence
that could also have its own actual effect in vt. On the other side, {ORt = 1}, {ANDt = 0}
and {(OR, AND)t = 10} are occurrences (two first-order and one high-order) that could have an
actual cause in vt−1. To identify the respective actual cause (or effect) of any of these occurrences,
we evaluate all possible sets {OR = 1}, {AND = 0}, and {(OR, AND) = 10} at time t − 1 (or t).
Note that, in principle, we also consider the empty set, again using the convention that π(∅) = 1
(see “exclusion”, below).

Information. An occurrence must provide information about its actual cause or effect. This means
that it should increase the probability of its actual cause or effect compared to its probability if the
occurrence is unspecified. To evaluate this, we compare the probability of a candidate effect yt in
the effect repertoire of the occurrence xt−1 (Equation (3)) to its corresponding probability in the
unconstrained repertoire (Equation (6)). In line with information-theoretical principles, we define the
effect information ρe of the occurrence xt−1 about a subsequent occurrence yt (the candidate effect) as:

ρe(xt−1, yt) = log2

(
π(yt | xt−1)

π(yt)

)
. (11)

In words, the effect information ρe is the relative increase in probability of an occurrence at t when
constrained by an occurrence at t − 1, compared to when it is unconstrained. A positive effect
information ρe(xt−1, yt) > 0 means that the occurrence xt−1 makes a positive difference in bringing
about yt. Similarly, we compare the probability of a candidate cause xt−1 in the cause repertoire
of the occurrence yt (Equation (4)) to its corresponding probability in the unconstrained repertoire
(Equation (5)). Thus, we define the cause information ρc of the occurrence yt about a prior occurrence
xt−1 (the candidate cause) as:

ρc(xt−1, yt) = log2

(
π(xt−1 | yt)

π(xt−1)

)
. (12)

In words, the cause information ρc is the relative increase in probability of an occurrence at t− 1 when
constrained by an occurrence at t, compared to when it is unconstrained. Note that the unconstrained
repertoire (Equations (5) and (6)) is an average over all possible states of the occurrence. The cause
and effect information thus take all possible counterfactual states of the occurrence into account in
determining the strength of constraints.
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In an information-theoretic context, the formula log2 (p(x | y)/p(x)) is also known as the
“pointwise mutual information” (see [43], Chapter 2). While the pointwise mutual information is
symmetric, the cause and effect information of an occurrence pair (xt−1, yt) are not always identical,
as they are defined based on the product probabilities in Equations (3) and (4). Nevertheless, ρe and ρc

can be interpreted as the number of bits of information that one occurrence specifies about the other.
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OR

AND AND

OR OR

AND AND

OR OR

AND AND

OR

& 7" 3"#$
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OR AND
OR
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IF = 0 bits IF = 0 bits

MIP MIP

{OR"= 1} {AND"= 0} OR, AND " = 10
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Figure 5. Assessing the cause and effect information, their irreducibility (integration), and the
maximum cause/effect (exclusion). (A,B) Example effect and cause information. The state that
actually occurred is selected from the effect or cause repertoire (green is used for effects, blue for
causes). Its probability is compared to the probability of the same state when unconstrained (overlaid
distributions without fill). All repertoires are based on product probabilities, π (Equations (3) and (4)),
that discount correlations due to common inputs when variables are causally marginalized.
For example, π({(OR, AND)t = 01}) > 0 in (A, right panel), although p({(OR, AND)t = 01}) = 0.
(C,D) Integrated effect and cause information. The probability of the actual state in the effect or cause
repertoire is compared against its probability in the partitioned effect or cause repertoire (overlaid
distributions without fill). Of all second-order occurrences shown, only {(OR, AND)t = 10} irreducibly
constrains {(OR, AND)t−1 = 10}. For first-order occurrences, αc/e = ρc/e (see text). Maximum values
are highlighted in bold. If, as in panel (B), a superset of a candidate cause or effect specifies the same
maximum value, it is excluded by a minimality condition.

In addition to the mutual information, ρe/c(xt−1, yt) is also related to information-theoretic
divergences that measure differences in probability distributions, such as the Kullback–Leibler
divergence DKL (p(x|y)||p(x)), which corresponds to an average of log2 (p(x | y)/p(x)) over all states
x ∈ ΩX , weighted by p(x | y). Here, we do not include any such weighting factor, since the transition
specifies which states actually occurred. While other definitions of cause and effect information are,
in principle, conceivable, ρe/c(xt−1, yt) captures the notion of information in a general sense and in
basic terms.

Note that ρe > 0 is a necessary, but not sufficient, condition for yt to be an actual effect of xt−1 and
ρc > 0 is a necessary, but not sufficient, condition for xt−1 to be an actual cause of yt. Further, ρc/e = 0
if and only if conditioning on the occurrence does not change the probability of a potential cause or
effect, which is always the case when conditioning on the empty set.
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Occurrences xt−1 that lower the probability of a subsequent occurrence yt have been termed
“preventative causes” by some [33]. Rather than counting a negative effect information ρe(xt−1, yt) < 0
as indicating a possible “preventative effect”, we take the stance that such an occurrence xt−1 has no
effect on yt, since it actually predicts other occurrences Yt = ¬yt that did not happen. By the same
logic, a negative cause information ρc(xt−1, yt) < 0 means that xt−1 is not a cause of yt within the
transition. Nevertheless, the current framework can, in principle, quantify the strength of possible
“preventative” causes and effects.

In Figure 5A, the occurrence {ORt−1 = 1} raises the probability of {ORt = 1}, and vice versa
(Figure 5B), with ρe({ORt−1 = 1}, {ORt = 1}) = ρc({ORt = 1}, {ORt−1 = 1}) = 0.415 bits.
By contrast, the occurrence {ORt−1 = 1} lowers the probability of occurrence {ANDt = 0} and also
of the second-order occurrence {(OR, AND)t = 10}, compared to their unconstrained probabilities.
Thus, neither {ANDt = 0} nor {(OR, AND)t = 10} can be actual effects of {ORt−1 = 1}. Likewise,
the occurrence {ORt = 1} lowers the probability of {ANDt−1 = 0}, which can, thus, not be its
actual cause.

Integration. A high-order occurrence must specify more information about its actual cause or
effect than its parts when they are considered independently. This means that the high-order occurrence
must increase the probability of its actual cause or effect beyond the value specified by its parts.

As outlined in Section 2.3, a partitioned cause or effect repertoire specifies the residual constraints
of an occurrence after applying a partition ψ. We quantify the amount of information specified by the
parts of an occurrence based on partitioned cause/effect repertoires (Equations (8) and (10)). We define
the effect information under a partition ψ as

ρe(xt−1, yt)ψ = log2

(
π(yt | xt−1)ψ

π(yt)

)
, (13)

and the cause information under a partition ψ as

ρc(xt−1, yt)ψ = log2

(
π(xt−1 | yt)ψ

π(xt−1)

)
. (14)

The information a high-order occurrence specifies about its actual cause or effect is integrated
to the extent that it exceeds the information specified under any partition ψ. Out of all permissible
partitions Ψ(xt−1, Yt) (Equation (7)), or Ψ(Xt−1, yt) (Equation (9)), the partition that reduces the
effect or cause information the least is denoted the “minimum information partition” (MIP) [25,26],
respectively:

MIP = arg min
ψ∈Ψ(xt−1,Yt)

(
ρe(xt−1, yt)− ρe(xt−1, yt)ψ

)
or

MIP = arg min
ψ∈Ψ(Xt−1,yt)

(
ρc(xt−1, yt)− ρc(xt−1, yt)ψ

)
.

We can, then, define the integrated effect information αe as the difference between the effect
information and the information under the MIP:

αe(xt−1, yt) = ρe(xt−1, yt)− ρe(xt−1, yt)MIP = log2

(
π(yt | xt−1)

π(yt | xt−1)MIP

)
, (15)

and the integrated cause information αc as:

αc(xt−1, yt) = ρc(xt−1, yt)− ρc(xt−1, yt)MIP = log2

(
π(xt−1 | yt)

π(xt−1 | yt)MIP

)
. (16)



Entropy 2019, 21, 459 13 of 48

For first-order occurrences xi,t−1 or yi,t−1, there is only one way to partition the occurrence
(ψ = {(xi,t−1,∅)} or ψ = {(yi,t,∅)}), which is necessarily the MIP, leading to αe(xi,t−1, yt) =

ρe(xi,t−1, yt) or αc(xt−1, yi,t) = ρc(xt−1, yi,t), respectively.
A positive integrated effect information (αe(xt−1, yt) > 0) signifies that the occurrence xt−1 has

an irreducible effect on yt, which is necessary, but not sufficient, for yt to be an actual effect of xt−1.
Likewise, a positive integrated cause information (αc(xt−1, yt) > 0) means that yt has an irreducible
cause in xt−1, which is a necessary, but not sufficient, condition for xt−1 to be an actual cause of yt.

In our example transition, the occurrence {(OR, AND)t−1 = 10} (Figure 5C) is reducible. This is
because {ORt−1 = 1} is sufficient to determine that {ORt = 1} with probability 1 and {ANDt−1 = 0}
is sufficient to determine that {AND = 0} with probability 1. Thus, there is nothing to be gained
by considering the two nodes together as a second-order occurrence. By contrast, the occurrence
{(OR, AND)t = 10} determines the particular past state {(OR, AND)t−1 = 10}with higher probability
than the two first-order occurrences {ORt = 1} and {ANDt = 0}, taken separately (Figure 5D,
right). Thus, the second-order occurrence {(OR, AND)t = 10} is irreducible over the candidate
cause {(OR, AND)t−1 = 10} with αc({(OR, AND)t−1 = 10}, {(OR, AND)t = 10}) = 0.17 bits
(see Discussion 4.4).

Exclusion: An occurrence should have at most one actual cause and one actual effect (which,
however, can be multi-variate; that is, a high-order occurrence). In other words, only one occurrence
yt ⊆ vt can be the actual effect of an occurrence xt−1, and only one occurrence xt−1 ⊆ vt−1 can be the
actual cause of an occurrence yt.

It is possible that there are multiple occurrences yt ⊆ vt over which xt−1 is irreducible
(αe(xt−1, yt) > 0), as well as multiple occurrences xt−1 ⊆ vt−1 over which yt is irreducible
(αc(xt−1, yt) > 0). The integrated effect or cause information of an occurrence quantifies the strength
of its causal constraint on a candidate effect or cause. When there are multiple candidate causes or
effects for which αc/e(xt−1, yt) > 0, we select the strongest of those constraints as its actual cause or
effect (that is, the one that maximizes α). Note that adding unconstrained variables to a candidate
cause (or effect) does not change the value of α, as the occurrence still specifies the same irreducible
constraints about the state of the extended candidate cause (or effect). For this reason, we include
a “minimality” condition, such that no subset of an actual cause or effect should have the same
integrated cause or effect information. This minimality condition between overlapping candidate
causes or effects is related to the third clause (“AC3”) in the various Halpern–Pearl (HP) accounts
of actual causation [20,21], which states that no subset of an actual cause should also satisfy the
conditions for being an actual cause. Under uncertainty about the causal model, or other practical
considerations, the minimality condition could, in principle, be replaced by a more elaborate criterion,
similar to, for example, the Akaike information criterion (AIC) that weighs increases in causal strength,
as measured here, against the number of variables included in the candidate cause or effect.

We define the irreducibility of an occurrence as its maximum integrated effect (or cause)
information over all candidate effects (or causes),

αmax
e (xt−1) = max

yt⊆vt
αe(xt−1, yt),

and
αmax

c (yt) = max
xt−1⊆vt−1

αc(xt−1, yt).

Considering the empty set as a possible cause or effect guarantees that the minimal value that
αmax can take is 0. Accordingly, if αmax = 0, then the occurrence is said to be reducible, and it has is no
actual cause or effect.

For the example in Figure 2A, {ORt = 1} has two candidate causes with αmax
c ({ORt = 1}) =

0.415 bits, the first-order occurrence {ORt−1 = 1} and the second-order occurrence {(OR, AND)t−1 =
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10}. In this case, {ORt−1 = 1} is the actual cause of {ORt = 1}, by the minimality condition across
overlapping candidate causes.

The exclusion principle avoids causal over-determination, which arises from counting multiple
causes or effects for a single occurrence. Note, however, that symmetries in Gu can give rise to genuine
indeterminism about the actual cause or effect (see Results 3). This is the case if multiple candidate
causes (or effects) are maximally irreducible and they are not simple sub- or super-sets of each other.
Upholding the causal exclusion principle, such degenerate cases are resolved by stipulating that the
one actual cause remains undetermined between all minimal candidate causes (or effects).

To summarize, we formally translate the five causal principles of IIT into the following
requirements for actual causation:

Realization: There is a dynamical causal network Gu and a transition vt−1 ≺ vt, such that
pu(vt|vt−1) > 0.

Composition: All xt−1 ⊆ vt−1 may have actual effects and be actual causes, and all yt ⊆ vt may have
actual causes and be actual effects.

Information: Occurrences must increase the probability of their causes or effects (ρ(xt−1, yt) > 0).
Integration: Moreover, they must do so above and beyond their parts (α(xt−1, yt) > 0).

Exclusion: An occurrence has only one actual cause (or effect), and it is the occurrence that
maximizes αc (or αe).

Having established the above causal principles, we now formally define the actual cause and the
actual effect of an occurrence within a transition vt−1 ≺ vt of the dynamical causal network Gu:

Definition 1. Within a transition vt−1 ≺ vt of a dynamical causal network Gu, the actual cause of an
occurrence yt ⊆ vt is an occurrence xt−1 ⊆ vt−1 which satisfies the following conditions:

1. The integrated cause information of yt over xt−1 is maximal

αc(xt−1, yt) = αmax(yt); and

2. No subset of xt−1 satisfies condition (1)

αc(x′t−1, yt) = αmax(yt)⇒ x′t−1 6⊂ xt−1.

