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Abstract: Machine learning techniques have shown superior predictive power, among which Bayesian
network classifiers (BNCs) have remained of great interest due to its capacity to demonstrate complex
dependence relationships. Most traditional BNCs tend to build only one model to fit training
instances by analyzing independence between attributes using conditional mutual information.
However, for different class labels, the conditional dependence relationships may be different rather
than invariant when attributes take different values, which may result in classification bias. To
address this issue, we propose a novel framework, called discriminatory target learning, which
can be regarded as a tradeoff between probabilistic model learned from unlabeled instance at the
uncertain end and that learned from labeled training data at the certain end. The final model can
discriminately represent the dependence relationships hidden in unlabeled instance with respect to
different possible class labels. Taking k-dependence Bayesian classifier as an example, experimental
comparison on 42 publicly available datasets indicated that the final model achieved competitive
classification performance compared to state-of-the-art learners such as Random forest and averaged
one-dependence estimators.

Keywords: Bayesian network; discriminatory target learning; unlabeled instance

1. Introduction

With the rapid development of computer technologies, business and government organizations
create large amounts of data, which need to be processed and analyzed. Over the past decade,
to satisfy the urgent need of mining knowledge hidden in the data, numerous machine learning
models [1,2] (e.g., decision tree [3], Bayesian network [4,5], support vector machine [6] and Neural
network [7]) have been proposed.

To mine all “right” knowledge that exist in a database, researchers mainly proposed two kinds
of learning strategies to address this issue. (1) Increase structure complexity to represent more
dependence relationships, e.g., convolutional neural network [8] and k-dependence Bayesian classifier
(KDB) [9]. However, as structure complexity grows overfitting will inevitably appear, which will result
in redundant dependencies and performance degradation. Sometimes the overly complex structures
hide the internal working mechanism and make them criticized for being used as “black box”. (2) Build
ensemble of several individual members having relatively simple network structure, e.g., Random
forest [10] and averaged one-dependence estimators (AODE) [11]. Ensembles can generally perform
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better than any individual member. However, it is difficult or even impossible to give a clear semantic
explanation of the combined result since the working mechanisms of individual members may differ
greatly. In practice, people would rather use models with simple and easy-to-explain structures, e.g.,
decision tree [12] and Naive Bayes (NB) [13–15], although they may perform poorer.

Bayesian networks (BNs) have long been a popular medium for graphically representing the
probabilistic dependencies, which exist in a domain. Recently, work in Bayesian methods for
classification has grown enormously. Numerous Bayesian network classifiers (BNCs) [9,16–20] have
been proposed to mine the significant dependence relationships implicated in training data. With solid
theoretic support, they have strong potential to be effective for practical application in a number of
massive and complex data-intensive fields such as medicine [21], astronomy [22], biology [23], and
so on. A central concern for BNC is to learn conditional dependence relationships encoded in the
network structure. Some BNCs, e.g., KDB, use conditional mutual information I(Xi; Xj|Y) to measure
the conditional dependence relationships between Xi and Xj, which is defined as follows [24],

I(Xi; Xj|Y) = ∑
xi

∑
xj

∑
y

P(xi, xj, y)log
P(xi, xj|y)

P(xi|y)P(xj|y)

= ∑
xi

∑
xj

∑
y

I(xi; xj|y)
(1)

For example, I(Xi; Xj|Y) = 0 indicates that attributes Xi and Xj are conditionally independent.
However, in practice, for any specific event or data point, the situation will be much more complex.
Taking Waveform dataset as an example, attributes X15 and X16 are conditionally dependent, since
I(X15; X16|Y) > 0 always holds. Figure 1 shows the distributions of I(x15; x16|yi), where i ∈ {1, 2, 3}.
As can be seen, there exist some positive values of I(x15; x16|y1) and I(x15; x16|y2). However, for the
class label y3, the negative or zero values of I(x15; x16|y3) have a high proportion among all values.
That is, for different class labels, the conditional dependence relationships may be different rather than
invariant when attributes take different values. We argue that most BNCs (e.g., NB and KDB), which
build only one model to fit training instances, cannot capture this difference and cannot represent the
dependence relationships flexibly, especially hidden in unlabeled instances.
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Figure 1. The distributions of I(x15; x16|yi) on Waveform dataset, where i ∈ {1, 2, 3}. The x-axis
represents the index of each instance, the y-axis represents the value of I(x15; x16|yi).
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The scientific data can be massive, and labeled training data may account for only a small portion.
In this paper, we propose a novel learning framework, called discriminatory target learning, for
achieving better classification performance and high-level of dependence relationships while not
increasing structure complexity. KDB is taken as an example to illustrate the basic idea and prove
the feasibility of discriminatory target learning. By redefining mutual information and conditional
mutual information, we build a “precise” model kdbi for each unlabeled instance x with respect to
class label yi. The ensemble of kdbi, i.e., kdbe, can finely describe the dependency relationships hidden
in x. The final ensemble of kdbe and regular KDB can fully and discriminately describe the dependence
relationships in training data and unlabeled instance.

The rest of the paper is organized as follows: Section 2 introduces some state-of-the-art BNCs.
Section 3 introduces the basic idea of discriminatory target learning. Experimental study on 42 UCI
machine learning datasets is presented in Section 4, including a comparison with seven algorithms.
The final section draws conclusions and outlines some directions for further research.

2. Bayesian Network Classifiers

The structure of a BN on the random variables {X1, · · · , Xn} is a directed acyclic graph (DAG),
which represents each attribute in a given domain as a node in the graph and dependencies between
these attributes as arcs connecting the respective nodes. Thus, independencies are represented by
the lack of arcs connecting particular nodes. BNs are powerful tools for knowledge representation
and inference under conditions of uncertainty. BNs were considered as classifiers only after the
discovery of NB, a very simple kind of BN on the basis of conditional independence assumption. It
is surprisingly effective and efficient for inference [5]. The success of NB has led to the research of
Bayesian network classifiers (BNCs), including tree-augmented naive Bayes (TAN) [16], averaged
one-dependence estimators (AODE) [18] and k-dependence Bayesian classifier (KDB) [9,17].

Let each instance x be characterized with n values {x1, · · · , xn} for attributes {X1, · · · , Xn}, and
class label y ∈ {y1, · · · , ym} is the value of class variable Y. NB assumes that the predictive attributes
are conditional independent of each other given the class label, that is

P(x1, · · · , xn|y) =
n

∏
i=1

P(xi|y)

Correspondingly for any value pair of arbitrary two attributes Xi and Xj, P(xi, xj|y) =

P(xi|y)P(xj|y) always holds. From Equation (1) there will be I(Xi; Xj|Y) = 0 and this can explain why
there exist no arc between attributes for NB. However, in the real world, it will be much more complex
when considering different specific event or data point. We now formalize our notion of the spectrum
of point dependency relationship in Bayesian classification.

Definition 1. For unlabeled data point x = {x1, · · · , xn}, the conditional dependence between Xi and Xj (1 ≤
i, j ≤ n) with respect to label y on point x is measured by pointwise y-conditional mutual information, which is
defined as follows,

I(xi; xj|y) = P(xi, xj, y) log
P(xi, xj|y)

P(xi|y)P(xj|y)

= P(xi, xj, y) log
P(xi|xj, y)

P(xi|y)

(2)

Equation (2) is a modified version of pointwise conditional mutual information that is applicable
to labeled data point [25]. By comparing Equations (1) and (2), I(Xi; Xj|Y) is a summation of expected
values of I(xi; xj|y) given all possible values of Xi, Xj and Y. The traditional BNCs, e.g., TAN and
KDB, use I(Xi; Xj|Y) to roughly measure the conditional dependence between Xi and Xj. I(Xi; Xj|Y)
is non-negative, I(Xi; Xj|Y) > 0 iff Xi and Xj are conditionally dependent given Y. However, only
considering I(Xi; Xj|Y) = 0 as the criterion for identifying the conditional independent relationship
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is too strict for BN learning, which may lead to classification bias, since I(xi; xj|y) ≤ 0 may hold for
specific data point x. That may be the main reason why NB performs better in some research domains.
To address this issue, in this paper I(xi; xj|y) is applied to measure the extent to which Xi and Xj are
relatively conditionally dependent when P(xi|xj, y) > P(xi|y) or relatively conditionally independent
or irrelevant when P(xi|xj, y) < P(xi|y), respectively.