Define the set of all occurrences that satisfy the above conditions as x∗(yt). As an occurrence can have,
at most, one actual cause, there are three potential outcomes:

1. If x∗(yt) = {xt−1}, then xt−1 is the actual cause of yt;
2. if |x∗(yt)| > 1 then the actual cause of yt is indeterminate; and
3. if x∗(yt) = {∅}, then yt has no actual cause.

Definition 2. Within a transition vt−1 ≺ vt of a dynamical causal network Gu, the actual effect of an occurrence
xt−1 ⊆ vt−1 is an occurrence yt ⊆ vt which satisfies the following conditions:

1. The integrated effect information of xt−1 over yt is maximal

αe(xt−1, yt) = αmax(xt−1); and

2. No subset of yt satisfies condition (1)

αe(xt−1, y′t) = αmax(xt−1)⇒ y′t 6⊂ yt.

Define the set of all occurrences that satisfy the above conditions as y∗(xt−1). As an occurrence can have,
at most, one actual effect, there are three potential outcomes:
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1. If y∗(xt−1) = {yt}, then yt is the actual effect of xt−1;
2. if |y∗(xt−1)| > 1 then the actual effect of xt−1 is indeterminate; and
3. if y∗(xt−1) = {∅}, then xt−1 has no actual effect.

Based on Definitions 1 and 2:

Definition 3. Within a transition vt−1 ≺ vt of a dynamical causal network Gu, a causal link is an occurrence
xt−1 ⊆ vt−1 with αmax

e (xt−1) > 0 and actual effect y∗(xt−1),

xt−1 → y∗(xt−1),

or an occurrence yt ⊆ vt with αmax
c (yt) > 0 and actual cause x∗(yt),

x∗(yt)← yt.

An integrated occurrence defines a single causal link, regardless of whether the actual cause
(or effect) is unique or indeterminate. When the actual cause (or effect) is unique, we sometimes refer
to the actual cause (or effect) explicitly in the causal link, xt−1 ← yt (or xt−1 → yt). The strength of a
causal link is determined by its αmax

e or αmax
c value. Reducible occurrences (αmax = 0) cannot form a

causal link.

Definition 4. For a transition vt−1 ≺ vt of a dynamical causal network Gu, the causal account, C(vt−1 ≺ vt),
is the set of all causal links xt−1 → y∗(xt−1) and x∗(yt)← yt within the transition.

Under this definition, all actual causes and actual effects contribute to the causal account
C(vt−1 ≺ vt). Notably, the fact that there is a causal link xt−1 → yt does not necessarily imply
that the reverse causal link xt−1 ← yt is also present, and vice versa. In other words, just because
yt is the actual effect of xt−1, the occurrence xt−1 does not have to be the actual cause of yt. It is,
therefore, not redundant to include both directions in C(vt−1 ≺ vt), as illustrated by the examples of
over-determination and prevention in the Results section (see, also, Discussion 4.2).

Figure 6 shows the entire causal account of our example transition. Intuitively, in this simple
example, {ORt−1 = 1} has the actual effect {ORt = 1} and is also the actual cause of {ORt = 1},
and the same for {ANDt−1 = 0} and {AND = 0}. Nevertheless, there is also a causal link between
the second-order occurrence {(OR, AND)t = 10} and its actual cause {(OR, AND)t−1 = 10}, which is
irreducible to its parts, as shown in Figure 5D (right). However, there is no complementary link from
{(OR, AND)t = 10} to {(OR, AND)t−1 = 10}, as it is reducible (Figure 5C, right). The causal account,
shown in Figure 6, provides a complete causal explanation for “what happened” and “what caused
what” in the transition {(OR, AND)t−1 = 10} ≺ {(OR, AND)t = 10}.

Similar to the notion of system-level integration in IIT [25,26], the principle of integration can
also be applied to the causal account as a whole, not only to individual causal links (see Appendix A).
In this way, it is possible to evaluate to what extent the transition vt−1 ≺ vt is irreducible to its parts,
which is quantified by A(vt−1 ≺ vt).

In summary, the measures defined in this section provide the means to exhaustively assess
“what caused what” in a transition vt−1 ≺ vt, and to evaluate the strength of specific causal links of
interest under a particular set of background conditions, U = u.
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Figure 6. Causal Account. There are two first-order occurrences with actual effects and actual causes.
In addition, the second-order occurrence {(OR, AND)t = 10} has an actual cause {(OR, AND)t−1 = 10}.

Software to analyze transitions in dynamical causal networks with binary variables is freely
available within the “PyPhi” toolbox for integrated information theory [44] at https://github.com/
wmayner/pyphi, including documentation at https://pyphi.readthedocs.io/en/stable/examples/
actual_causation.html.

3. Results

In the following, we will present a series of examples to illustrate the quantities and objects
defined in the theory section and address several dilemmas taken from the literature on actual
causation. While indeterminism may play a fundamental role in physical causal models, the existing
literature on actual causation largely focuses on deterministic problem cases. For ease of comparison,
most causal networks analyzed in the following are, thus, deterministic, corresponding to prominent
test cases of counterfactual accounts of actual causation (e.g., [8,11,19–21,45]).

3.1. Same Transition, Different Mechanism: Disjunction, Conjunction, Bi-Conditional, and Prevention

Figure 7 shows four causal networks of different types of logic gates with two inputs each,
all transitioning from the input state vt−1 = {AB = 11} to the output state vt = {C = 1}, {D = 1},
{E = 1}, or {F = 1}. From a dynamical point of view, without taking the causal structure of the
mechanisms into account, the same occurrences happen in all four situations. However, analyzing
the causal accounts of these transitions reveals differences in the number, type, and strength of causal
links between occurrences and their actual causes or effects.
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Figure 7. Four dynamically identical transitions can have different causal accounts. Shown are the
transitions (top) and their respective causal accounts (bottom).

https://github.com/wmayner/pyphi
https://github.com/wmayner/pyphi
https://pyphi.readthedocs.io/en/stable/examples/actual_causation.html
https://pyphi.readthedocs.io/en/stable/examples/actual_causation.html


Entropy 2019, 21, 459 17 of 48

Disjunction: The first example (Figure 7A, OR-gate), is a case of symmetric over-determination
([7], Chapter 10): each input to C would have been sufficient for {C = 1}, yet both {A = 1} and
{B = 1} occurred at t− 1. In this case, each of the inputs to C has an actual effect, {A = 1} → {C = 1}
and {B = 1} → {C = 1}, as they raise the probability of {C = 1} when compared to its unconstrained
probability. The high-order occurrence {AB = 11}, however, is reducible (with αe = 0). While both
{A = 1} and {B = 1} have actual effects, by the causal exclusion principle, the occurrence {C = 1}
can only have one actual cause. As both {A = 1} ← {C = 1} and {B = 1} ← {C = 1} have
αc = αmax

c = 0.415 bits, the actual cause of {C = 1} is either {A = 1} or {B = 1}, by Definition 1;
which of the two inputs it is remains undetermined, since they are perfectly symmetric in this example.
Note that {AB = 11} ← {C = 1} also has αc = 0.415 bits, but {AB = 11} is excluded from being a
cause by the minimality condition.

Conjunction: In the second example (Figure 7B, AND-gate), both {A = 1} and {B = 1} are
necessary for {D = 1}. In this case, each input alone has an actual effect, {A = 1} → {C = 1} and
{B = 1} → {C = 1} (with higher strength than in the disjunctive case); here, also, the second-order
occurrence of both inputs together has an actual effect, {AB = 11} → {D = 1}. Thus, there is a
composition of actual effects. Again, the occurrence {D = 1} can only have one actual cause; here, it is
the second-order cause {AB = 11}, the only occurrence that satisfies the conditions in Definition 1
with αc = αmax

c = 2.0.
The two examples in Figure 7A,B are often referred to as the disjunctive and conjunctive versions

of the “forest-fire” example [12,20,21], where lightning and/or a match being dropped result in a
forest fire. In the case that lightning strikes and the match is dropped, {A = 1} and {B = 1} are
typically considered two separate (first-order) causes in both the disjunctive and conjunctive version
(e.g., [20]). This result is not a valid solution within our proposed account of actual causation, as it
violates the causal exclusion principle. We explicitly evaluate the high-order occurrence {AB = 11}
as a candidate cause, in addition to {A = 1} and {B = 1}. In line with the distinct logic structure of
the two examples, we identify the high-order occurrence {AB = 11} as the actual cause of {D = 1}
in the conjunctive case, while we identify either {A = 1} or {B = 1} as the actual cause of {C = 1}
in the disjunctive case, but not both. By separating actual causes from actual effects, acknowledging
causal composition, and respecting the causal exclusion principle, our proposed causal analysis can
illuminate and distinguish all situations displayed in Figure 7.

Bi-conditional: The significance of high-order occurrences is further emphasized by the third
example (Figure 7C), where E is a “logical bi-conditional” (an XNOR) of its two inputs. In this case,
the individual occurrences {A = 1} and {B = 1} by themselves make no difference in bringing about
{E = 1}; their effect information is zero. For this reason, they cannot have actual effects and cannot be
actual causes. Only the second-order occurrence {AB = 11} specifies {E = 1}, which is its actual effect
{AB = 11} → {E = 1}. Likewise, {E = 1} only specifies the second-order occurrence {AB = 11},
which is its actual cause {AB = 11} ← {E = 1}, but not its parts taken separately. Note that the causal
strength in this example is lower than in the case of the AND-gate, since, everything else being equal,
{D = 1} is, mechanistically, a less-likely output than {E = 1}.

Prevention: In the final example, Figure 7D, all input states but {AB = 10} lead to {F = 1}.
Here, {B = 1} → {F = 1} and {B = 1} ← {F = 1}, whereas {A = 1} does not have an actual effect
and is not an actual cause. For this reason, the transition vt−1 ≺ vt is reducible (A(vt−1 ≺ vt) = 0,
see Appendix A), since A could be partitioned away without loss. This example can be seen as a
case of prevention: {B = 1} causes {F = 1}, which prevents any effect of {A = 1}. In a popular
narrative accompanying this example, {A = 1} is an assassin putting poison in the King’s tea, while a
bodyguard administers an antidote {B = 1}, and the King survives {F = 1} [12]. The bodyguard thus
“prevents” the King’s death (However, the causal model is also equivalent to an OR-gate, as can be
seen by switching the state labels of A from ‘0’ to ‘1’ and vice versa. The discussed transition would
correspond to the case of one input to the OR-gate being ‘1’ and the other ‘0’. As the OR-gate switches
on (‘1’) in this case, the ‘0’ input has no effect and is not a cause). Note that the causal account is
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state-dependent: For a different transition, A may have an actual effect or contribute to an actual cause;
if the bodyguard does not administer the antidote ({B = 0}), whether the King survives depends on
the assassin (the state of A).

Taken together, the above examples demonstrate that the causal account and the causal strength
of individual causal links within the account capture differences in sufficiency and necessity of the
various occurrences in their respective transitions. Including both actual causes and effects, moreover,
contributes to a mechanistic understanding of the transition, since not all occurrences at t− 1 with
actual effects end up being actual causes of occurrences at t.

3.2. Linear Threshold Units

A generalization of simple, linear logic gates, such as OR- and AND-gates, are binary linear
threshold units (LTUs). Given n equivalent inputs Vt−1 = {V1,t−1, V2,t−1, . . . , Vn,t−1} to a single LTU
Vt, Vt will turn on (‘1’) if the number of inputs in state ‘1’ exceeds a given threshold k,

p(Vt = 1 | vt−1) =

{
1 if ∑n

i=1 vi,t−1 ≥ k,

0 if ∑n
i=1 vi,t−1 < k.

(17)

LTUs are of great interest, for example, in the field of neural networks, since they comprise one
of the simplest model mechanisms for neurons; capturing the notion that a neuron fires if it received
sufficient synaptic inputs. One example is a Majority-gate, which outputs ‘1’ if and only if more than
half of its inputs are ‘1’.

Figure 8A displays the causal account of a Majority-gate M with four inputs for the transition
vt−1 = {ABCD = 1110} → vt = {M = 1}. All of the inputs in state ‘1’, as well as their high-order
occurrences, have actual effects on {M = 1}. Occurrence {D = 0}, however, does not work towards
bringing about {M = 1}: It reduces the probability for {M = 1} and, thus, does not contribute to any
actual effects or the actual cause. As with the AND-gate in the previous section, there is a composition
of actual effects in the causal account. Yet, there is only one actual cause, {ABC = 111} ← {M = 1}.
In this case, it happens to be that the third-order occurrence {ABC = 111} is minimally sufficient
for {M = 1}—no smaller set of inputs would suffice. Note, however, that the actual cause is not
determined based on sufficiency, but because {ABC = 111} is the set of nodes maximally constrained
by the occurrence {M = 1}. Nevertheless, causal analysis, as illustrated here, will always identify a
minimally sufficient set of inputs as the actual cause of an LTU vt = 1, for any number of inputs n and
any threshold k. Furthermore, any occurrence of input variables xt−1 ⊆ vt−1 with at most k nodes,
all in state ‘1’, will be irreducible, with the LTU vt = 1 as their actual effect.
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Figure 8. A linear threshold unit with four inputs and threshold k = 3 (Majority gate). (A) All
inputs are considered relevant variables. (B) The case D = 0 is taken as a fixed background condition
(indicated by the red pin).