Definition 2. For unlabeled data point x = {x1, · · · , xn} with respect to label y, if I(xi; xj|y) > 0 (1 ≤ i, j ≤
n), then Xi and Xj are y-conditionally dependent on point x; if I(xi; xj|y) = 0, then they are y-conditionally
independent on point x; and if I(xi; xj|y) < 0, then they are y-conditionally irrelevant on point x.

TAN maintains the structure of NB and allows each attribute to have at most one parent. Then,
the number of arcs encoded in TAN is n− 1. During the constructing procedure of maximum weighted
spanning tree, TAN sorts the arcs between arbitrary attributes Xi and Xj by comparing I(Xi; Xj|Y),
and adds them in turn to the network structure if no cycle appears. KDB further relaxes NB’s
independence assumption and can represent arbitrary degree of dependence while capturing much
of the computational efficiency of NB. KDB first sorts attributes by comparing mutual information
I(Xi; Y), which is defined as follows [24],

I(Xi; Y) = ∑
xi

∑
y

P(xi, y)log
P(xi, y)

P(xi)P(y)
(3)

Suppose the attribute order is {X1, · · · , Xn}. By comparing I(Xi; Xj|Y), Xi select its parents, e.g.,
Xj, from attributes that ranks before it in the order. KDB requires that Xi must have min(i − 1, k)
parents and there will exist min(i− 1, k) arcs between Xi and its parents. The number of arcs encoded in
KDB is nk− k2

2 −
k
2 and will grow as k grows. Thus, KDB can represent more dependency relationships

than TAN. For TAN or KDB, they do not evaluate the extent to which the conditional dependencies
are weak enough and should be neglected. They simply specify the maximum number of parents
that attribute Xi can have before structure learning. Some arcs corresponding to weak conditional
dependencies will inevitably be added to the network structure. The prior and joint probabilities in
Equations (1) and (3) will be estimated from training data as follows:

P(y) = 1
N Count(Y = y)

P(xj) =
1
N Count(Xj = xj)

P(xj, y) = 1
N Count(Xj = xj, Y = y)

P(xi, xj, y) = 1
N Count(Xi = xi, Xj = xj, Y = y)

(4)

where N is the number of training instances. Then, P(xj|y) and P(xi, xj|y) in Equations (1) and (3) can
be computed as follows: 

P(xj|y) =
P(xj, y)

P(y)

P(xi, xj|y) =
P(xi, xj, y)

P(y)

(5)

Sahami [9] suggested that, if k is large enough to capture all “right” conditional dependencies that
exist in a database, then a classifier would be expected to achieve optimal Bayesian accuracy. However,
as k grows, KDB will encode more weak dependency relationships, which correspond to smaller value
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of I(Xi; Xj|Y). That increases the risk of occurrence of negative values of I(xi; xj|y) and may introduce
redundant dependencies, which will mitigate the positive effect from significant dependencies that
correspond to positive values of I(xi; xj|y). On the other hand, conditional mutual information
I(Xi; Xj|Y) cannot finely measure the conditional dependencies hidden in different data points. The
arc Xi → Xj in BNC learned from training data corresponds to positive value of I(Xi; Xj|Y) and
represents strong conditional dependence between Xi and Xj. However, for specific labeled instance
d = {x1, · · · , xn, y1}, I(xi; xj|y1) ≤ 0 may hold. Then, Xi and Xj are y1-conditionally independent or
irrelevant on point d and the arc Xi → Xj should be removed. For unlabeled instance, the possible
dependency relationships between nodes may differ greatly with respect to different class labels.

Thus, BNCs with highly complex network structure do not necessarily beat those with simple
ones. The conditional dependencies hold for training data in general do not necessarily hold for each
instance. BNCs should discriminate between conditionally dependent and irrelevant relationship
for different data points. Besides, BNC should represent all possible spectrums of point dependency
relationship that correspond to different class labels for dependence analysis.

3. Discriminatory Target Learning

In probabilistic classification, Bayes optimal classification suggests that, if we can determine the
conditional probability distribution P(y|x) with true distribution available, where y is one of the m
class labels and x is the n-dimensional data point x = {x1, x2, · · · , xn} that represents an observed
instance, then we could achieve the theoretically optimal classification. P(y|x) can be described in an
unrestricted Bayesian network, as shown in Figure 2a. By applying arc reversal, Shachter [26] proposed
to produce the equivalent dependence structure, as shown in Figure 2b. The problem is reduced to
estimating the conditional probability P(x|y). Figure 2a,b represents two inference processes that run
in the opposite directions. Figure 2a indicates the causality that runs from the state of {X1, · · · , Xn}
(the cause) to the state of Y (the effect). In contrast, if the causality runs in the opposite direction as
shown in Figure 2b and the state of Y (the effect) is uncertain, the dependencies between predictive
attributes (the causes) should be tuned to match with different states of Y. That is, the restricted BNC
shown in Figure 2b presupposes the class label first and then the conditional dependencies between
attributes can verify the presupposition.

......

......

X X X
1 2 3

X1 X2 X3

Xn-1

XnXn-1

Xn

Y

Y

(a) (b)

Figure 2. Example of (a) unrestricted BNC, and (b) restricted BNC.

For different class labels or presuppositions, the conditional dependencies should be different. It
is not reasonable that, no matter what the effect (class label) is, the relationships between causes
(predictive attributes) remain the same. Consider an unlabeled instance x = {x1, · · · , xn}; if
I(xi; xj|y) > 0, then the conditional dependence between Xi and Xj on data point x with respect
to class label y is reasonable, otherwise it should be neglected. Since the class label for x is uncertain
and there are m labels available, we take x as the target and learn an ensemble of m micro BNCs, i.e.,
bnce = {bnc1, · · · , bncm}, each of them fully describes the conditional dependencies between attribute
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values in x with respect to different class labels. The linear combiner is used for models that output
real-valued numbers, thus is applicable for bnce. The ensemble probability estimate for bnce is,

P̂(yi|x, bnce) =
P(yi, x|bnci)

∑m
i=1 P(yi, x|bnci)

. (6)

bnce may overfit the unlabeled instance and underfit training data. In contrast, regular BNC learned
from training data may underfit the unlabeled instance. Thus, they are complementary in nature. After
training bnce and regular BNC, the final ensemble that estimates the class membership probabilities
by averaging both predictions will be generated. The framework of discriminatory target learning is
shown in Figure 3.

Figure 3. The framework of discriminatory target learning.

Because in practice it is hardly possible to find the true distribution of P(x|y) from data,
KDB approximates the estimation of P(x|y) by allowing for the modeling of arbitrarily complex
dependencies between attributes. The pseudocode of KDB is shown in Algorithm 1.

Algorithm 1 Structure learning of KDB.
Input: Training set T , parameter k, vector I(Xi; Y)(1 ≤ i ≤ n) and crosstab

I(Xi, Xj|Y)(1 ≤ i 6= j ≤ n).
Output: KDB, network structure.
Let X be a list of all Xi in descending order of I(Xi; Y).
V = {Y}; E = ∅;
for i = 1→ n do
V = V ∪ X [i];
E = E ∪ (Y → X [i]);

end
for i = 1→ n do

k̂ = k;
while (k̂ > 0) do

m = arg maxj{I(X [i];X [j]|Y)} (1≤j<i);
E = E ∪ (X [j]→ X [i]);
k̂ = k̂− 1;

end
end
return KDB
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From the definition of I(Xi; Y) in Equation (3), we can have

I(Xi; Y) = ∑
y

∑
xi

P(xi, y)log
P(xi, y)

P(xi)P(y)

= ∑
y

∑
xi

P(xi, y)log
P(y|xi)

P(y)

(7)

Definition 3. For unlabeled data point x = {x1, · · · , xn}, the dependence between xi (1 ≤ i ≤ n) and any
given label y is measured by pointwise y-mutual information, which is defined as follows,

I(xi; y) = P(xi, y)log
P(xi, y)

P(xi)P(y)
= P(xi, y)log

P(y|xi)

P(y)
. (8)

Equation (8) is a modified version of pointwise mutual information that is applicable to labeled
data point [25]. The prior and joint probabilities in Equations (2) and (8) will be estimated as follows

P̂(y) = 1
N + 1 [Count(Y = y) + 1

m ]

P̂(xj) =
1

N + 1 [Count(Xj = xj) +
1
m ]

P̂(xj, y) = 1
N + 1 [Count(Xj = xj, Y = y) + 1

m ]

P̂(xi, xj, y) = 1
N + 1 [Count(Xi = xi, Xj = xj, Y = y) + 1

m ]

(9)

Conditional probabilities in Equations (2) and (8) can be estimated by:

P̂(xj|y) =
P̂(xj, y)

P̂(y)

P̂(xi, xj|y) =
P̂(xi, xj, y)

P̂(y)

P̂(y|xi) =
P̂(xi, y)
P̂(xi)

(10)

Similar to the Laplace correction [27], the main idea behind Equation (9) is equivalent to creating
a “pseudo” training set P by adding to the training data a new instance {x1, · · · , xn} with multi-label
by assuming that the probability that this new instance is in class y is 1/m for each y ∈ {y1, · · · , ym}.

Definition 4. For unlabeled data point x = {x1, · · · , xn} with respect to label y, if I(xi; y) > 0 (1 ≤ i ≤ n),
then Xi is y-dependent on point x; if I(xi; y) = 0, then Xi is y-independent on point x; and if I(xi; y) < 0, then
Xi is y-irrelevant on point x.

KDB uses I(Xi; Y) to sort the attributes and I(Xi; Xj|Y) to measure the conditional dependence.
Similarly, for unlabeled instance x = {x1, · · · , xn}, the corresponding micro KDB with respect to class
label yt, called kdbt, uses I(xi; yt) (see Equation (8)) to sort the attribute values and I(xi; xj|yt) (see
Equation (2)) to measure the conditional dependence. The learning procedure of kdbt is shown in
Algorithm 2.
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Algorithm 2 Structure learning of kdbt with respect to class label yt.
Input: Unlabeled instance t, parameter k, class label yt, vector I(xi; yt)(1 ≤ i ≤ n) and

crosstab I(xi, xj|yt)(1 ≤ i 6= j ≤ n).
Output: kdbt, network structure.
Let X be a list of all xi in descending order of I(xi; yt).
V = {Y}; E = ∅;
for i = 1→ n do
V = V ∪ X [i];
E = E ∪ (Y → X [i]);

end
for i = 1→ n do

k̂ = k;
while (k̂ > 0) do

m = arg maxj{I(X [i];X [j]|yt)} (1≤j<i);
if (m > 0) then
E = E ∪ (X [j]→ X [i]);
k̂ = k̂− 1;

end
end

end
return kdbt

Breiman [28] revealed that ensemble learning brings improvement in accuracy only to those
“unstable” learning algorithms, in the sense that small variations in the training set would lead them to
produce very different models. bnce is obviously an example of such learners. For individual members
of kdbe, the difference in network structure is the result of change of I(xi; y) or I(xi; xj|y) (1 ≤ i 6= j ≤
n), or, more precisely, the conditional probability defined in Equations (2) and (8). Given unlabeled
instance x = {x1, · · · , xn} and binary class labels y1 and y2, if I(xi; y1) > 0, i.e., P(y1|xi) > P(y1), then
Xi is y1-dependent on x. Because P(y2) = 1− P(y1) and P(y2|xi) = 1− P(y1|xi), we have

P(y1|xi) > P(y1)⇒ 1− P(y1|xi) < 1− P(y1)

⇒ P(y2|xi) < P(y2)
(11)

and

I(xi; y2) = P(xi, y2)log
P(y2|xi)

P(y2)
< 0 (12)

Thus, Xi is y2-irrelevant on x. Xi plays totally different roles in the relationships with different
class labels on the same instance. Supposing that before small variations in the training set I(xi; y1) > 0
and after that I(xi; y1) < 0, the attribute values will be resorted and correspondingly the network
structures of kdb1 and kdb2 for x will change greatly. The sensitivity to the variation makes kdbe finely
describe the dependencies hidden in x. Figure 4 shows examples of kdb1 and kdb2 corresponding
to class labels y1 and y2, respectively. If the decision of the final ensemble is y1, then we will use
Figure 4a for dependence analysis. Otherwise, we will use Figure 4b instead. The attribute values
annotated in black correspond to positive values of I(xi; yt)(t = 1 or 2) and they should be focused on.

KDB requires training time complexity of O(n2Nmv2) (dominated by the calculations of
I(Xi; Xj|Y)) and classification time complexity of O(n2Nm) [9] for classifying a single unlabeled
instance, where n is the number of attributes, N is the number of data instances, m is the number of
class labels, and v is the maximum number of discrete values that an attribute may take. Discriminatory
target learning requires no additional training time, thus the training time complexity of final ensemble
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is the same as that of regular KDB. At classification time it requires O(n2Nm) to calculate I(xi; xj|y),
and the same time complexity for classifying a single unlabeled instance.

............
x1 x3

y

xxxxx
x

xx 1 2 3
n

2 n-1 n-1 n

y

(a) (b)

1 2

Figure 4. Example of (a) kdb1, and (b) kdb2.

4. Experiments and Results

We compared the performance of our proposed methods kdbe and KDBe with several
state-of-the-art classifiers. We analyzed the performance in terms of zero-one loss, root mean square
error (RMSE), bias and variance on 42 natural domains from the UCI Machine Learning Repository [29].
These datasets are described in Table 1, in ascending order of number of instances. The structure of
this section is as follows: we discuss our experimental methodology and evaluation function in details
in Section 4.1. Section 4.2 includes comparisons with three classic single-structure BNCs, namely
NB, TAN and KDB, as well as one ensemble BNC: AODE. Then, in Section 4.3, KDBe is compared
with Random Forest with 100 decision trees. Section 4.4 presents a global comparison of all learners
considered by applying the Friedman and Nemenyi tests.

Table 1. Datasets. Imbalanced datasets are annotated with the symbol “*”.

Index Dataset Instance Attribute Class Index Dataset Instance Attribute Class
1 Contact-lenses 24 4 3 22 Kr-vs-kp 3196 36 2
2 Labor 57 16 2 23 Dis * 3772 29 2
3 Echocardiogram 131 6 2 24 Hypo 3772 29 4
4 Lymphography 148 18 4 25 Sick * 3772 29 2
5 Sonar 208 60 2 26 Abalone * 4177 8 3
6 Glass-id 214 9 3 27 Waveform-5000 5000 40 3
7 New-thyroid * 215 5 3 28 Phoneme 5438 7 50
8 Heart-disease-c 303 13 2 29 Wall-following 5456 24 4
9 Soybean-large 307 35 19 30 Page-blocks 5473 10 5
10 Ionosphere * 351 34 2 31 Satellite * 6435 36 6
11 Dermatology 366 34 6 32 Thyroid 9169 29 20
12 House-votes-84 * 435 16 2 33 Pendigits 10,992 16 10
13 Chess * 551 39 2 34 Sign 12,546 8 3
14 Soybean * 683 35 19 35 Nursery 12,960 8 5
15 Breast-cancer-w 699 9 2 36 Magic 19,020 10 2
16 Tic-tac-toe 958 9 2 37 Letter-recog 20,000 16 26
17 Vowel 990 13 11 38 Adult * 48,842 14 2
18 Car * 1728 6 4 39 Shuttle * 58,000 9 7
19 Mfeat-mor 2000 6 10 40 Connect-4 67,557 42 3
20 Segment 2310 19 7 41 Waveform * 100,000 21 3
21 Hypothyroid * 3163 25 2 42 Localization 164,860 5 11

4.1. Experimental Methodology and Evaluation Function

The experiments for all BNCs used C++ software (NetBeans 8.0.2) specially designed to deal
with classification problems. Each algorithm was tested on each dataset using 10-fold cross validation.
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All experiments were conducted on a desktop computer with an Intel(R) Core(TM) i3-6100 CPU @
3.70 GHz, 64 bits and 4096 MB of memory(Dell Vostro 2667, Changchun, China).