Theorem 1. Consider a dynamical causal network Gu, such that Vt = {Yt} is a linear threshold unit with n
inputs and threshold k ≤ n, and Vt−1 is the set of n inputs to Yt. For a transition vt−1 ≺ vt, with yt = 1 and
∑ vt−1 ≥ k, the following holds:

1. The actual cause of {Yt = 1} is an occurrence {Xt−1 = xt−1} with |xt−1| = k and min(xt−1) = 1, and



Entropy 2019, 21, 459 19 of 48

2. if min(xt−1) = 1 and |xt−1| ≤ k then the actual effect of {Xt−1 = xt−1} is {Yt = 1}; otherwise
{Xt−1 = xt−1} has no actual effect, it is reducible.

Proof. See Appendix B.

Note that a LTU in the off (‘0’) state, {Yt = 0}, has equivalent results with the role of ‘0’ and
‘1’ reversed, and a threshold of n− k. In the case of over-determination (e.g., the transition vt−1 =

{ABCD = 1111} ≺ vt = {M = 1}, where all inputs to the Majority-gate are ‘1’), the actual cause will
again be a subset of three input nodes in the state ‘1’. However, which of the possible sets remains
undetermined, due to symmetry, just as in the case of the OR-gate in Figure 7A.

For comparison, the original and updated Halpern–Pearl (HP) definitions of actual causation [20]
generally identify all individual variables in state ’1’ as causes of an LTU vt = 1. The modified HP
definition proposed in [21], roughly speaking, identifies the actual causes as the set of variables whose
state needs to be flipped in order to change the outcome, which may vary depending on the state
vt−1 and the threshold k. In the particular example of Figure 8, {A = 1}, {B = 1}, and {C = 1}
would count as separate causes. However, in case of the transition {ABCD = 1111} → vt = {M = 1},
any pair of two inputs would now qualify as a cause of M = 1, according to [21].

3.3. Distinct Background Conditions

The causal network in Figure 8A considers all inputs to M as relevant variables. Under certain
circumstance, however, we may want to consider a different set of background conditions. For example,
in a voting scenario it may be a given that D always votes “no” (D = 0). In that case, we may want
to analyze the causal account of the transition vt−1 = {ABC = 111} ≺ vt = {M = 1} in the
alternative causal model Gu′ , where {D = 0} ∈ {U′ = u′} is treated as a background condition
(see Figure 8B). Doing so results in a causal account with the same causal links but higher causal
strengths. This captures the intuition that the “yes votes” of A, B, and C are more important if it is
already determined that D will vote “no”.

The difference between the causal accounts of vt−1 ≺ vt in Gu, compared to Gu′ , moreover,
highlights the fact that we explicitly distinguish fixed background conditions U = u from relevant
variables V, whose counterfactual relations must be considered (see also [46]). While the background
variables are fixed in their actual state U = u, all counterfactual states of the relevant variables V are
considered when evaluating the causal account of vt−1 ≺ vt in Gu.

3.4. Disjunction of Conjunctions

Another case often considered in the actual causation literature is a disjunction of conjunctions
(DOC); that is, an OR-operation over two or more AND-operations. In the general case, a disjunction
of conjunctions is a variable Vt that is a disjunction of k conditions, each of which is a conjunction of nj

input nodes Vt−1 = {{Vi,j,t−1}
nj
i=1}

k
j=1,

p(Vt = 1 | vt−1) =

{
0 if ∑

nj
i=1 vi,j,t−1 < nj, ∀j

1 otherwise
.

Here, we consider a simple example, (A ∧ B) ∨ C (see Figure 9). The debate over this example
is mostly concerned with the type of transition shown in Figure 9A: vt−1 = {ABC = 101} ≺ vt =

{D = 1}, and the question of whether {A = 1} is a cause of {D = 1}, even if B = 0. One story
accompanying this example is: “a prisoner dies either if A loads B’s gun and B shoots, or if C loads
and shoots his gun, . . ., A loads B’s gun, B does not shoot, but C does load and shoot his gun, so that
the prisoner dies” [12,47].

The quantitative assessment of actual causes and actual effects can help to resolve issues of actual
causation, in this type of example. As shown in Figure 9A, with respect to actual effects, both causal
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links {A = 1} → {D = 1} and {C = 1} → {D = 1} are present, with {C = 1} having a stronger
actual effect. However, {C = 1} is the one actual cause of {D = 1}, being the maximally irreducible
cause with αmax

c ({D = 1}) = 0.678.
When judging the actual effect of {A = 1} at t− 1 within the transition vt−1 = {ABC = 101} ≺

vt = {D = 1}, B is assumed to be undetermined. By itself, the occurrence {A = 1} does raise the
probability of occurrence {D = 1}, and thus {A = 1} → {D = 1}.

If we, instead, consider {B = 0} ∈ {U′ = u′} as a fixed background condition and evaluate the
transition vt−1 = {AC = 11} ≺ vt = {D = 1} in Gu′ , {A = 1} does not have an actual effect anymore
(Figure 9B). In this case, the background condition {B = 0} prevents {A = 1} from having any effect.

B

A

D

^ D = 1 = 1

if			∑AB�
� > 1

∨ C = 1

C

!"#$ =	{ABC	=	101}	≺ !"= {D	=	1}

0
0
0
1
1
1
1
1

pa
st
	st
at
e	
t–
1

A		B		C	 ^ j" = 1

3 → 7
∗

IF
YZ[

{A	=	1}	→ {D	=	1}
{C	=	1}	→ {D	=	1}

0.263	bits
0.678	bits

0.678	bits

3
∗
← 7 IJ

YZ[

{C	=	1}	← {D	=	1}

background

B

A

D

C

0
0
1
1pa

st
	st
at
e	
t–
1

A		C	^ j" = 1

A B

!"#$ =	{AC	=	11}	≺ !"= {D	=	1}
3 → 7

∗
IF
YZ[

{C	=	1}	→ {D	=	1} 1.0	bits

1.0	bits

3
∗
← 7 IJ

YZ[

{C	=	1}	← {D	=	1}

Figure 9. Disjunction of two conjunctions (A ∧ B) ∨ C. (A) All inputs to D are considered relevant
variables. (B) B = 0 is taken as a fixed background condition.

The results from this example extend to the general case of disjunctions of conjunctions. In the
situation where vt = 1, the actual cause of vt is a minimally sufficient occurrence. If multiple
conjunctive conditions are satisfied, the actual cause of vt remains indeterminate between all minimally
sufficient sets (asymmetric over-determination). At t− 1, any first-order occurrence in state ‘1’, as well
as any high-order occurrence of such nodes that does not overdetermine vt, has an actual effect.
This includes any occurrence in state all ‘1’ that contains only variables from exactly one conjunction,
as well as any high-order occurrence of nodes across conjunctions, which do not fully contain any
specific conjunction.

If, instead, vt = 0, then its actual cause is an occurrence that contains a single node in state ‘0’
from each conjunctive condition. At t− 1, any occurrence in state all ‘0’ that does not overdetermine vt

has an actual effect, which is any all ‘0’ occurrence that does not contain more than one node from any
conjunction.

These results are formalized by the following theorem.

Theorem 2. Consider a dynamical causal network Gu, such that Vt = {Yt} is a DOC element that is a
disjunction of k conditions, each of which is a conjunction of nj inputs, and Vt−1 = {{Vi,j,t−1}

nj
i=1}

k
j=1 is the

set of its n = ∑j nj inputs. For a transition vt−1 ≺ vt, the following holds:

1. If yt = 1,

(a) The actual cause of {Yt = 1} is an occurrence {Xt−1 = xt−1} where xt−1 = {xi,j,t−1}
nj
i=1 ⊆ vt−1

such that min(xt−1) = 1; and
(b) the actual effect of {Xt−1 = xt−1} is {Yt = 1} if min(xt−1) = 1 and |xt−1| = cj = nj; otherwise

xt−1 is reducible.

2. If yt = 0,
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(a) The actual cause of {Yt = 0} is an occurrence xt−1 ⊆ vt−1 such that max(xt−1) = 0 and
cj = 1 ∀ j; and

(b) if max(xt−1) = 0 and cj ≤ 1 ∀ j then the actual effect of {Xt−1 = xt−1} is {Yt = 0}; otherwise
xt−1 is reducible.

Proof. See Appendix C.

3.5. Complicated Voting

As has already been demonstrated in the examples in Figure 7C,D, the proposed causal analysis is
not restricted to linear update functions or combinations thereof. Figure 10 depicts an example
transition featuring a complicated, non-linear update function. This specific example is taken
from [12,21]: If A and B agree, F takes their value; if B, C, D, and E agree, F takes A’s value; otherwise,
the majority decides. The transition of interest is vt−1 = {ABCDE = 11000} ≺ vt = {F = 1}.

According to [21], intuition suggests that {A = 1} together with {B = 1} cause {F = 1}.
Indeed, {AB = 11} is one minimally-sufficient occurrence in the transition that determines {F = 1}.
The result of the present causal analysis of the transition (Figure 10) is that both {AB = 11} and
{ACDE = 1000} completely determine that {F = 1} will occur with αc(xt−1, yt) = αmax

c (yt) = 1.0.
Thus, there is indeterminism between these two causes. In addition, the effects {A = 1} → {F = 1},
{B = 1} → {F = 1}, {AB = 11} → {F = 1}, and {ACDE = 1000} → {F = 1} all contribute to the
causal account.
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Figure 10. Complicated voting.

3.6. Non-Binary Variables

To demonstrate the utility of our proposed framework in the case of non-binary variables,
we consider a voting scenario with three possible candidates (“1”, “2”, and “3”), as originally suggested
by [48]. Let us assume that there are seven voters, five of which vote in favor of candidate “1”,
and the remaining two vote in favor of candidate “2”; therefore, candidate “1” wins (Figure 11).
This corresponds to the transition vt−1 = {ABCDEFG = 1111122} ≺ vt = {W = 1}. A simple
majority is sufficient for any candidate to win. The winner is indicated by {W = 1/2/3}, respectively.
Throughout, we assume that no candidate wins in case of a tie for the maximum number of votes,
in which case {W = 0}.

If there were only two candidates, this example would reduce to a simple linear threshold unit
with n = 7 inputs and threshold k = 4. To recall, according to Theorem 1, one out of all minimally
sufficient sets of 4 voters in favor of candidate “1” would be chosen as the actual cause of {W = 1},
for such a binary LTU — which one remains undetermined. However, the fact that there are three
candidates changes the mechanistic nature of the example, as the number of votes necessary for
winning now depends on the particular input state. While four votes are always sufficient to win,
three votes suffice if the other two candidates each receive two votes.

As a result, the example transition {ABCDEFG = 1111122} ≺ {W = 1} poses a problem case for
certain contingency-based accounts of actual causation, including the HP definition [21], which declares
all individual voters as separate causes of {W = 1}, including {F = 2} and {G = 2} [48]. This is
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because there are certain contingencies under which the votes for other candidates matter for {W = 1}
(e.g., {ABCDEFG = 1112233} ≺ {W = 1}). However, in the transition of interest, there are sufficient
votes for “1” to ensure {W = 1}, regardless of the state of the other variables. Here, {F = 2} and
{G = 2}, by themselves, decrease the probability of {W = 1}. Accordingly, the present causal
analysis identifies an undetermined set of four out of the five voters in favor of candidate “1” as the
actual cause, as in the binary case, but with αmax

c = 1.893, while αc/e = 0 for {F = 2} and {G = 2}.
Figure 11 shows the causal account of the transition of interest. All input sets equivalent to the listed
occurrences also have an actual effect on {W = 1}. By contrast, in the specific case of a 3-2-2 vote
({ABCDEFG = 1112233} ≺ {W = 1}), the present account would identify the entire set of inputs as
the actual cause of {W = 1}; as, in that case, candidate “1” might not have won if any of the votes had
been different.
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Figure 11. Voting with three possible candidates.

3.7. Noise and Probabilistic Variables

The examples, so far, have involved deterministic update functions. Probabilistic accounts of
causation are closely related to counterfactual accounts [10]. Nevertheless, certain problem cases only
arise in probabilistic settings (e.g., that of Figure 12B). The present causal analysis can be applied equally
to probabilistic and deterministic causal networks, as long as the system’s transition probabilities
satisfy conditional independence (Equation (1)). No separate, probabilistic calculus for actual causation
is required.
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Figure 12. Probabilistic variables. While the transition shown in (A) does have a deterministic
equivalent, the transition shown in (B) would be impossible in the deterministic case.

In the simplest case, where noise is added to a deterministic transition vt−1 ≺ vt, the noise
will generally decrease the strength of the causal links in the transition. Figure 12 shows the causal
account of the transition vt−1 = {A = 1} ≺ vt = {N = 1}, where N is the slightly noisy version of a
COPY-gate. In this example, both {A = 1} → {N = 1} and {A = 1} ← {N = 1}. The only difference
with the equivalent deterministic case is that the causal strength αmax

e = αmax
c = 0.848 is lower than in
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the deterministic case, where αmax
e = αmax

c = 1. Note that, in this probabilistic setting, the actual cause
{A = 1} by itself is not sufficient to determine {N = 1}. Nevertheless, {A = 1} makes a positive
difference in bringing about {N = 1}, and this difference is irreducible, so the causal link is present
within the transition.

The transition vt−1 = {A = 1} ≺ vt = {N = 0} has no counterpart in the deterministic case,
where p({N = 0}|{A = 1}) = 0 (considering the transition would thus violate the realization
principle). The result of the causal analysis is that there are no integrated causal links within this
transition. We have that {A = 1} decreases the probability of {N = 0}, and vice versa, which leads
to αc/e < 0. Consequently, αmax

c/e = 0, as specified by the empty set. One interpretation is that
the actual cause of {N = 0} must lie outside of the system, such as a missing latent variable.
Another interpretation is that the actual cause for {N = 0} is genuine ‘physical noise’; for example,
within an element or connection. In any case, the proposed account of actual causation is sufficiently
general to cover both deterministic, as well as probabilistic, systems.