• Win/Draw/Lose (W/D/L) Record: When two algorithms were compared, we counted the
number of datasets for which one algorithm performed better, equally well or worse than the
other on a given measure. We considered there exists a significant difference if the output of a
one-tailed binomial sign test was less than 0.05.

• Missing Values: Missing values for qualitative attributes were replaced with modes, and those for
quantitative attributes were replaced with means from the training data.

• Numeric Attributes: For each dataset, we used MDL (Minimum Description Length)
discretization [30] to discretize numeric attributes.

• Dataset Sizes: Datasets were categorized in terms of their sizes. That is, datasets with instances
<1000, ≥1000 and <10,000, ≥10,000 were denoted as small size, medium size and large size,
respectively. We report results on these sets to discuss suitability of a classifier for datasets of
different sizes.

• Zero-one loss: Zero-one loss can be used to measure the extent to which a learner correctly
identifies the class label of an unlabeled instance. Supposing y and ŷ are the true class label
and that generated by a learning algorithm, respectively, given M unlabeled test instances, the
zero-one loss function is defined as

ξ(y, ŷ) =
∑M

i=1 1− $(yi, ŷi)

M
,

where $(yi, ŷi) = 1 if yi = ŷi and 0 otherwise.
• Bias and variance: The bias-variance decomposition proposed by Kohavi and Wolpert [31]

provides valuable insights into the components of the zero-one loss of learned classifiers. Bias
measures how closely the classifier can describe the decision boundary, which is defined as

bias =
1
2 ∑

ŷ,yεY
[P(ŷ|x)− P(y|x)]2,

where x is the combination of any attribute value. Variance measures the sensitivity of the
classifier to variations in the training data, which is defined as

variance =
1
2
[1−∑

ŷεY
P(ŷ|x)2].

• RMSE: For each instance, RMSE accumulates the squared error, where the error is the difference
between 1.0 and the probability estimated by the classifier for the true class for the instance, and
then computes the squared root of the mean of the sum, which is defined as

RMSE =

√
1
s

s

∑
i=1

(1− P(ŷ|x))2,

where s is the sum of training instances.

4.2. KDBe Versus Classic BNCs

We compared KDBe with several classic BNCs, namely NB, TAN, KDB and AODE. Sahami [9]
proposed the notion of k-dependence BNC, which allows each attribute Xi to have a maximum of k
attributes as parents. NB and TAN are, respectively, 0-dependence and 1-dependence BNCs. To clarify
the effect of dependence complexity, we set k = 2 for both KDB and KDBe.
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4.2.1. Zero-One Loss and RMSE Results

The detailed results in terms of zero-one loss and RMSE are shown in Tables A1 and A2 in
Appendix A, respectively. Tables 2 and 3 show W/D/L records summarizing the relative zero-one
loss and RMSE of different BNCs. When k = 2, NB, TAN and KDB can, respectively, represent 0,
n− 1 and 2n− 3 conditional dependencies, where n is the number of predictive attributes. As shown
in Table 1, since n > 3 holds for all datasets, 2n− 3 > n− 1 also holds. Thus, KDB can represent
the largest number of dependencies among all. With respect to zero-one loss, NB represents no
conditional dependencies due to its independence assumption and performed the worst in general. As
the dependence degree or structure complexity increased, KDB was competitive compared to NB and
TAN. AODE performed better than the other single-structure BNCs due to its ensemble mechanism.
Surprisingly, kdbe had significantly better zero-one loss performance than NB, TAN and KDB. When
discriminatory target learning was introduced for discovery of dependencies that exist in different
unlabeled instances, the final ensemble KDBe could possess significant advantage over other classifiers.
For example, KDBe beat KDB in 26 domains and lost only in three in terms of zero-one loss. RMSE-wise,
KDBe still performed the best. For instance, KDBe enjoyed a significant advantage over TAN (20/19/3).
When compared to KDB, KDBe also achieved superior performance, with 17 wins and 5 losses.

Table 2. W/D/L comparison results of zero-one loss on all datasets.

NB TAN KDB AODE kdbe

TAN 29/7/6 - - - -
KDB 30/5/7 20/9/13 - - -
AODE 33/5/4 16/14/12 20/6/16 - -
kdbe 30/5/7 17/18/7 20/11/11 13/15/14 -
KDBe 34/3/5 23/13/6 26/13/3 22/10/10 14/20/8

Table 3. W/D/L comparison results of RMSE on all datasets.

NB TAN KDB AODE kdbe

TAN 32/4/6 - - - -
KDB 32/4/6 16/19/7 - - -
AODE 29/9/4 16/19/7 15/15/12 - -
kdbe 30/5/7 9/21/12 11/17/14 7/19/16 -
KDBe 34/3/5 20/19/3 17/20/5 17/17/8 21/21/0

To make the experimental results more intuitive, from the viewpoints of the ensemble mechanism
and structure complexity, Figure 5a,c shows the comparisons of KDBe, KDB and AODE in terms of
zero-one loss, whereas Figure 5b,d shows the comparisons for RMSE. The red squared symbols are used
to indicate significant advantages of KDBe over the other BNCs. In Figure 5a,b, only two points are far
above the diagonal line, thus the negative effect caused by discriminatory target learning was negligible.
In contrast, many more points are below the diagonal line, which means that discriminatory target
learning worked effectively in most cases. A notable case is Waveform dataset, where discriminatory
target learning helped to substantially reduce classification error, such as the reduction from 0.0256 to
0.0193 for zero-one loss and from 0.1145 to 0.0901 for RMSE. When comparing KDBe with AODE, it
can be seen in Figure 5c,d that there are still many points below the diagonal line, which means that
KDBe enjoyed a significant advantage over AODE. For example, a notable case is our largest dataset
Localization, where the zero-one loss of KDBe (0.2743) was much lower than that of AODE (0.3596).
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(a) (b)

(c) (d)

Figure 5. Scatter plot of zero-one loss and RMSE comparisons for KDBe, KDB and AODE.

4.2.2. Bias and Variance Results

The detailed results in terms of bias and variance are shown in Tables A3 and A4 in Appendix A,
respectively. The W/D/L records with respect to bias and variance results are shown in Tables 4 and 5,
respectively. We can observe in Table 4 that ensemble classifiers, i.e., AODE and kdbe, performed
better than TAN but worse than KDB, although these results were not always statistically significant.
NB still performed the worst. High-dependence structure or ensemble construction strategy could
help reduce the bias. Jointly applying both helped KDBe reduce bias significantly. For example, KDBe

performed better than TAN (26/9/7) and KDB (11/27/4).
In terms of variance, since the network structures of NB and AODE are definite and irrelevant to

the variation of the training data, the independence assumption helped reduce the variance significantly.
KDB was the most sensitive to the variation in training data among all classifiers. As discussed in
Section 3, discriminatory target learning made kdbe underfit training data and overfit the unlabeled
instance. When kdbe was integrated with regular KDB, discriminatory target learning helped to reduce
the variance and the final ensemble classifier, i.e., KDBe, performed the best only after NB and AODE.
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Table 4. W/D/L comparison results of bias on all datasets.

NB TAN KDB AODE kdbe

TAN 30/5/7 - - - -
KDB 30/5/7 25/9/8 - - -
AODE 32/7/3 18/14/10 15/4/23 - -
kdbe 31/3/8 20/10/12 15/8/19 16/11/15 -
KDBe 32/3/7 26/9/7 11/27/4 21/13/8 17/18/7

Table 5. W/D/L comparison results of variance on all datasets.

NB TAN KDB AODE kdbe

TAN 4/3/35 - - - -
KDB 8/1/33 9/7/26 - - -
AODE 9/8/25 30/8/4 34/3/5 - -
kdbe 7/1/34 19/13/10 30/4/8 6/10/26 -
KDBe 8/2/32 16/12/14 34/8/0 7/4/31 12/9/21

4.2.3. Time Comparison

We compared KDBe with the other classic BNCs in terms of training and classification time.
Since kdbe is a part of KDBe, we removed it in this experiment. Figure 6a,b shows the training and
classification time comparisons for all BNCs. Each bar represents the sum of time on 42 datasets in a
10-fold cross-validation experiment. No parallelization techniques were used in any case. As discussed
in Section 3, discriminatory target learning requires no additional training time, thus the training time
complexity of KDBe was the same as that of regular KDB. Due to the structure complexity, KDBe and
KDB required a bit more time for training than the other BNCs. With respect to classification time,
KDBe took a little more time than the other BNCs. The reason lies in that KDBe learned kdbe for each
unlabeled test instance, while the other BNCs only needed to directly calculate the joint probabilities. In
general, discriminatory target learning helped to significantly improve the classification performance
of its base classifier at the cost of a small increase in time consumption, which is perfectly acceptable.

(a) Training times (b) Classification times

Figure 6. Training and classification time comparisons for BNCs.

4.3. KDBe Versus Random Forest

To further illustrate the performance of our proposed discriminatory target learning framework,
we compared KDBe with a powerful learner, i.e., Random forest.Random forest (RF) is a combination
of decision tree predictors, where each tree is trained on data selected at random but with replacement
from the original data [10]. As the number of trees in the forest becomes large, the classification
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error for forests tends to converge to a limit. RF is an effective tool in prediction. RF can
process high-dimensional data (that is, data with a lot of features) without making feature selection.
Furthermore, due to the random mechanism, RF has the capacity to deal with imbalanced datasets or
data with numerous missing values. Moreover, the framework in terms of strength of the individual
predictors and their correlations gives insight into the ability of the RF to predict [10]. Because
of its high classification accuracy, RF has been applied to many scientific fields, e.g., ecology and
agriculture [32]. In our experiment, RF with 100 decision trees was used. The detailed results of RF
in terms of zero-one loss, RMSE, bias and variance can be found in Tables A1–A4 in Appendix A,
respectively. Table 6 shows the W/D/L records with different dataset sizes. When zero-one loss was
compared, KDBe won more frequently than RF, especially on small and medium datasets. The results
indicate 10/4/3 on small datasets and 7/4/4 on medium datasets. The reason may lie in that 100
decision trees are complex and tend to overfit the training data. RMSE-wise, KDBe also performed
better than RF, which is shown as 16 wins and 11 losses. Bias and variance comparison of KDBe and
RF (Table 6) suggested that KDBe is a low variance and high bias classifier. One can expect it to work
extremely well on small and medium datasets. This is evident in Table 6 showing the zero-one loss
and RMSE comparisons. KDBe beat RF on 26 datasets and lost on 12 datasets with respect to variance.
Thus, the advantages of KDBe over RF in terms of zero-one loss and RMSE could be attributed to
the change in variance. Since the variance term increased as the algorithm became more sensitive to
the change in labeled training data, obviously, discriminatory target learning helped to alleviate the
negative effect caused by overfitting.

Table 6. W/D/L records between KDBe and RF.

All Small Medium Large

Zero-one loss 20/10/12 10/4/3 7/4/4 3/2/5
RMSE 16/15/11 4/9/4 8/4/3 4/2/4
Bias 11/11/20 5/1/11 5/5/5 1/5/4
Variance 26/4/12 11/3/3 7/1/7 8/0/2

Besides, we display the time comparisons between KDBe and RF in Figure 7. It is obvious that
KDBe enjoyed a great advantage over RF in terms of training time on datasets of all sizes. This
advantage could be attributed to that KDBe only learned a regular KDB for every dataset during the
training phase while RF needed to train 100 decision trees. When comparing classification time, the
performance of KDBe and RF showed a slight reversal. Learning kdbe for each unlabeled test instance
made KDBe take a bit more time than RF. However, when comparing on small and medium datasets,
the advantage of RF over KDBe was not significant. To conclude, on small and medium datasets, KDBe

had a significantly better zero-one loss performance and better RMSE than RF. This was packaged with
KDBe’s far superior training times and competitive classification times over RF, which makes KDBe an
excellent alternative to RF, especially for dealing with small and medium datasets.
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(a) Training times (b) Classification times

Figure 7. Training and classification time comparisons between KDBe and RF.

4.3.1. Discussion

RF has been applied to several scientific fields and associated research areas [32], because of
its high classification accuracy. However, RF is more negatively affected in terms of computation
consumption (memory and time) by dataset sizes than BNCs [19]. Furthermore, due to the random
mechanism, RF is sometimes criticized for difficulty giving a clear semantic explanation of the
combined result that is outputted by numerous decision trees. In contrast, our proposed discriminatory
target learning framework considers not only the dependence relationships that exist in the training
data, but also that hidden in unlabeled test instances, which makes the final model highly interpretable.
KDBe outperformed RF in terms of zero-one loss, RMSE and variance, especially on small and medium
size datasets, while RF beat KDBe in terms of bias. Moreover, RF required substantially more time for
training and KDBe took a bit more time for classifying.

To illustrate the better interpretability of KDBe than that of RF, we took medical diagnostic
application as an example. The Heart-disease-c dataset (http://archive.ics.uci.edu/ml/datasets/
Heart+Disease) from UCI Machine Learning Repository was collected from Cleveland Clinic
Foundation, containing 13 attributes and two class labels. The detailed description of this dataset
is shown in Table 7. The zero-one loss results of KDB, RF and KDBe are 0.2244, 0.2212 and 0.2079,
respectively. KDB learned from training data can describe the general conditional dependencies, while
for a certain instance some of dependence relationships may hold instead of all the dependencies
shown in KDB. In contrast, kdbe can encode the most possible local conditional dependencies hidden in
one single test instance. We argue that an ideal phenomenon is that KDB and kdbe are complementary
to each other for classification and they may focus on different key points. To prove this, randomly
taking an instance from Heart-disease-c dataset as an example, the detail of this instance is shown
as, T = {x0 = 57, x1 = 1, x2 = 3, x3 = 150, x4 = 168, x5 = 0, x6 = 0, x7 = 174, x8 = 0, x9 =

1.6, x10 = 3, x11 = 0, x12 = 3}. Figures 8 and 9 show the structural difference between KDB and
the submodels of kdbe. For KDB, by comparing mutual information I(X; Y), {X6, X1, X12} are the
first three key attributes for this dataset. There are 23 arcs in the structure of KDB which represent
the conditional dependencies between predictive attributes. However, the values of I(X8; X1|Y),
I(X8; X6|Y), I(X9; X1|Y) and I(X9; X6|Y) are all 0. For the instance T , in Figure 9, we can easily
find that the structure of kdbe differed greatly from that of KDB. The true class label for T is y1.
KDB misclassified T , while KDBe correctly classified the instance. Thus, we can use Figure 9a for
dependence analysis. By comparing the pointwise y1-mutual information, {x12, x11, x7} are the first
three key attribute values for T . It is worth mentioning that X1 ranked second in KDB, whereas
x1 ranked last in kdby1 . Furthermore, there were only 15 arcs in kdby1 , which means that some
redundant dependencies were eliminated. In general, KDBe could utilize the knowledge learned from

http://archive.ics.uci.edu/ml/datasets/Heart+Disease
http://archive.ics.uci.edu/ml/datasets/Heart+Disease
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the training data and unlabeled test instances by building different models, which is obviously suitable
for precision medical diagnosis.

Table 7. Description of Heart-disease-c dataset.

Attribute Description Symbol

age real value X0
sex male or female, {0,1} X1
cp chest pain type (angina, abnang, notang, asympt), {1,2,3,4} X2
trestbps resting blood pressure, real value X3
chol cholesterol, real value X4
fbs fasting blood sugar < 120 (true or false), {0,1} X5
restecg resting electrocardiographic results (norm, abn, hyper), {0,1,2} X6
thalach maximum heart rate achieved, real value X7
exang exercise induced angina (true or false), {0,1} X8
oldpeak ST depression induced by exercise relative to rest , real value X9
slope the slope of the peak exercise ST segment (up, flat, down), {1,2,3} X10
ca number of vessels colored, real value X11
thal thal (norm, fixed, rever), {3,6,7} X12
class 0 for health, 1 for sick Y

Figure 8. The structure of KDB on Heart-disease-c dataset.