3.8. Simple Classifier

As a final example, we consider a transition with a multi-variate vt: The three variables A, B,
and C provide input to three different “detectors”, the nodes D, S, and L. D is a “dot-detector”:
It outputs ‘1’ if exactly one of the 3 inputs is in state ‘1’; S is a “segment-detector”: It outputs ‘1’ for
input states {ABC = 110} and {ABC = 011}; and L detects lines—that is, {ABC = 111}.

Figure 13 shows the causal account of the specific transition vt−1 = {ABC = 001} ≺ vt =

{DSL = 100}. In this case, only a few occurrences xt−1 ⊆ vt−1 have actual effects, but all possible
occurrences yt ⊆ vt are irreducible with their own actual cause. The occurrence {C = 1} by itself,
for example, has no actual effect. This may be initially surprising, since D is a dot detector and {C = 1}
is, supposedly, a dot. However, {C = 1} by itself does not raise the probability of {D = 1}. The specific
configuration of the entire input set is necessary to determine {D = 1} (a dot is only a dot if the
other inputs are ‘0’). Consequently, {ABC = 001} → {D = 1} and also {ABC = 001} ← {D = 1}.
By contrast, the occurrence {A = 0} is sufficient to determine {L = 0} and raises the probability of
{D = 1}; the occurrence {B = 0} is sufficient to determine {S = 0} and {L = 0} and also raises
the probability of {D = 1}. We, thus, get the following causal links: {A = 0} → {DL = 10},
{{A = 0}, {B = 0}} ← {L = 0}, {B = 0} → {DSL = 100}, and {B = 0} ← {S = 0}.

In addition, all high-order occurrences yt are irreducible, each having their own actual cause above
those of their parts. The actual cause identified for these high-order occurrences can be interpreted
as the “strongest” shared cause of nodes in the occurrence; for example, {B = 0} ← {DS = 10}.
While only the occurrence {ABC = 001} is sufficient to determine {DS = 10}, this candidate causal
link is reducible, because {DS = 10} does not constrain the past state of ABC any more than {D = 1}
by itself. In fact, the occurrence {S = 0} does not constrain the past state of AC at all. Thus,
{ABC = 001} and all other candidate causes of {DS = 10} that include these nodes are either
reducible (because their causal link can be partitioned with αmax

c = 0) or excluded (because there
is a subset of nodes whose causal strength is at least as high). In this example, {B = 0} is the only
irreducible shared cause of {D = 1} and {S = 0}, and, thus, is also the actual cause of {DS = 10}.
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Figure 13. Simple classifier. D is a “dot-detector”, S is a “segment-detector”, and L is a “line-detector”
(see text).

4. Discussion

In this article, we presented a principled, comprehensive formalism to assess actual causation
within a given dynamical causal network Gu. For a transition vt−1 ≺ vt in Gu, the proposed framework
provides a complete causal account of all causal links between occurrences at t − 1 and t of the
transition, based on five principles: Realization, composition, information, integration, and exclusion.
In what follows, we review specific features and limitations of our approach, discuss how the results
relate to intuitive notions about actual causation and causal explanation, and highlight some of the
main differences with previous proposals aimed at operationalizing the notion of actual causation.
Specifically, our framework considers all counterfactual states, rather than a single contingency,
which makes it possible to assess the strength of causal links. Second, it distinguishes between actual
causes and actual effects, which are considered separately. Third, it allows for causal composition,
in the sense that first- and high-order occurrences can have their own causes and effects within the
same transition, as long as they are irreducible. Fourth, it provides a rigorous treatment of causal
overdetermination. As demonstrated in the results section, the proposed formalism is generally
applicable to a vast range of physical systems, whether deterministic or probabilistic, with binary or
multi-valued variables, feedforward or recurrent architectures, as well as narrative examples; as long
as they can be represented as a causal network with an explicit temporal order.

4.1. Testing All Possible Counterfactuals with Equal Probability

In the simplest case, counterfactual approaches to actual causation are based on the “but-for”
test [12]: C = c is a cause of E = e if C = ¬c implies E = ¬e (“but for c, e would not have happened”).
In multi-variate causal networks, this condition is typically dependent on the remaining variables
W. What differs among current counterfactual approaches are the permissible contingencies (W = w)
under which the “but-for” test is applied (e.g., [8,11,19–21,30,31]). Moreover, if there is one permissible
contingency (counterfactual state) {¬c, w} that implies E = ¬e, then c is identified as a cause of e in an
“all-or-nothing” manner. In summary, current approaches test for counterfactual dependence under a
fixed contingency W = w, evaluating a particular counterfactual state C = ¬c. This holds true, even for
recently-proposed extensions of contingency-based accounts of actual causation to probabilistic causal
models [49,50] (see, however, [51] for an alternative approach, based on CP-logic).

Our starting point is a realization of a dynamical causal network Gu, which is a transition vt−1 ≺ vt

that is compatible with Gu’s transition probabilities (pu(vt|vt−1) > 0) given the fixed background
conditions U = u (Figure 14A). However, we employ causal marginalization, instead of fixed W = w
and C = ¬c, within the transition. This means that we replace these variables with an average over all
their possible states (see Equation (2)).

Applied to variables outside of the candidate causal link (see Figure 14B), causal marginalization
serves to remove the influence of these variables on the causal dependency between the occurrence
and its candidate cause (or effect), which is, thus, evaluated based on its own merits. The difference
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between marginalizing the variables outside the causal link of interest and treating them as fixed
contingencies becomes apparent in the case of the XOR (“exclusive OR”) mechanism in Figure 14 (or,
equivalently, the bi-conditional (XNOR) in Figure 7C). With the input B fixed in a particular state (‘0’ or
‘1’), the state of the XOR will completely depend on the state of A. However, the state of A alone does
not determine the state of the XOR at all if B is marginalized. The latter better captures the mechanistic
nature of the XOR, which requires a difference in A and B to switch on (‘1’).

We also marginalize across all possible states of C, in order to determine whether e counterfactually
depends on c. Instead of identifying one particular C = ¬c for which E = ¬e, all of C’s states are equally
taken into account. The notion that counterfactual dependence is an “all-or-nothing concept” [12]
becomes problematic; for example, if non-binary variables are considered, and also in non-deterministic
settings. By contrast, our proposed approach, which considers all possible states of C, naturally extends
to the case of multi-valued variables and probabilistic causal networks. Moreover, it has the additional
benefit that we can quantify the strength of the causal link between an occurrence and its actual cause
(effect). In the present framework, having positive effect information ρe(xt−1, yt) > 0 is necessary,
but not sufficient, for xt−1 → yt, and the same for positive cause information ρc(xt−1, yt) > 0.
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Figure 14. Causal conditioning and marginalizing. (A) Variables outside the transition of interest
are treated as fixed background conditions (indicated by the red pins). The transition probabilities
p(vt|vt−1) are conditioned on the state of these background variables. (B) When evaluating the
strength of a causal link within the transition, the remaining variables in Gu outside the causal link are
causally marginalized; that is, they are replaced by an average across all their possible states. With B
marginalized, the state of A by itself does not determine and is not determined by the occurrence
{XOR = 1}.

Taken together, we argue that causal marginalization—that is, averaging over contingencies
and all possible counterfactuals of an occurrence—reveals the mechanisms underlying the transition.
By contrast, fixing relevant variables to any one specific state largely ignores them. This is because
a mechanism is only fully described by all of its transition probabilities, for all possible input states
(Equation (1)). For example, the bi-conditional E (in Figure 7C) only differs from the conjunction D
(in Figure 7B) for the input state AB = 00. Once the underlying mechanisms are specified, based on all
possible transition probabilities, causal interactions can be quantified in probabilistic terms [25,32],
even within a single transition vt−1 ≺ vt (i.e., in the context of actual causation [33,52]). However,
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this also means that all transition probabilities have to be known for the proposed causal analysis,
even for states that are not typically observed (see also [25,32,34,42]).

Finally, in our analysis, all possible past states are weighted equally in the causal marginalization.
Related measures of information flow in causal networks [32], causal influence [34], and causal
information [33] consider weights based on a distribution of p(vt−1); for example, the stationary
distribution, observed probabilities, or a maximum entropy distribution (equivalent to weighting
all states equally). Janzing et al. [34], for example, proposed to quantify the “factual” direct causal
influence across a set of edges in a causal network by “cutting” those edges, and comparing the joint
distribution before and after the cut. Their approach is very similar to our notion of partitioning.
However, instead of weighting all states equally in the marginalization, they marginalized each
variable according to its probabilities in the joint distribution, which typically depend on the long-term
dynamics of the system (and, thus, on other mechanisms within the network than the ones directly
affected by the cut), as well as the state in which the system was initialized. While this makes sense
for a measure of expected causal strength, in the context of actual causation the prior probabilities of
occurrences at t− 1 are extraneous to the question “what caused what?” All that matters is what
actually happened, the transition vt−1 ≺ vt, and the underlying mechanisms. How likely vt−1 was
to occur should not influence the causes and effects within the transition, nor how strong the causal
links are between actual occurrences at t− 1 and t. In other words, the same transition, involving
the same mechanisms and background conditions, should always result in the same causal account.
Take, for instance, a set of nodes A, B that output to C, which is a deterministic OR-gate. If C receives
no further inputs from other nodes, then whenever {AB = 11} and {C = 1}, the causal links,
their strength, and the causal account of the transition {AB = 11} ≺ {C = 1} should be the same as
in Figure 7A (“Disjunction”). Which larger system the set of nodes was embedded in, or what the
probability was for the transition to happen in the first place, according to the equilibrium, observed,
or any other distribution, is not relevant in this context. Let us assume, for example, that {A = 1} was
much more likely to occur than {B = 1}. This bias in prior probability does not change the fact that,
mechanistically, {A = 1} and {B = 1} have the same effect on {C = 1}, and are equivalent causes.

4.2. Distinguishing Actual Effects and Actual Causes

An implicit assumption, commonly made about (actual) causation, is that the relation between
cause and effect is bidirectional: If occurrence C = c had an effect on occurrence E = e, then c is
assumed to be a cause of e [8,11,19–21,30,31,49,50]. As demonstrated throughout the Results section,
however, this conflation of causes and effects is untenable, once multi-variate transitions vt−1 ≺ vt are
considered (see also Section 4.3 below). There, an asymmetry between causes and effects simply arises,
due to the fact that the set of variables that is affected by an occurrence xt−1 ⊆ vt−1 typically differs
from the set of variables that affects an occurrence yt ⊆ vt. Take the toy classifier example in Figure 13:
While {B = 0} is the actual cause of {S = 0}, the actual effect of {B = 0} is {DLS = 100}.

Accordingly, we propose that a comprehensive causal understanding of a given transition is
provided by its complete causal account C (Definition 4), including both actual effects and actual
causes. Actual effects are identified from the perspective of occurrences at t− 1, whereas actual causes
are identified from the perspective of occurrences at t. This means that also the causal principles of
composition, integration, and exclusion are applied from these two perspectives. When we evaluate
causal links of the form xt−1 → yt, any occurrence xt−1 may have one actual effect yt ⊆ vt if xt−1 is
irreducible (αmax

e (xt−1) > 0) (Definition 2). When we evaluate causal links of the form xt−1 ← yt,
any occurrence yt may have one actual cause xt ⊆ vt−1 if yt is irreducible (αmax

c (yt) > 0) (Definition 1).
As seen in the first example (Figure 6), there may be a high-order causal link in one direction, but the
reverse link may be reducible.

As mentioned in the Introduction and exemplified in the Results, our approach has a more
general scope, but is still compatible with the traditional view of actual causation, concerned only
with actual causes of singleton occurrences. Nevertheless, even in the limited setting of a singleton
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vt, considering both causes and effects may be illuminating. Consider, for example, the transition
shown in Figure 9A: By itself, the occurrence {A = 1} raises the probability of {D = 1} (ρe(xt−1, yt) =

αe(xt−1, yt) > 0), which is a common determinant of being a cause in probabilistic accounts of
(actual) causation [13,14,53,54] (Note though that Pearl initially proposed maximizing the posterior
probability p(c | e) as a means of identifying the best (“most probable”) explanation for an occurrence
e ([16]; Chapter 5). However, without a notion of irreducibility, as applied in the present framework,
explanations based on p(c | e) tend to include irrelevant variables [29,55]). Even in deterministic
systems with multi-variate dependencies, however, the fact that an occurrence c, by itself, raises the
probability of an occurrence e, does not necessarily determine that E = e will actually occur [10]. In the
example of Figure 9, {A = 1} is neither necessary nor sufficient for {D = 1}. Here, this issue is
resolved by acknowledging that both {A = 1} and {C = 1} have an actual effect on {D = 1}, whereas
{C = 1} is identified as the (one) actual cause of {D = 1}, in line with intuition [21].

In summary, an actual effect xt−1 → yt does not imply the corresponding actual cause
xt−1 ← yt, and vice versa. Including both directions in the causal account may, thus, provide a
more comprehensive explanation of “what happened” in terms of “what caused what”.

4.3. Composition

The proposed framework of actual causation explicitly acknowledges that there may be high-order
occurrences which have genuine actual causes or actual effects. While multi-variate dependencies
play an important role in complex distributed systems [4,5,56], they are largely ignored in the actual
causation literature.