(a) For class label y1 (b) For class label y2

Figure 9. The structure of submodels of kdbe.

4.3.2. Imbalanced Datasets

There are 15 imbalanced datasets in our experiments, which are annotated with the symbol “*” in
Table 1. To prove that KDBe has the capacity to deal with imbalanced datasets, we conducted a set of
experiments to compare the performance of KDBe with RF in terms of extended Matthews correlation
coefficient (MCC). The MCC provides a balanced measure for skewed datasets by taking into account
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the class distribution [33]. The classification results can be shown in the form of a confusion matrix
as follows: N11 · · · N1m

...
. . .

...
Nm1 · · · Nmm

 (13)

Each entry Nii of the matrix gives the number of instances, whose true class was Yi that were
actually assigned to Yi, where 1 ≤ i ≤ m. Each entry Nij of the matrix gives the number of instances,
whose true class was Yi that were actually assigned to Yj, where i 6= j and 1 ≤ i, j ≤ m. Given the
confusion matrix, the extended MCC can be calculated as follow,

MCC =
∑mij Nii Njm − NijNmi√

∑i(∑j Nij)(∑j′ ,i′ 6=i Ni′ j′)
√

∑i(∑j Nji)(∑j′ ,i′ 6=i Nj′i′)
(14)

Note that the MCC reaches its best value at 1, which represents a perfect prediction, and worst
value at −1, which indicates a total disagreement between the predicted and observed classifications.
Figure 10 shows the scatter plot of KDBe and RF in terms of MCC. We can see that many points fall
close to the diagonal line, which means that KDBe achieved competitive results compared with RF.
Furthermore, there are three points far above the diagonal line, which means KDBe enjoys significant
advantages on these datasets. A notable case is Dis dataset annotated with red color, where the MCC
of KDBe (0.4714) was much higher than that of RF (0.3710). In general, KDBe had the capacity to handle
the imbalanced datasets.

Figure 10. The scatter plot of KDBe and RF in terms of MCC. Dis dataset is annotated with red color,
which is a notable case where KDBe enjoys significant advantages.

4.4. Global Comparison of All Classifiers

In this section, to assess whether the overall differences in performance of these learners was
statistically significant, we employed the Friedman test [34] and the post-hoc Nemenyi test, as
recommended by Demšar [35]. The Friedman test is a non-parametric test for multiple hypotheses
testing. It ranks the algorithms for each dataset separately: the best performing algorithm getting
the rank of 1, the second best ranking 2, and so on. In case of ties, average ranks are assigned. The
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null-hypothesis is that all of the algorithms perform almost equivalently and there is no significant
difference in terms of average ranks. The Friedman statistic can be computed as follows:

χ2
F =

12
Nt(t + 1)

t

∑
j=1

R2
j − 3N(t + 1), (15)

where Rj = ∑i rj
i and rj

i is the rank of the jth of t algorithms on the ith of N datasets. The Friedman
statistic is distributed according to χ2

F with t− 1 degrees of freedom. Thus, for any pre-determined
level of significance α, the null hypothesis will be rejected if χ2

F > χ2
α. The critical value of χ2

α for
α = 0.05 with six degrees of freedom is 12.592. The Friedman statistics of zero-one loss and RMSE
were 53.65 and 60.49, which were both larger than 12.592. Hence, the null-hypotheses was rejected.
According to the detailed results of rank shown in Tables A5 and A6 in Appendix A, Figure 11 plots the
average ranks across all datasets, along with the standard deviation for each learner. When assessing
the calibration of the probability estimates using zero-one loss, KDBe obtained the lowest average rank
of 2.5952, followed by kdbe with 3.5595 and RF with 3.7024 (very close to those for AODE). When
assessing performance using RMSE, KDBe still performed the best, followed by RF with 3.4285 and
AODE with 3.7500. We found NB at the other extreme on both measures, with average ranks 5.8690
and 5.9523 out of a total of seven learners.

(a) Zero-one loss

(b) RMSE

Figure 11. Average ranks in terms of zero-one loss and RMSE for all learners.
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Since we rejected the null-hypotheses, Nemenyi test was used to further analyze which pairs of
algorithms were significantly different in terms of average ranks of the Friedman test. The performance
of two classifiers is significantly different if their corresponding average ranks of the Friedman test
differ by at least the critical difference (CD):

CD = qα

√
t(t + 1)

6N
, (16)

where the critical value qα for α = 0.05 and t = 7 is 2.949. Given seven algorithms and 42 datasets, we
used Equation (16) to calculate CD and the result is 1.3902. The learners in Figure 12 are plotted on the
red line on the basis of their average ranks, corresponding to the nodes on the top black line. If two
algorithms had no significant difference, they were connected by a line. As shown in Figure 12a, we
easily found that KDBe had a significantly lower average zero-one loss rank than NB, TAN and KDB.
KDBe also achieved lower average zero-one loss rank than kdbe, RF and AODE, but not significantly
so. When RMSE was considered, KDBe still performed the best and the rank of KDBe was significantly
lower than that of KDB, providing solid evidence for the effectiveness of our proposed discriminatory
target learning framework.

KDB
e

kdb
e

RF

AODE

NB

TAN

KDB

1 2 3 4 5 6 7

CD

(a) Zero-one loss

RF

AODE

KDB

NB

TAN

1 2 3 4 5 6 7

CD

KDB
e

kdb
e

(b) RMSE

Figure 12. Nemenyi test in terms of zero-one loss and RMSE for all learners.

5. Conclusions

Lack of explanatory insight into the relative influence of the random variables greatly restricts the
application domain of machine learning techniques. By redefining mutual information and conditional
information, the framework of discriminatory target learning can help fully and discriminately describe
the dependency relationships in unlabeled instance and labeled training data. The kdbe learned from
unlabeled instance and regular KDB learned from training data are different but complementary
in nature, which will help further improve the classification performance. Discriminatory target
learning can be expected to play for different types of BNCs with different dependency complexities.
Exploration of application of discriminatory target learning in other kinds of machine learning
techniques, e.g., decision tree or support vector machine, is a further area for future work.
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Appendix A. Tables of the Experimental Section

The best results in each row of each table are annotated with bold font.
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Table A1. Experimental results of average zero-one loss.

Dataset NB TAN KDB AODE RF kdbe KDBe

Contact-lenses 0.3750 0.3750 0.2500 0.3750 0.3438 0.3750 0.2917
Labor 0.0351 0.0526 0.0351 0.0526 0.0939 0.0351 0.0351
Echocardiogram 0.3359 0.3282 0.3435 0.3206 0.3489 0.3130 0.3130
Lymphography 0.1486 0.1757 0.2365 0.1689 0.2132 0.1757 0.2095
Sonar 0.2308 0.2212 0.2452 0.2260 0.2067 0.2452 0.2308
Glass-id 0.2617 0.2196 0.2196 0.2523 0.2132 0.2243 0.2150
New-thyroid 0.0512 0.0651 0.0698 0.0465 0.0816 0.0605 0.0605
Heart-disease-c 0.1815 0.2079 0.2244 0.2013 0.2212 0.1947 0.2079
Soybean-large 0.1238 0.1107 0.0879 0.0782 0.1107 0.1270 0.0814
Ionosphere 0.1054 0.0684 0.0741 0.0741 0.0766 0.0912 0.0655
Dermatology 0.0191 0.0328 0.0656 0.0164 0.0367 0.0546 0.0519
House-votes-84 0.0943 0.0552 0.0506 0.0529 0.0416 0.0575 0.0437
Chess 0.1125 0.0926 0.0998 0.0998 0.1074 0.0926 0.0926
Soybean 0.0893 0.0469 0.0556 0.0469 0.0703 0.0542 0.0527
Breast-cancer-w 0.0258 0.0415 0.0744 0.0358 0.0386 0.0401 0.0629
Tic-tac-toe 0.3069 0.2286 0.2035 0.2651 0.2115 0.1931 0.2004
Vowel 0.4242 0.1303 0.1818 0.1495 0.1674 0.1788 0.1626
Car 0.1400 0.0567 0.0382 0.0816 0.0772 0.0596 0.0411
Mfeat-mor 0.3140 0.2970 0.3060 0.3145 0.3000 0.3015 0.3035
Segment 0.0788 0.0390 0.0472 0.0342 0.0413 0.0355 0.0433
Hypothyroid 0.0149 0.0104 0.0107 0.0136 0.0122 0.0092 0.0095
Kr-vs-kp 0.1214 0.0776 0.0416 0.0842 0.0128 0.0460 0.0382
Dis 0.0159 0.0159 0.0138 0.0130 0.0133 0.0127 0.0122
Hypo 0.0138 0.0141 0.0114 0.0095 0.0122 0.0098 0.0098
Sick 0.0308 0.0257 0.0223 0.0273 0.0263 0.0270 0.0233
Abalone 0.4762 0.4587 0.4563 0.4472 0.4823 0.4534 0.4484
Waveform-5000 0.2006 0.1844 0.2000 0.1462 0.1558 0.1782 0.1756
Phoneme 0.2615 0.2733 0.1984 0.2392 0.1789 0.3139 0.1931
Wall-following 0.1054 0.0554 0.0401 0.0370 0.0216 0.0398 0.0387
Page-blocks 0.0619 0.0415 0.0391 0.0338 0.0309 0.0323 0.0322
Satellite 0.1806 0.1214 0.1080 0.1148 0.1085 0.1265 0.1052
Thyroid 0.1111 0.0720 0.0706 0.0701 0.0750 0.0586 0.0642
Pendigits 0.1181 0.0321 0.0294 0.0200 0.0339 0.0202 0.0248
Sign 0.3586 0.2755 0.2539 0.2821 0.2038 0.2685 0.2419
Nursery 0.0973 0.0654 0.0289 0.0730 0.0248 0.0509 0.0356
Magic 0.2239 0.1675 0.1637 0.1752 0.1674 0.1716 0.1598
Letter-recog 0.2525 0.1300 0.0986 0.0883 0.0902 0.0675 0.0861
Adult 0.1592 0.1380 0.1383 0.1493 0.1204 0.1315 0.1316
Shuttle 0.0039 0.0015 0.0009 0.0008 0.0005 0.0006 0.0007
Connect-4 0.2783 0.2354 0.2283 0.2420 0.1875 0.2337 0.2268
Waveform 0.0220 0.0202 0.0256 0.0180 0.1558 0.0194 0.0193
Localization 0.4955 0.3575 0.2964 0.3596 0.2976 0.2659 0.2743

Table A2. Experimental results of average RMSE.

Dataset NB TAN KDB AODE RF kdbe KDBe

Contact-lenses 0.3778 0.4496 0.3639 0.4066 0.4098 0.4086 0.3825
Labor 0.1420 0.2185 0.1685 0.1900 0.2824 0.3647 0.2271
Echocardiogram 0.4896 0.4886 0.4889 0.4903 0.4574 0.4782 0.4813
Lymphography 0.2446 0.2684 0.3031 0.2478 0.2701 0.2729 0.2680
Sonar 0.4421 0.4131 0.4084 0.4285 0.3518 0.4071 0.3959
Glass-id 0.3540 0.3332 0.3395 0.3439 0.3146 0.3311 0.3275
New-thyroid 0.1544 0.1731 0.1797 0.1614 0.1560 0.1689 0.1714
Heart-disease-c 0.3743 0.3775 0.3963 0.3659 0.3696 0.3572 0.3690
Soybean-large 0.1032 0.0963 0.0858 0.0858 0.1143 0.1051 0.0856
Ionosphere 0.3157 0.2615 0.2714 0.2506 0.2403 0.2822 0.2523
Dermatology 0.0631 0.0851 0.1206 0.0692 0.1303 0.1857 0.1313



Entropy 2019, 21, 537 21 of 26

Table A2. Cont.

Dataset NB TAN KDB AODE RF kdbe KDBe

House-votes-84 0.2997 0.2181 0.1969 0.1994 0.1846 0.1962 0.1847
Chess 0.2944 0.2594 0.2615 0.2725 0.2771 0.2937 0.2642
Soybean 0.0933 0.0642 0.0654 0.0656 0.0922 0.0754 0.0643
Breast-cancer-w 0.1570 0.1928 0.2497 0.1848 0.1796 0.2194 0.2137
Tic-tac-toe 0.4309 0.4023 0.3772 0.3995 0.2916 0.3830 0.3693
Vowel 0.2270 0.1271 0.1582 0.1425 0.1581 0.1685 0.1516
Car 0.2252 0.1617 0.1379 0.2005 0.1782 0.1749 0.1505
Mfeat-mor 0.2086 0.1940 0.1974 0.1985 0.2074 0.1948 0.1954
Segment 0.1398 0.0967 0.1034 0.0879 0.1061 0.0957 0.0919
Hypothyroid 0.1138 0.0955 0.0937 0.1036 0.0770 0.0979 0.0913
Kr-vs-kp 0.3022 0.2358 0.1869 0.2638 0.1268 0.2626 0.2091
Dis 0.1177 0.1103 0.1024 0.1080 0.1011 0.1074 0.1021
Hypo 0.0766 0.0738 0.0671 0.0650 0.0715 0.0719 0.0635
Sick 0.1700 0.1434 0.1382 0.1572 0.1487 0.1489 0.1394
Abalone 0.4630 0.4250 0.4277 0.4193 0.4539 0.4220 0.4220
Waveform-5000 0.3348 0.2947 0.3149 0.2659 0.3036 0.2950 0.2869
Phoneme 0.0880 0.0902 0.0784 0.0885 0.0731 0.0952 0.0783
Wall-following 0.2177 0.1586 0.1363 0.1292 0.1206 0.1315 0.1210
Page-blocks 0.1450 0.1187 0.1128 0.1021 0.0974 0.0972 0.0991
Satellite 0.2400 0.1851 0.1777 0.1800 0.1682 0.1865 0.1644
Thyroid 0.0967 0.0746 0.0744 0.0745 0.0770 0.0674 0.0679
Pendigits 0.1427 0.0725 0.0687 0.0568 0.0979 0.0793 0.0646
Sign 0.3984 0.3505 0.3334 0.3524 0.3104 0.3468 0.3300
Nursery 0.1766 0.1385 0.1121 0.1571 0.1010 0.1372 0.1217
Magic 0.3974 0.3461 0.3470 0.3541 0.3571 0.3514 0.3411
Letter-recog 0.1184 0.0860 0.0768 0.0707 0.0896 0.0756 0.0685
Adult 0.3409 0.3076 0.3089 0.3245 0.3274 0.3021 0.3015
Shuttle 0.0298 0.0182 0.0146 0.0126 0.0142 0.0121 0.0125
Connect-4 0.3587 0.3315 0.3247 0.3370 0.3057 0.3409 0.3279
Waveform 0.1176 0.0951 0.1145 0.0860 0.0799 0.0999 0.0901
Localization 0.2390 0.2095 0.1960 0.2095 0.1939 0.1834 0.1846

Table A3. Experimental results of average bias.