From a strictly informational perspective focused on predicting yt from xt−1, one might be
tempted to disregard such compositional occurrences and their actual effects, since they do not
add predictive power. For instance, the actual effect of {AB = 11} in the conjunction example of
Figure 7B is informationally redundant, since {D = 1} can be inferred (predicted) from {A = 1}
and {B = 1} alone. From a causal perspective, however, such compositional causal links specify
mechanistic constraints that would not be captured, otherwise. It is these mechanistic constraints,
and not predictive powers, that provide an explanation for “what happened” in the various transitions
shown in Figure 7, by revealing “what caused what”. In Figure 7C, for example, the individual
nodes A and B do not fulfill the most basic criterion for having an effect on the XNOR node {E = 1},
as ρe(xt−1, yt) = 0; whereas the second-order occurrence {AB = 11} has the actual effect {E = 1}.
In the conjunction example (Figure 7B), {A = 1} and {B = 1} both constrain the AND-gate D in the
same way, but the occurrence {AB = 11} further raises the probability of {D = 1} compared to the
effect of each individual input. The presence of causal links specified by first-order occurrences does
not exclude the second-order occurrence {AB = 11} from having an additional effect on {D = 1}.

To illustrate this, with respect to both actual causes and actual effects, we can extend the XNOR
example to a “double bi-conditional” and consider the transition vt−1 = {ABC = 111} ≺ vt = {DE =

11} (see Figure 15). In the figure, both D and E are XNOR nodes that share one of their inputs (node B),
and {AB = 11} ← {D = 1} and {BC = 11} ← {E = 1}. As illustrated by the cause-repertoires
shown in Figure 15B, and in accordance with D’s and E’s logic function (mechanism), the actual cause
of {D = 1} can be described as the fact that A and B were in the same state, and the actual cause of
{E = 1} as the fact that B and C were in the same state. In addition to these first-order occurrences,
also the second-order occurrence {DE = 11} has an actual cause {ABC = 111}, which can be described
as the fact that all three nodes A, B, and C were in the same state. Crucially, this fact is not captured by
either the actual cause of {D = 1}, or by the actual cause of {E = 1}, but only by the constraints of the
second-order occurrence {DE = 11}. On the other hand, the causal link {ABC = 111} ← {DE = 11}
cannot capture the fact that {AB = 11} was the actual cause of {D = 1} and {BC = 11} was the actual
cause of {E = 1}. It is of note, in this example, that the same reasoning applies to the composition of
high-order occurrences at t− 1 and their actual effects.
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In summary, high-order occurrences capture multi-variate mechanistic dependencies between the
occurrence variables that are not revealed by the actual causes and effects of their parts. Moreover,
a high-order occurrence does not exclude lower-order occurrences over their parts, which specify their
own actual causes and effects. In this way, the composition principle makes explicit that high-order
and first-order occurrences all contribute to the explanatory power of the causal account.
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Figure 15. Composition: High-order occurrences. (A) Double Bi-conditional: Transition and causal
account. (B) Cause repertoires corresponding to the two first-order and one second-order occurrences
with actual causes (see text).

4.4. Integration

As discussed above, high-order occurrences can have actual causes and effects, but only if they
are irreducible to their parts. This is illustrated in Figure 16, in which a transition equivalent to
our initial example in Figure 6 (Figure 16A) is compared against a similar, but reducible transition
(Figure 16C) in a different causal network. The two situations differ mechanistically: The OR and
AND gates in Figure 16A receive common inputs from the same two nodes, while the OR and AND
in Figure 16C have independent sets of inputs. Nevertheless, the actual causes and effects of all
single-variable occurrences are identical in the two cases. In both transitions, {OR = 1} is caused by
its one input in state ‘1’, and {AND = 0} is caused by its one input in state ‘0’. What distinguishes the
two causal accounts is the additional causal link, in Figure 16A, between the second-order occurrence
{(OR,AND) = 10} and its actual cause {AB = 10}. Furthermore, {(OR,AND) = 10} raises the
probability of both {AB = 10} (in Figure 16A) and {AD = 10} (in Figure 16C), compared to their
unconstrained probability π = 0.25 and, thus, ρc(xt−1, yt) > 0 in both cases. Yet, only {AB = 10} ←
{(OR,AND) = 10} in Figure 16A is irreducible to its parts. This is shown by partitioning across the
MIP with αc(xt−1, yt) = 0.17. This second-order occurrence, thus, specifies that the OR and AND gates
in Figure 16A receive common inputs—a fact that would, otherwise, remain undetected.

As described in Appendix A, using the measure A(vt−1 ≺ vt), we can also quantify the extent to
which the entire causal account C of a transition vt−1 ≺ vt is irreducible. The case where A(vt−1 ≺
vt) = 0 indicates that vt−1 ≺ vt can either be decomposed into multiple transitions without causal
links between them (e.g., Figure 16C), or includes variables without any causal role in the transition
(e.g., Figure 7D).
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4.5. Exclusion

That an occurrence can affect several variables (high-order effect), and that the cause of an
occurrence can involve several variables (high-order cause) is un-controversial [57]. Nevertheless,
the possibility of multi-variate causes and effects is rarely addressed in a rigorous manner. Instead of
one high-order occurrence, contingency-based approaches to actual causation typically identify
multiple first-order occurrences as separate causes in these cases. This is because some approaches
only allow for first-order causes by definition (e.g., [11]), while other accounts include a minimality
clause that does not consider causal strength and, thus, excludes virtually all high-order occurrences
in practice (e.g., [20]; but see [21]). Take the example of a simple conjunction AND = A ∧ B in the
transition {AB = 11} ≺ {AND = 1} (see Figures 7B and 17). To our knowledge, all contingency-based
approaches regard the first-order occurrences {A = 1} and {B = 1} as two separate causes of
{AND = 1}, in this case (but see [58]); while we identify the second-order occurrence {AB = 11}
(the conjunction) as the one actual cause, with αmax
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Figure 16. Integration: Irreducible versus reducible occurrences. (A) Transition and causal account
of Figure 6. (B) The second-order occurrence {(OR, AND) = 10} with actual cause {AB = 10} is
irreducible under the MIP . (C) Reducible transition with equivalent first-order causal links, but missing
the second-order causal link present in (A). (D) The constraints specified by the second-order occurrence
{(OR, AND) = 10} here are the same, and thus reducible, to those under the MIP.

Given a particular occurrence, xt−1, in the transition vt−1 ≺ vt, we explicitly consider the whole
power set of vt as candidate effects of xt−1, and the whole power set of vt−1 as candidate causes of a
particular occurrence yt (see Figure 17). However, the possibility of genuine multi-variate actual causes
and effects requires a principled treatment of causal over-determination. While most approaches
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to actual causation generally allow both {A = 1} and {B = 1} to be actual causes of {AND = 1},
this seemingly-innocent violation of the causal exclusion principle becomes prohibitive once {A = 1},
{B = 1}, and {AB = 11} are recognized as candidate causes. In this case, either {AB = 11} was the
actual cause, or {A = 1}, or {B = 1}. Allowing for any combination of these occurrences, however,
would be illogical. Within our framework, any occurrence can, thus, have, at most, one actual cause
(or effect) within a transition—the minimal occurrence with αmax (Figure 17). Finally, cases of true
mechanistic over-determination, due to symmetries in the causal network, are resolved by leaving the
actual cause (effect) indetermined between all x∗(yt) with αmax

c (see Definitions 1 and 2). In this way,
the causal account provides a complete picture of the actual mechanistic constraints within a given
transition.
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candidate	effects

B
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XOR
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IJ = 2	bitsIJ = 1	bitIJ = 1	bit
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candidate	effects

A B

{AB = 11} ← {AND	=	1} {A = 1} → {AND	=	1}

One	actual	cause One	actual	effect

Figure 17. Exclusion: Any occurrence can, at most, have one actual cause or effect. (A) Out of the
three candidate causes {A = 1}, {B = 1}, and {AB = 11}, the actual cause of {AND = 1} is the
high-order occurrence {AB = 11}, with αc = αmax

c = 2.0 bits. (B) Out of the three candidate effects,
{AND = 1}, {XOR = 1}, and {(AND, XOR) = 11}, the actual effect of {A = 1} is the first-order
occurrence {AND = 1}, with αe = αmax

e = 1.0 bit; {(AND, XOR) = 11} is excluded by the minimality
condition (Definition 2).

4.6. Intended Scope and Limitations

The objective of many existing approaches to actual causation is to provide an account of people’s
intuitive causal judgments [12,51]. For this reason, the literature on actual causation is largely rooted
in examples involving situational narratives, such as “Billy and Suzy throw rocks at a bottle” [7,12],
which are then compressed into a causal model to be investigated. Such narratives can serve as
intuition pumps, but can also lead to confusion if important aspects of the story are omitted in the
causal model applied to the example [9–11].

Our objective is to provide a principled, quantitative causal account of “what caused what” within
a fully-specified (complete) model of a physical systems of interacting elements. We purposely set aside
issues regarding model selection or incomplete causal knowledge, in order to formulate a rigorous
theoretical framework applicable to any pre-determined dynamical causal network [12,36]. This puts
the explanatory burden on the formal framework of actual causation, rather than on the adequacy of
the model. In this setting, causal models should always be interpreted mechanistically and time is
explicitly taken into account. Rather than on capturing intuition, an emphasis is put on explanatory
power and consistency (see, also, [10]). With a proper formalism in place, future work should address
to what extent and under which conditions the identified actual causes and effects generalize across
possible levels of description (macro versus micro causes and effects), or under incomplete knowledge
(see, also, [38,39]). While the proposed theoretical framework assumes idealized conditions and an
exhaustive causal analysis is only feasible in rather small systems, a firm theoretical basis should
facilitate the development of consistent empirical approximations for assessing actual causation in
practice (see, also, [7,34]).

In addition, the examples examined in this study have been limited to direct causes and effects
within transitions vt−1 ≺ vt across a single system update. The explanatory power of the proposed
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framework was illustrated in several examples, which included paradigmatic problem cases involving
overdetermination and prevention. Yet, some prominent examples that raise issues of “pre-emption”
or “causation by omission” have no direct equivalent in these basic types of physical causal models.
While the approach can, in principle, identify and quantify counterfactual dependencies across k > 1
time steps by replacing pu(vt | vt−1) with pu(vt | vt−k) in Equation (1), for the purpose of tracing
a causal chain back in time [58], the role of intermediary occurrences remains to be investigated.
Nevertheless, the present framework is unique in providing a general, quantitative, and principled
approach to actual causation that naturally extends beyond simple, binary, and deterministic example
cases, to all mechanistic systems that can be represented by a set of transition probabilities (as specified
in Equation (1)).

4.7. Accountability and Causal Responsibility

This work presents a step towards a quantitative causal understanding of “what is happening”
in systems such as natural or artificial neural networks, computers, and other discrete, distributed
dynamical systems. Such causal knowledge can be invaluable, for example, to identify the reasons
for an erroneous classification by a convolutional neural network [59], or the source of a protocol
violation in a computer network [60]. A notion of multi-variate actual causes and effects, in particular,
is crucial for addressing questions of accountability, or sources of network failures [12] in distributed
systems. A better understanding of the actual causal links that govern system transitions should also
improve our ability to effectively control the dynamical evolution of such systems and to identify
adverse system states that would lead to unwanted system behaviors.

Finally, a principled approach to actual causation in neural networks may illuminate the causes of
an agent’s actions or decisions (biological or artificial) [61–63], including the causal origin of voluntary
actions [64]. However, addressing the question “who caused what?”, as opposed to “what caused
what”, implies modeling an agent with intrinsic causal power and intention [60,65]. Future work will
extend the present mechanistic framework for “extrinsic” actual causation with a mechanistic account
of “intrinsic” actual causation in autonomous agents [25,66].

5. Conclusions

We have presented a principled, comprehensive formalism to assess actual causation within a
given dynamical causal network Gu, which can be interpreted as consecutive time steps of a discrete
dynamical system (feed-forward or recurrent). Based on five principles adopted from integrated
information theory (IIT) [25,27]—realization, composition, information, integration, and exclusion—the
proposed framework provides a quantitative causal account of all causal links between occurrences
(including multi-variate dependencies) for a transition vt−1 ≺ vt in Gu.

The strength of a causal link between an occurrence and its actual cause (or effect) is evaluated in
informational terms, comparing interventional probabilities before and after a partition of the causal
link, which replaces the state of each partitioned variable with an average across all its possible states
(causal marginalization). Additionally, the remaining variables in Gu but outside the causal link are
causally marginalized. Rather than a single contingency, all counterfactual states are, thus, taken into
account in the causal analysis. In this way, our framework naturally extends from deterministic to
probabilistic causal networks, and also from binary to multi-valued variables, as exemplified above.

The generality of the proposed framework, moreover, makes it possible to derive analytical results
for specific classes of causal networks, as demonstrated here for the case of linear threshold units
and disjunctions of conjunctions. In the absence of analytical results, the actual cause (or effect) of
an occurrence within Gu can be determined based on an exhaustive search. Software to evaluate the
causal account of simple binary networks (deterministic and probabilistic) is available within the
PyPhi software package [44]. While approximations will have to be developed in order to apply our
framework to larger systems and empirical settings, our objective here was to lay the theoretical
foundation for a general approach to actual causation that allows moving beyond intuitive toy
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examples to scientific problems where intuition is lacking, such as understanding actual causation in
biological or artificial neural networks.
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Appendix A. Irreducibility of the Causal Account

Similar to the notion of system-level integration in integrated information theory (IIT) [25,26],
the principle of integration can also be applied to the causal account as a whole, not only to individual
causal links. The causal account of a particular transition vt−1 ≺ vt of the dynamical causal network
Gu is defined as the set of all causal links within the transition (Definition 4, main text).

In the following, we define the quantity A(vt−1 ≺ vt), which measures to what extent the
transition vt−1 ≺ vt is irreducible to its parts. Moreover, we introduce Ae(vt−1 ≺ vt), which measures
the irreducibility of vt−1 and its set of “effect” causal links {xt−1 → yt} ∈ C(vt−1 ≺ vt), andAc(vt−1 ≺
vt), which measures the irreducibility of vt and its set of “cause” causal links {xt−1 ← yt} ∈ C(vt−1 ≺
vt). In this way, we can:

• Identify irrelevant variables within a causal account that do not contribute to any causal link
(Figure A1A);

• evaluate how entangled the sets of causes and effects are within a transition vt−1 ≺ vt

(Figure A1B); and
• compare A values between (sub-)transitions, in order to identify clusters of variables whose

causes and effects are highly entangled, or only minimally connected (Figure A1C).

We can assess the irreducibility of vt−1 and its set of “effect” causal links {xt−1 → yt} ∈ C(vt−1 ≺
vt) in parallel to αe(xt−1, yt), by testing all possible partitions Ψ(vt−1, Vt) (Equation (7)). This means
that the transition vt−1 ≺ vt is partitioned into independent parts, in the same manner that an
occurrence xt−1 is partitioned when assessing αe(xt−1, yt). We, then, define the irreducibility of vt−1 as
the difference in the total strength of actual effects (causal links of the form xt−1 → yt) in the complete
causal account C, compared to the causal account under the MIP; which, again, denotes the partition
in Ψ(vt−1, Vt) that makes the least difference to C:

Ae(vt−1 ≺ vt) = ∑
x→y∈C

(αmax
e (x))− ∑

x→y∈CMIP

(αmax
e (x)MIP) . (A1)

In the same way, the irreducibility of vt and its set of causal links {xt−1 ← yt} ∈ C(vt−1 ≺ vt) is
defined as the difference in the total strength of actual causes (causal links of the form xt−1 ← yt) in
the causal account C, compared to the causal account under the MIP:

Ac(vt−1 ≺ vt) = ∑
x←y∈C

(αmax
c (y))− ∑

x←y∈CMIP

(αmax
c (y)MIP) , (A2)

where the MIP is, again, the partition that makes the least difference out of all possible partitions
Ψ(Vt−1, vt) (Equation (9)). This means that the transition vt−1 ≺ vt is partitioned into independent
parts in the same manner that an occurrence yt is partitioned when assessing αc(xt−1, yt).
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The irreducibility of a single-variable vt−1 or vt reduces to αmax
e of its one actual effect yt, or αmax

c of its
one actual cause xt−1, respectively.

By considering the union of possible partitions, Ψ(vt−1 ≺ vt) = Ψ(vt−1, Vt) ∪Ψ(Vt−1, vt), we can
moreover assess the overall irreducibility of the transition vt−1 ≺ vt. A transition vt−1 ≺ vt is reducible
if there is a partition ψ ∈ Ψ(vt−1 ≺ vt), such that the total strength of causal links in C(vt−1 ≺ vt)

is un-affected by the partition. Based on this notion, we define the irreducibility of a transition
vt−1 ≺ vt as:

A(vt−1 ≺ vt) = ∑ αmax(C)−∑ αmax(CMIP), (A3)

where

∑ αmax(C) = ∑
x→y∈C

(αmax
e (x)) + ∑

x←y∈C
(αmax

c (y))

is a summation over the strength of all causal links in the causal account C(vt−1 ≺ vt), and the same
for the partitioned causal account CMIP.

Figure A1A shows the “Prevention” example of Figure 7D, main text, where {A = 1} has no effect
and is not a cause in this transition. Replacing {A = 1} with an average over all its possible states does
not make a difference to the causal account and, thus, A(vt−1 ≺ vt) = 0 in this case. Figure A1B shows
the causal account CMIP of the transition vt−1 ≺ vt with vt−1 = vt = {OR, AND = 10} under its MIP
into m = 2 parts with A(vt−1 ≺ vt) = 0.17. This is the causal strength that would be lost if we treated
vt−1 ≺ vt as two separate transitions, {ORt−1 = 1} ≺ {ORt = 1} and {ANDt−1 = 0} ≺ {ANDt = 0},
instead of a single one within Gu.

The irreducibility A(vt−1 ≺ vt) provides a measure of how causally “entangled” the variables
V are during the transition vt−1 ≺ vt. In a larger system, we can measure and compare the A values
of multiple (sub-)transitions. In Figure A1C, for example, the causes and effects of the full transition
are only weakly entangled (A = 0.03 bits), while the transitions involving the four upper or lower
variables, respectively, are much more irreducible (A = 0.83 bits). In this way, A(vt−1 ≺ vt) may be a
useful quantity when evaluating more parsimonious causal explanations against the complete causal
account of the full transition.
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Figure A1. Reducible and irreducible causal accounts. (A) “Prevention” example (see Figure 7D,
main text). We have that A = 0 bits as {A = 1} does not contribute to any causal links. (B) Irreducible
transition (see Figure 6, main text). A partition of the transition along the MIP destroys the 2nd-order
causal link, leading to A = 0.17 bits. (C) In larger systems, A can be used to identify (sub-)transitions
with highly entangled causes and effect. While the causes and effects in the full transition are
only weakly entangled, with A = 0.03 bits, the top and bottom (sub-)transitions are irreducible,
with A = 0.83 bits.
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Appendix B. Supplementary Proof 1

The first theorem describes the actual causes and effects for an observation of a linear threshold
unit (LTU) Vt = {Yt} with n inputs and threshold k, and its inputs Vt−1. First, a series of Lemmas
are demonstrated, based on transition probabilities qc,j from an effect repertoire: If Xt−1 = xt−1 ⊆
Vt−1 = vt−1 is an occurrence with size |Xt−1| = c and j of the c elements in Xt−1 are in the ‘ON’ state
(∑x∈xt−1

x = j), then, by Equation (3)

qc,j = π(Yt = 1|Xt−1 = xt−1) =


n−c
∑

i=k−j

1
2n−c (

n−c
i ) if j ≤ k and j > k− (n− c)

1 if j ≥ k

0 if j < k− (n− c)

.

First, we demonstrate that the probabilities qc,j are non-decreasing as the number of ‘ON’ inputs j
increases, for a fixed size of occurrence c, and that there is a specific range of values of j and c, such that
the probabilities are strictly increasing.

Lemma A1. qc,j ≥ qc,j−1 with qc,j = qc,j−1 iff j > k or j < k− (n− c).

Proof. If j > k, then
qc,j = qc,j−1 = 1.

If j < k− (n− c), then
qc,j = qc,j−1 = 0.

If k− (n− c) ≤ j ≤ k, then

qc,j =
1

2n−c

n−c

∑
i=k−j

(
n− c

i

)
=

1
2n−c

n−c

∑
i=k−(j−1)

(
n− c

i

)
− 1

2n−c = qc,j−1 +
1

2n−c > qc,j−1.

Next, we demonstrate two results relating the transition probabilities between occurrences of
different sizes:

Lemma A2. qc,j =
1
2
(
qc+1,j + qc+1,j+1

)
for 1 ≤ c < n and 0 ≤ j ≤ c.

Proof. If j ≥ k, then
qc,j = qc+1,j = qc+1,j+1 = 1,

so
qc,j =

1
2
(
qc+1,j + qc+1,j+1

)
= 1.

If j = k− 1, then
qc+1,j+1 = 1,
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and

qc,j = qc,k−1 =
1

2n−c

n−c

∑
i=1

(
n− c

i

)

=
1

2n−c

(
1 +

n−(c+1)

∑
i=1

(
n− (c + 1)

i− 1

)
+

(
n− (c + 1)

i

))

=
1
2

(
1

2n−(c+1)

n−(c+1)

∑
i=1

(
n− (c + 1)

i

)
+

1
2n−(c+1)

n−(c+1)

∑
i=0

(
n− (c + 1)

i

))

=
1
2
(qc+1,j + 1)

=
1
2
(qc+1,j + qc+1,j+1).

If j < k− (n− c), then
qc,j = qc+1,j = qc+1,j+1 = 0,

so
qc,j =

1
2
(
qc+1,j + qc+1,j+1

)
= 0.

If j = k− (n− c) then
qc+1,j = 0,

and

qc,j =
1

2n−c

n−c

∑
i=n−c

(
n− c

i

)
=

1
2n−c

n−(c+1)

∑
i=n−(c+1)

(
n− (c + 1)

i

)
=

1
2
(qc+1,j+1 + qc+1,j).

Finally, if k− (n− c) + 1 < j < k− 1, then

qc,j =
1

2n−c

n−c

∑
i=k−j

(
n− c

i

)

=
1

2n−c

(
1 +

n−(c+1)

∑
i=k−j

(
n− c

i

))

=
1

2n−c

(
1 +

n−(c+1)

∑
i=k−j

(
n− (c + 1)

i

)
+

n−(c+1)

∑
i=k−j

(
n− (c + 1)

i− 1

))

=
1

2n−c

(
n−(c+1)

∑
i=k−j

(
n− (c + 1)

i

)
+

(
1 +

n−(c+1)

∑
i=k−j

(
n− (c + 1)

i− 1

)))

=
1

2n−c

n−(c+1)

∑
i=k−j

(
n− (c + 1)

i

)
+

n−(c+1)

∑
i=k−(j+1)

(
n− (c + 1)

i

)
=

1
2
(
qc+1,j + qc+1,j+1

)
.

Lemma A3. If c < k, then qc,c < qc+1,c+1.
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Proof.

qc,c =
1
2
(qc+1,c + qc+1,c+1) (Lemma 1.2)

<
1
2
(qc+1,c+1 + qc+1,c+1) (Lemma 1.1)

= qc+1,c+1.

Finally, we consider a quantity Q(c), the sum of q over all possible states for an occurrence of size
c. The value Q(c) acts as a normalization term when calculating the cause repertoire of occurrence
{Yt = 1}. Here, we demonstrate a relationship between these normalization terms across occurrences
of different sizes:

Lemma A4. Let Q(c) =
c
∑

j=0
(c

j)qc,j. Then, Q(c) = 1
2 Q(c + 1).

Proof.

Q(c) =
c

∑
j=0

(
c
j

)
qc,j

=
1
2

c

∑
j=0

(
c
j

) (
qc+1,j + qc+1,j+1

)
=

1
2

(
c

∑
j=1

(
c

j− 1

)
qc+1,j +

c

∑
j=0

(
c
j

)
qc+1,j

)

=
1
2

(
qc+1,c+1 + qc+1,0 +

c

∑
j=1

(
c + 1

j

)
qc+1,j

)

=
1
2

(
c+1

∑
j=0

(
c + 1

j

)
qc+1,j

)
.

=
1
2

Q(c + 1)

Using the above lemmas, we are now in a position to prove the actual causes and actual effects in
the causal account of a single LTU in the ‘ON’ state. The causal account for a LTU in the ‘OFF’ state
follows, by symmetry.

Theorem A1. Consider a dynamical causal network Gu, such that Vt = {Yt} is a linear threshold unit with n
inputs and threshold k ≤ n, and Vt−1 is the set of n inputs to Yt. For a transition vt−1 ≺ vt−1, with yt = 1
and ∑ vt−1 ≥ k, the following hold:

1. The actual cause of {Yt = 1} is an occurrence {Xt−1 = xt−1} with |xt−1| = k and min(xt−1) = 1.
Furthermore, the causal strength of the link is

αmax
c (yt) = k− log2

(
k

∑
j=0

qk,j

)
> 0; and

2. If min(xt−1) = 1 and |xt−1| ≤ k then the actual effect of {Xt−1 = xt−1} is {Yt = 1}with causal strength

αe(xt−1, yt) = log2

(
qc,c

qc−1,c−1

)
> 0,
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otherwise {Xt−1 = xt−1} is reducible (αmax
e (xt−1) = 0).

Proof.
Part 1: Consider an occurrence {Xt−1 = xt−1}, such that |xt−1| = c ≤ n and ∑

x∈xt−1

x = j. Then,

the probability of xt−1 in the cause-repertoire of yt is

π(xt−1|yt) =
qc,j

Q(c)
.

As Yt is a first-order occurrence, there is only one possible partition, and the causal strength of a
potential link is, thus,

αc(xt−1, yt) = ρc(xt−1, yt) = log2

(
π(xt−1|yt)

π(xt−1)

)
= log2

(
2cqc,j

Q(c)

)
.

For a fixed value of c, the maximum value of causal strength occurs at j = c (since adding ‘ON’
elements can only increase q(c, j), by Lemma A1),

max
|xt−1|=c

αc(xt−1, yt) = max
j

log2

(
2cqc,j

Q(c)

)
= log2

(
2cqc,c

Q(c)

)
.

Applying Lemmas A3 and A4, we see that, across different values of c, this maximum is increasing
for 0 < c < k,

max
|xt−1|=c+1

αc(xt−1, yt)− max
|xt−1|=c

αc(xt−1, yt) = log2

(
2c+1qc+1,c+1

Q(c + 1)

)
− log2

(
2cqc,c

Q(c)

)

= log2

(
2c+1qc+1,c+1Q(c)

2cqc,cQ(c + 1)

)

= log2

(
qc+1,c+1

qc,c

)
> 0,

and that, for k ≤ c, the causal strength is constant,

max
|xt−1|=c+1

αc(xt−1, yt)− max
|xt−1|=c

αc(xt−1, yt) = log2

(
2c+1qc+1,c+1

Q(c + 1)

)
− log2

(
2cqc,c

Q(c)

)
= log2

(
qc+1,c+1

qc,c

)
= log2

(
1
1

)
= 0.

By setting c = j ≥ k, we find that the maximum causal strength is

αmax
c (yt) = log2

(
2cqc,c

Q(c)

)
= log2

(
2k

Q(k)

)
= k− log2

(
k

∑
j=0

qk,j

)
> 0.

Any occurrence xt−1 with j ≥ k has maximal causal strength and satisfies condition (1) for being
an actual cause,

αc(xt−1, yt) = log2

(
2cqc,j

Q(c)

)
= log2

(
2k

Q(k)

)
= αmax

c (yt).
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If c ≥ k, then there exists a subset x′t−1 ⊂ xt−1 with j′ ≥ k and c′ < c such that x′t−1 also satisfies
condition (1) and, thus, xt−1 does not satisfy condition (2). However, if j = c = k, then any subset x′t−1
of xt−1 has j′ < k, and so

αc(x′t−1, yt) = log2

(
2c′qc′ ,j′

Q(c′)

)
< log2

(
2c

Q(c)

)
= α(xt−1, yt).

Thus, xt−1 satisfies condition (2). Therefore, we have that the actual cause of yt is an occurrence
xt−1, such that |xt−1| = k and min xt−1 = 1,

x∗(yt) = {xt−1 ⊂ vt−1 | min xt−1 = 1, and |xt−1| = k}.

Part 2: Again, consider occurrences Xt−1 = xt−1 with |xt−1| = c and ∑
x∈xt−1

x = j. The probability

of yt in the effect repertoire of such an occurrence is

π(yt|xt−1) = qc,j =


n−c
∑

i=k−j

1
2n−c (

n−c
i ) if j ≤ k and j > k− (n− c)

1 if j ≥ k

0 if j < k− (n− c)

.

As there is only one element in vt, the only question is whether or not xt−1 is reducible. If it is
reducible, it has no actual effect. Otherwise, its actual effect must be yt. First, if j < c, then ∃ x = 0 ∈
xt−1 and we can define a partition ψ = {{(xt−1 − x), yt}, {x,∅}}, such that

π(yt|xt−1)ψ = π(yt|(xt−1 − x))× π(∅|x) = π(yt|(xt−1 − x)) = qc−1,j

and

αe(xt−1, yt) ≤ log2

(
π(yt|xt−1)

π(yt|xt−1)ψ

)
= log2

(
qc,j

qc−1,j

)
≤ 0 (Lemma1.1/1.2),

so xt−1 is reducible. Next, we consider the case where j = c but c > k. In this case, we define a partition
ψ = {{(xt−1 − x), yt}, {x,∅}} (where x ∈ xt−1 is any element), such that

π(yt|xt−1)ψ = π(yt|(xt−1 − x))× π(∅|x) = π(yt|(xt−1 − x)) = qc−1,c−1,

and, since c > k,

αe(xt−1, yt) ≤ log2

(
π(yt|xt−1)

π(yt|xt−1)ψ

)
= log2

(
qc,c

qc−1,c−1

)
= log2

(
1
1

)
= 0,

and so xt−1 is, again, reducible. Finally, we show that, for j = c and c ≤ k, that xt−1 is irreducible
with actual effect {Yt = 1}. All possible partitions of the pair of occurrences can be formulated as
ψ = {{(xt−1 − x), yt}, {x,∅}} (where x ⊆ xt−1 with |x| = d > 0), such that

π(yt|xt−1)ψ = π(yt|(xt−1 − x))× π(∅|x) = π(yt|(xt−1 − x)) = qc−d,c−d,

and

αe(xt−1, yt) = min
ψ

log2

(
π(yt|xt−1)

π(yt|xt−1)ψ

)
= min

d
log2

(
qc,c

qc−d,c−d

)
.

The minimum information partition occurs when d = 1 (by Lemma A3) and, thus, {Xt−1 = xt−1}
is irreducible with actual effect {Yt = 1} and causal strength
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αe(xt−1, yt) = log2

(
qc,c

qc−1,c−1

)
.

Appendix C. Supplementary Proof 2

The second theorem describes the actual causes and effects for an observation of a disjunction
of conjunctions (DOC) Vt = {Yt}, which is a disjunction of k conjunctions, each over nj elements,

and its inputs Vt−1 = {{Vi,j,t−1}
nj
i=1}

k
j=1. The total number of inputs to the DOC element is n = ∑k

j=1 nj.
We consider occurrences xt−1 that contain cj ≤ nj elements from each of the k conjunctions, and the
total number of elements is |xt−1| = c = ∑k

j=1 cj. To simplify notation, we further define x̄j,t−1 =

{vi,j,t−1}
nj
i=1, an occurrence with cj = nj and cj′ = 0 if j′ 6= j. In other words, x̄j,t−1 is the set of elements

that make up the jth conjunction. First, a series of lemmas are demonstrated, based on the transition
probabilities q(s) from an effect repertoire (Equation (3)):

q(s) = π(Yt = 1|xt−1 = s).

To isolate the specific conjunctions, we define sj ⊂ xt−1 to be the state of Xt−1 within

the jth conjunction, and s̄j = ∪j
i=1si ⊆ xt−1 be the state Xt−1 within the first j conjunctions.

For a DOC with k conjunctions, we consider occurrences with cj elements from each conjunction,

Xt−1 = {{xi,j,t−1}
cj
i=1}

k
j=1. In the specific case of a disjunction of two conjunctions,

q(s1, s2) =


0 if min(s1) = min(s2) = 0

1
2n1−c1

if min(s1) = 1, min(s2) = 0
1

2n2−c2
if min(s1) = 0, min(s2) = 1

2n1−c1+2n2−c2−1
2n1+n2−c1−c2

if min(s1) = min(s2) = 1,

and, in the case of k > 2 conjunctions, we define the probability recursively

q(s̄k−1, sk) =

{
q(s̄k−1) if min(sk) = 0

q(s̄k−1) +
(1−q(s̄k−1))

2nk−ck
if min(sk) = 1

.

The first two lemmas demonstrate the effect of adding an additional element to an occurrence.
Adding an ‘ON’ input to an occurrence xt−1 can never decrease the probability of {Yt = 1},
while adding an ‘OFF’ input to an occurrence xt−1 can never increase the probability of {Yt = 1}.

Lemma A5. If {xt−1 = s} = {x′t−1 = s′, xi,j,t−1 = 1}, then q(s′) ≤ q(s).

Proof. The proof is given by induction. We, first, consider the case where k = 2. Assume (without loss
of generality) that the additional element xi,j,t−1 is from the first conjunction (c1 = c′1 + 1, c2 = c′2).
If min(s′1) = 0, then q(s′) = q(s). If min(s′2) = 0 and min(s′1) = 1, then

q(s′)
q(s)

=
2n1−(c′1+1)

2n1−c′1
=

1
2
< 1,

so q(s′) < q(s). Finally, if min(s′1) = min(s′2) = 1, then

q(s′)
q(s)

=
2n1+n2−(c′1+1)−c′2(2n1−c′1 + 2n2−c′2 − 1)

2n1+n2−c′1−c′2(2n1−(c′1+1) + 2n2−c′2 − 1)
=

2n1−c′1 + 2n2−c′2 − 1

2n1−c′1 + 2(2n2−c′2 − 1)
< 1.
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Therefore, when k = 2, we have that q(s′) ≤ q(s). Next, we assume the result holds for k− 1,
q(s̄′k−1) ≤ q(s̄k−1) and demonstrate the result for general k. Again, assume the additional element is
from the first conjunction (c1 = c′1 + 1, cj = c′j for j > 1). If min(sk) = 0, then

q(s̄′k)
q(s̄k)

=
q(s̄′k−1)

q(s̄k−1)
≤ 1;

and, if min(sk) = 1, then

q(s̄′k)
q(s̄k)

=
q(s̄′k−1) + (1− q(s̄′k−1))/2nk−ck

q(s̄k−1) + (1− q(s̄k−1))/2nk−ck

=
(2nk−ck − 1)q(s̄′k−1) + 1
(2nk−ck − 1)q(s̄k−1) + 1

≤ 1.

Lemma A6. If {xt−1 = s} = {x′t−1 = s′, xi,j,t−1 = 0}, then q(s′) ≥ q(s).

Proof. The proof is given by induction. We, first, consider the case where k = 2. Assume (without
loss of generality) that the additional element is from the first conjunction (c1 = c′1 + 1, c2 = c′2).
If min(s′1) = 0, then q(s′) = q(s). If min(s′2) = 0 and min(s′1) = 1, then

q(s′) =
1

2n1−c′1
> 0 = q(s).

Finally, if min(s′1) = min(s′2) = 1, then

q(s′)
q(s)

=
2n2−c′2(2n1−c′1 + 2n2−c′2 − 1)

2n1+n2−c′1−c′2
=

2n1−c′1 + 2n2−c′2 − 1

2n1−c′1
≥ 1.

Therefore, when k = 2, we have that q(s′) ≥ q(s). Next, we assume the result holds for k− 1,
q(s̄′k−1) ≥ q(s̄k−1) and demonstrate the result for general k. Again, assume the additional element is
from the first conjunction (c1 = c′1 + 1, cj = c′j for j > 1). If min(sk) = 0, then

q(s̄′k)
q(s̄k)

=
q(s̄′k−1)

q(s̄k−1)
≤ 1,

and, if min(sk) = 1, then

q(s̄′k)
q(s̄k)

=
q(s̄′k−1) + (1− q(s̄′k−1))/2nk−ck

q(s̄k−1) + (1− q(s̄k−1))/2nk−ck

=
(2nk−ck − 1)q(s̄′k−1) + 1
(2nk−ck − 1)q(s̄k−1) + 1

≥ 1.

Next, we again consider a normalization term Q(c), which is the sum of q(s) over all states of the
occurrence. Here, we demonstrate the effect on Q(c) of adding an additional element to an occurrence:

Lemma A7. For an occurrence {Xt−1 = xt−1} with |xt−1| = c > 0, define Q(c) = ∑s q(s). Now, consider
adding a single element to an occurrence, x′t−1 = {xt−1, xi,j1,t−1}, (xi,j1,t−1 /∈ xt−1), such that c′j1 = cj1 + 1

and c′j = cj for j 6= j1; so that c′ = c + 1. Then, Q(c′)
Q(c) = 2.
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Proof. The proof is again given by induction. We, first, consider the case where k = 2,

Q(c) = ∑
s

q(s)

=
2c1 − 1
2n2−c2

+
2c2 − 1
2n1−c1

+
2n1−c1 + 2n2−c2 − 1

2n1+n2−c1−c2

=
2n1 + 2n2 − 1
2n1+n2−c1−c2

Assume (without loss of generality) that the additional element to the first conjunction
(c′1 = c1 + 1). Then, we have that

Q(c′)
Q(c)

=
2n1+n2−c1−c2(2n1 + 2n2 − 1)

2n1+n2−c′1−c′2(2n1 + 2n2 − 1)
=

2n1+n2−c1−c2

2n1+n2−(c1+1)−c2
= 2.

Therefore, when k = 2, we have that Q(c′)
Q(c) = 2. Next, we assume the result holds for k− 1 and

demonstrate the result for general k. Using the recursive relationship for q, we get

Qk(c) = ∑̄
sk

q(s̄k)

= ∑
sk

∑
s̄k−1

q(s̄k−1, sk)

= (2ck − 1) ∑
s̄k−1

q(s̄k−1) + ∑
s̄k−1

(
q(s̄k−1) +

(1− q(s̄k−1))

2nk−ck

)
=

(2nk − 1)Qk−1(c− ck) + 2c−ck

2nk−ck
.

Again, assuming that the additional element is from the first conjunction c′1 = c1 + 1, for the ratio
we have

Qk(c′)
Qk(c)

=
(2nk − 1)Qk−1(c′ − c′k) + 2c′−c′k

(2nk − 1)Qk−1(c− ck) + 2c−ck

=
(2nk − 1)2Qk−1(c− ck) + 2(c−ck)+1

(2nk − 1)Qk−1(c− ck) + 2c−ck

= 2

(
(2nk − 1)Qk−1(x′t−1) + 2c−ck

(2nk − 1)Qk−1(x′t−1) + 2c−ck

)
= 2.

The final two Lemmas demonstrate conditions under which the probability of {Yt = 1} is either
strictly increasing or strictly decreasing.

Lemma A8. If min(xt−1) = 1, cj < nj ∀ j and x′t−1 ⊂ xt−1, then q(s′) < q(s).
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Proof. The proof is given by induction. We, first, consider the case where k = 2. Assume (without loss
of generality) that xt−1 has an additional element in the first conjunction, relative to x′t−1 (c1 = c′1 + 1,
c2 = c′2). The result can be applied recursively for differences of more than one element:

q(s)
q(s′)

=

(
2n1−c1 + 2n2−c2 − 1

2n1−c′1 + 2n2−c′2 − 1

)(
2n1+n2−c′1−c′2

2n1+n2−c1−c2

)

= 2
(

2n1−c1 + 2n2−c2 − 1
2n1−c1+1 + 2n2−c2 − 1

)
> 1 (since c2 < n2).

Therefore, when k = 2, we have that q(s′) < q(s). Next, we assume the result holds for k− 1,
q(s̄′k−1) < q(s̄k−1) and demonstrate the result for general k. Again, assume that xt−1 and x′t−1 differ by
a single element in the first conjunction (c1 = c′1 + 1, cj = c′j for j > 1). As min(sk) = 1,

q(s̄k)

q(s̄′k)
=

q(s̄′k−1) + (1− q(s̄′k−1))/2nk−ck

q(s̄k−1) + (1− q(s̄k−1))/2nk−ck

=
(2nk−ck − 1)q(s̄′k−1) + 1
(2nk−ck − 1)q(s̄k−1) + 1

> 1.

Lemma A9. If max(xt−1) = 0 , cj ≤ 1 ∀ j and x′t−1 ⊂ xt−1, then q(s) < q(s′).

Proof. The proof is given by induction. We, first, consider the case where k = 2. Assume (without loss
of generality) that xt−1 has an additional element in the first conjunction, relative to x′t−1 (c1 = c′1 + 1 =

1, c2 = c′2). The result can be applied recursively for differences of more than one element. First,
consider the case where c2 = 1. Then, we have

q(s′) =
1

2n2−c2
> 0 = q(s).

Next, consider the case where c2 = 0:

q(s′) =
2n1 + 2n2 − 1

2n1+n2
=

1
2n2

(
2n1 + 2n2 − 1

2n1

)
= q(s)

(
2n1 + 2n2 − 1

2n1

)
> q(s).

Therefore, when k = 2, we have that q(s) < q(s′). Next, we assume the result holds for k− 1,
q(s̄k−1) < q(s̄′k−1), and demonstrate the result for general k. Again, assume that xt−1 and x′t−1 differ
by a single element in the first conjunction (c1 = c′1 + 1, cj = c′j for j > 1). As min(sk) = 0,

q(s̄k)

q(s̄′k)
=

q(s̄k−1)

q(s̄′k−1)
< 1.

Using the above Lemmas, we are now in a position to prove the actual causes and actual effects in
the causal account of a single DOC and its inputs. We separately consider the case where the DOC is
in the ‘ON’ and the ‘OFF’ state.
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Theorem A2. Consider a dynamical causal network Gu, such that Vt = {Yt} is a DOC element that is a
disjunction of k conditions, each of which is a conjunction of nj inputs, and Vt−1 = {{Vi,j,t−1}

nj
i=1}

k
j=1 is the

set of its n = ∑j nj inputs. For a transition vt−1 ≺ vt, the following hold:

1. If yt = 1,

(a) The actual cause of {Yt = 1} is an occurrence {Xt−1 = xt−1}, where xt−1 = {xi,j,t−1}
nj
i=1 ⊆ vt−1,

such that min(xt−1) = 1; and
(b) The actual effect of {Xt−1 = xt−1} is {Yt = 1}, if min(xt−1) = 1 and |xt−1| = cj = nj;

otherwise, xt−1 is reducible.

2. If yt = 0,

(a) The actual cause of {Yt = 0} is an occurrence xt−1 ⊆ vt−1, such that max(xt−1) = 0 and
cj = 1 ∀ j; and

(b) If max(xt−1) = 0 and cj ≤ 1 ∀ j, then the actual effect of {Xt−1 = xt−1} is {Yt = 0}; otherwise,
xt−1 is reducible.

Proof.
Part 1a: The actual cause of {Yt = 1}. For an occurrence {Xt−1 = xt−1}, the probability of xt−1 in

the cause repertoire of yt is

π(xt−1 | yt) =
q(s)
Q(c)

.

As Yt is a first-order occurrence, there is only one possible partition, and the causal strength of a
potential link is, thus,

αc(xt−1, yt) = log2

(
π(xt−1 | yt)

π(xt−1)

)
= log2

(
2cq(s)
Q(c)

)
= log2 (Q1q(s)) ,

where Q1 = 2c

Q(c) ∀ c (by Lemma A7). If we, then, consider adding a single element to the occurrence
x′t−1 = {xt−1, x′i,j,t−1} (x′i,j,t−1 /∈ xt−1) then the difference in causal strength is

αc(xt−1, yt)− αc(x′t−1, yt) = log2

(
Q1 q(s)
Q1 q(s′)

)
= log2

(
q(s)
q(s′)

)
.

Combining the above with Lemma A6, adding an element xi,j,t−1 = 0 to an occurrence cannot
increase the causal strength and, thus, occurrences that include elements in state ‘OFF’ cannot be the
actual cause of yt. By Lemma A5, adding an element xi,j,t−1 = 1 to an occurrence cannot decrease the
causal strength. Furthermore, if cj = nj and min(x̄j,t−1) = 1, then q(s) = 1 and

αc(yt, xt−1) = log2 (Q1q(s)) = log2(Q1),

independent of the number of elements in the occurrence from other conjunctions cj′ and their states
sj′ (j′ 6= j). As the value Q1 does not depend on the specific value of j, it must be the case that this is
the maximum value of causal strength, αmax(yt). Furthermore, if cj < nj ∀ j, then

αc(yt, xt−1) = log2 (Q1q(s)) < log2 (Q1) .

Therefore, the maximum value of causal strength is

log2 (Q1) ,

and an occurrence xt−1 achieves this value (satisfying condition (1) of being an actual cause) if and
only if there exists j, such that cj = nj and min(x̄j,t−1) = 1 (i.e., the occurrence includes a conjunction
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whose elements are all ‘ON’). Consider an occurrence that satisfies condition (1), such that there exists
j1 with cj1 = nj1 . If there exists j2 6= j1 such that cj2 > 0, then we can define a subset x′t−1 ⊂ xt−1

with c′j1 = nj1 and c′j2 = 0 that also satisfies condition (1) and, thus, xt−1 does not satisfy condition
(2). Finally, if no such j2 exists (xt−1 = x̄j,t−1), then any subset x′t−1 ⊂ xt−1 has cj < nj ∀j and does not
satisfy condition (1), so xt−1 satisfies condition (2). Therefore, we have that the actual cause of yt is an
occurrence xt−1 = x̄j,t−1, such that min xt−1 = 1,

x∗(yt) = {x̄j,t−1 ⊂ vt−1 | min x̄j,t−1 = 1}.

Part 1b: Actual effect of xt−1 when yt = 1. Again, consider occurrences Xt−1 = xt−1 with cj
elements from each of the k conjunctions. The effect repertoire of a DOC with k conjunctions over such
occurrences is

π(yt | xt−1 = s) = q(s).

As there is only one element in vt, the only question is whether or not xt−1 is reducible. If it is
reducible, it has no actual effect; otherwise, its actual effect must be yt. First, if there exists x ∈ xt−1 with
x = 0, then we can define x′t−1 such that xt−1 = {x′t−1, x}, and a partition ψ =

{
{x′t−1, yt}, {x,∅}

}
(i.e., cutting away x), such that

π(yt | xt−1)ψ = π(yt | x′t−1)× π(∅ | x) = π(yt | x′t−1) = q(s′).

By Lemma A6, q(s′) ≥ q(s) and, thus,

αe(xt−1, yt) ≤ log2

(
π(yt | xt−1)

π(yt | xt−1)ψ

)
= log2

(
q(s)
q(s′)

)
≤ 0,

and so xt−1 is reducible. Next, we consider the case where min(xt−1) = 1, but there exists j1, j2 such
that cj1 = nj1 and cj2 > 0. We define x′t−1 = x̄j1,t−1 and a partition ψ =

{
{x′t−1, yt}, (xt−1 \ x′t−1),∅}

}
,

such that

π(yt | xt−1)ψ = π(yt | x′t−1)× π(∅ | (xt−1 − x′t−1)) = π(yt | x′t−1) = q(s′),

and, thus,

αe(xt−1, yt) ≤ log2

(
π(yt | xt−1)

π(yt | xt−1)ψ

)
= log2

(
q(s)
q(s′)

)
= log2

(
1
1

)
= 0,

so that xt−1 is, again, reducible. We, now, split the irreducible occurrences into two cases. First,
we consider min(xt−1) = 1 and all cj < nj. All possible partitions of the pair of occurrences can be
formulated as ψ =

{
{x′t−1, yt}, {(xt−1 \ x′t−1),∅}

}
(where x′t−1 ⊂ xt−1), such that

π(yt | xt−1)ψ = π(yt | x′t−1))× π(∅ | (xt−1 − x′t−1) = π(yt | x′t−1) = q(s′),

and, by Lemma A8,

αe(xt−1, yt) = min
ψ

(
log2

(
π(yt | xt−1)

π(yt | xt−1)ψ

))
= min

ψ

(
log2

(
q(s)
q(s′)

))
> 0.

So, xt−1 is irreducible, and its actual effect is {Y1 = 1}. Next, we consider occurrences such that
min(xt−1) = 1, cj1 = nj1 , and cj = 0 for j 6= j1 (i.e., xt−1 = x̄j1,t−1). All possible partitions of the pair of
occurrences can be formulated as ψ =

{
{x′t−1, yt}, {(xt−1 − x′t−1,∅}

}
(where x′t−1 ⊂ xt−1), such that

π(yt | xt−1)ψ = π(yt | x′t−1)× π(∅ | (xt−1 − x′t−1) = π(yt | x′t−1) = q(s′),

αe(xt−1, yt) ≤ log2

(
π(yt | xt−1)

π(yt | xt−1)ψ

)
= log2

(
q(s)
q(s′)

)
= log2

(
1

q(s′)

)
> 0,
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and xt−1 is, again, irreducible with actual effect {Yt = 1}.

Part 2a: The actual cause of {Yt = 0}. For an occurrence {Xt−1 = xt−1}, the cause repertoire of
yt is

π(xt−1 | yt) =
1− q(s)

2c −Q(c)
.

As Yt is a first-order occurrence, there is only one possible partition, and the causal strength of a
potential link is, thus,

αc(xt−1, yt) = log2

(
π(xt−1 | yt)

π(xt−1)

)
= log2

(
2c(1− q(s))

2c −Q(c)

)
= log2 (Q0 q(s)) ,

where Q0 = 2c

2c−Q(c) ∀ c (Lemma A7). If we, then, consider adding a single element to the occurrence
x′t−1 = {xt−1, x′i,j,t−1} (x′i,j,t−1 /∈ xt−1), then the difference in causal strength is

αc(xt−1, yt)− αc(x′t−1, yt) = log2

(
Q0(1− q(s))
Q0(1− q(s′))

)
= log2

(
1− q(s)
1− q(s′)

)
.

By Lemma A6, adding an element x = 1 to an occurrence cannot increase the causal strength and,
thus, occurrences that include elements in the state ‘ON’ cannot be the actual cause of yt. By Lemma A5,
adding an element x = 0 to an occurrence cannot decrease the causal strength. If cj > 0 ∀ j and
max(xt−1) = 0, then

αc(yt, xt−1) = log2 (Q0(1− q(s))) = log2 (Q0) ,

independent of the actual values of cj. As this holds for any set of cj that satisfies the conditions,
it must be the case that this value is αmax(yt). Furthermore, if there exists j such that cj = 0, then

αc(yt, xt−1) = log2 (Q0(1− q(s))) < log2 (Q0) .

Therefore, the maximum value of causal strength is

log2 (Q0) ,

and an occurrence xt−1 achieves this value (satisfying condition (1) of being an actual cause) if and
only if cj > 0 ∀ j and max(xt−1) = 0 (i.e. the occurrence contains elements from every conjunction,
and only elements whose state is ‘OFF’).

Consider an occurrence xt−1 that satisfies condition (1). If there exists j1 such that cj1 > 1, then we
can define a subset x′t−1 ⊂ xt−1 with c′j1 = 1 that also satisfies condition (1) and, thus, xt−1 does not
satisfy condition (2). Finally, if cj = 1 ∀ j then for any subset x′t−1 ⊂ xt−1 there exists j such that c′j = 0,
so x′t−1 does not satisfy condition (1) and, thus, xt−1 satisfies condition (2). Therefore, we have that the
actual cause of yt is an occurrence xt−1, such that max xt−1 = 0 and cj = 1 ∀ j,

x∗(yt) = {xt−1 ⊆ vt−1 | max(xt−1) = 0 and cj = 1 ∀ j}.

Part 2b: Actual effect of xt−1 when yt = 0. Again, consider occurrences Xt−1 = xt−1 with cj
elements from each of k conjunctions. The probability of yt in the effect repertoire of xt−1 is

π(yt | xt−1 = s) = 1− q(s).

As there is only one element in vt, the only question is whether or not xt−1 is reducible. If it is
reducible, it has no actual effect; otherwise, its actual effect must be yt. First, if there exists xi,j,t−1 ∈
xt−1 such that xi,j,t−1 = 1, then we can define x′t−1 such that xt−1 = {x′t−1, xi,j,t−1} and a partition
ψ =

{
{x′t−1, yt}, {xi,j,t−1,∅}

}
, such that
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π(yt | xt−1)ψ = π(yt | x′t−1)× π(∅ | xi, j, t− 1) = π(yt | x′t−1) = 1− q(s′).

By Lemma A5, we have 1− q(s) ≤ 1− q(s′) and, thus,

αe(xt−1, yt) ≤ log2

(
π(yt | xt−1)

π(yt | xt−1)ψ

)
= log2

(
1− q(s)
1− q(s′)

)
≤ 0,

and so xt−1 is reducible. Next, we consider the case where max(xt−1) = 0, but there exists j such
that cj > 1. We define x′t−1 with c′j = 1 ∀ j such that xt−1 = {x′t−1, xi,j,t−1}, and a partition ψ ={
{x′t−1, yt}, {xi,j,t−1,∅}

}
, such that

π(yt | xt−1)ψ = π(yt | x′t−1)× π(∅ | xi,j,t−1) = π(yt | x′t−1) = q(s′) = 1

and

αe(xt−1, yt) ≤ log2

(
π(yt | xt−1)

π(yt | xt−1)ψ

)
= log2

(
1− q(s)
1− q(s′)

)
= log2

(
1
1

)
= 0,

and so xt−1 is, again, reducible. Finally, we show that the occurrences xt−1 are irreducible if
max(xt−1) = 0 and all cj ≤ 1. All possible partitions of the pair of occurrences can be formulated as
ψ =

{
{x′t−1, yt}, {(xt−1 \ x′t−1),∅}

}
(where x′t−1 ⊂ xt−1), such that c′j ≤ cj ∀ j, and c′ < c. Then,

π(yt | xt−1)ψ = π(yt | x′t−1)× π(∅ | (xt−1 − x′t−1)) = π(yt | x′t−1) = 1− q(s′),

and, by Lemma A9,

αe(xt−1, yt) = min
ψ

(
log2

(
π(yt | xt−1)

π(yt | xt−1)ψ

))
= min

ψ

(
log2

(
1− q(s)
1− q(s′)

))
> 0.

Therefore, {Xt−1 = xt−1} is irreducible, and its actual effect is {Y1 = 1}.
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