Dataset NB TAN KDB AODE RF kdbe KDBe

Contact-lenses 0.2163 0.1825 0.3175 0.2850 0.1748 0.1863 0.2850
Labor 0.0289 0.0211 0.0279 0.0347 0.0409 0.0184 0.0279
Echocardiogram 0.2844 0.2642 0.3065 0.2751 0.2256 0.2602 0.2686
Lymphography 0.0902 0.1027 0.1041 0.0933 0.1288 0.0951 0.0996
Sonar 0.1672 0.1646 0.1686 0.1696 0.1045 0.1829 0.1762
Glass-id 0.2901 0.2756 0.2713 0.2785 0.1348 0.2730 0.2732
New-thyroid 0.0290 0.0277 0.0348 0.0277 0.0285 0.0279 0.0396
Heart-disease-c 0.1297 0.1263 0.1299 0.1138 0.1304 0.1128 0.1274
Soybean-large 0.1070 0.1422 0.1086 0.0648 0.1213 0.1717 0.1112
Ionosphere 0.1220 0.0804 0.0855 0.0744 0.0624 0.0912 0.0862
Dermatology 0.0079 0.0274 0.0489 0.0055 0.0190 0.0541 0.0451
House-votes-84 0.0899 0.0410 0.0258 0.0430 0.0327 0.0457 0.0301
Chess 0.1413 0.1437 0.1119 0.1290 0.0548 0.1265 0.1192
Soybean 0.1015 0.0522 0.0491 0.0524 0.0586 0.0971 0.0502
Breast-cancer-w 0.0187 0.0384 0.0449 0.0338 0.0301 0.0221 0.0348
Tic-tac-toe 0.2614 0.1746 0.1367 0.2005 0.0270 0.1434 0.1390
Vowel 0.3301 0.1942 0.1745 0.1895 0.0756 0.1845 0.1736
Car 0.0937 0.0478 0.0387 0.0556 0.0389 0.0389 0.0374
Mfeat-mor 0.2624 0.2077 0.2142 0.2477 0.2311 0.2223 0.2166
Segment 0.0785 0.0491 0.0453 0.0367 0.0253 0.0387 0.0419
Hypothyroid 0.0116 0.0104 0.0096 0.0094 0.0516 0.0090 0.0094
Kr-vs-kp 0.1107 0.0702 0.0417 0.0747 0.0063 0.0434 0.0407
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Table A3. Cont.

Dataset NB TAN KDB AODE RF kdbe KDBe

Dis 0.0165 0.0193 0.0191 0.0170 0.0203 0.0192 0.0191
Hypo 0.0092 0.0124 0.0077 0.0071 0.0083 0.0098 0.0073
Sick 0.0246 0.0207 0.0198 0.0224 0.0194 0.0254 0.0196
Abalone 0.4180 0.3126 0.3033 0.3201 0.3257 0.3195 0.3132
Waveform-5000 0.1762 0.1232 0.1157 0.1235 0.1114 0.1219 0.1147
Phoneme 0.2216 0.2394 0.1572 0.2207 0.1102 0.2927 0.1551
Wall-following 0.0951 0.0491 0.0257 0.0251 0.0122 0.0296 0.0245
Page-blocks 0.0451 0.0308 0.0280 0.0251 0.0217 0.0277 0.0264
Satellite 0.1746 0.0950 0.0808 0.0902 0.0874 0.1011 0.0802
Thyroid 0.0994 0.0587 0.0553 0.0611 0.0516 0.0493 0.0531
Pendigits 0.1095 0.0314 0.0207 0.0228 0.0216 0.0196 0.0189
Sign 0.3257 0.2420 0.2161 0.2531 0.1540 0.2322 0.2132
Nursery 0.0928 0.0521 0.0281 0.0651 0.0086 0.0400 0.0322
Magic 0.2111 0.1252 0.1241 0.1600 0.1244 0.1323 0.1265
Letter-recog 0.2207 0.1032 0.0806 0.0876 0.0490 0.0700 0.0732
Adult 0.1649 0.1312 0.1220 0.1437 0.1109 0.1240 0.1226
Shuttle 0.0040 0.0008 0.0007 0.0006 0.0006 0.0006 0.0006
Connect-4 0.2660 0.2253 0.2022 0.2264 0.1427 0.2169 0.2075
Waveform 0.0219 0.0152 0.0210 0.0156 0.0158 0.0172 0.0161
Localization 0.4523 0.3106 0.2134 0.3129 0.2047 0.2027 0.2038

Table A4. Experimental results of average variance.

Dataset NB TAN KDB AODE RF kdbe KDBe

Contact-lenses 0.1713 0.1925 0.1700 0.1275 0.2013 0.2138 0.1775
Labor 0.0395 0.0632 0.0721 0.0179 0.0758 0.0605 0.0721
Echocardiogram 0.1272 0.1265 0.1400 0.1319 0.1469 0.1374 0.1337
Lymphography 0.0343 0.1116 0.1408 0.0476 0.1352 0.0927 0.1249
Sonar 0.0907 0.1165 0.1199 0.0942 0.1189 0.0983 0.1107
Glass-id 0.0930 0.1075 0.1189 0.1004 0.1089 0.1101 0.1099
New-thyroid 0.0161 0.0272 0.0385 0.0230 0.0365 0.0285 0.0351
Heart-disease-c 0.0248 0.0479 0.0582 0.0357 0.0718 0.0466 0.0498
Soybean-large 0.0783 0.1176 0.0982 0.0842 0.1373 0.0921 0.0947
Ionosphere 0.0242 0.0401 0.0581 0.0385 0.0582 0.0344 0.0497
Dermatology 0.0216 0.0513 0.0684 0.0199 0.0685 0.0746 0.0648
House-votes-84 0.0066 0.0170 0.0197 0.0094 0.0179 0.0164 0.0168
Chess 0.0401 0.0486 0.0531 0.0415 0.0626 0.0423 0.0447
Soybean 0.0302 0.0654 0.0439 0.0326 0.0606 0.0509 0.0406
Breast-cancer-w 0.0010 0.0337 0.0504 0.0134 0.0101 0.0199 0.0425
Tic-tac-toe 0.0455 0.0824 0.1125 0.0513 0.0590 0.0813 0.0951
Vowel 0.2542 0.2445 0.2325 0.2344 0.1093 0.2337 0.2255
Car 0.0520 0.0376 0.0434 0.0438 0.0456 0.0447 0.0379
Mfeat-mor 0.0622 0.1020 0.1031 0.0677 0.1351 0.0882 0.0960
Segment 0.0259 0.0294 0.0381 0.0255 0.0191 0.0291 0.0344
Hypothyroid 0.0031 0.0034 0.0024 0.0034 0.0279 0.0034 0.0024
Kr-vs-kp 0.0186 0.0152 0.0111 0.0186 0.0077 0.0076 0.0077
Dis 0.0069 0.0005 0.0011 0.0071 0.0021 0.0005 0.0003
Hypo 0.0051 0.0071 0.0069 0.0049 0.0046 0.0078 0.0060
Sick 0.0047 0.0051 0.0043 0.0042 0.0082 0.0052 0.0035
Abalone 0.0682 0.1693 0.1769 0.1544 0.1865 0.1511 0.1633
Waveform-5000 0.0259 0.0690 0.0843 0.0410 0.0528 0.0625 0.0666
Phoneme 0.1215 0.1828 0.1064 0.1343 0.0818 0.1850 0.1052
Wall-following 0.0211 0.0288 0.0294 0.0242 0.0112 0.0266 0.0278
Page-blocks 0.0135 0.0143 0.0177 0.0124 0.0110 0.0115 0.0146
Satellite 0.0139 0.0367 0.0455 0.0363 0.0251 0.0388 0.0406
Thyroid 0.0205 0.0257 0.0272 0.0235 0.0279 0.0220 0.0235
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Table A4. Cont.

Dataset NB TAN KDB AODE RF kdbe KDBe

Pendigits 0.0157 0.0200 0.0236 0.0127 0.0148 0.0157 0.0198
Sign 0.0313 0.0386 0.0596 0.0378 0.0593 0.0572 0.0488
Nursery 0.0085 0.0168 0.0195 0.0105 0.0193 0.0179 0.0168
Magic 0.0174 0.0490 0.0491 0.0297 0.0512 0.0407 0.0440
Letter-recog 0.0471 0.0591 0.0709 0.0448 0.0492 0.0440 0.0619
Adult 0.0069 0.0165 0.0285 0.0116 0.0425 0.0141 0.0185
Shuttle 0.0009 0.0004 0.0003 0.0004 0.0004 0.0004 0.0003
Connect-4 0.0156 0.0149 0.0309 0.0222 0.0534 0.0215 0.0222
Waveform 0.0009 0.0053 0.0037 0.0025 0.0068 0.0021 0.0035
Localization 0.0460 0.0594 0.1099 0.0580 0.1106 0.0897 0.0955

Table A5. Ranks in terms of zero-one loss of different learners.

Dataset NB TAN KDB AODE RF kdbe KDBe

Contact-lenses 5.0 5.0 1.0 7.0 3.0 5.0 2.0
Labor 2.5 5.0 2.5 6.0 7.0 2.5 2.5
Echocardiogram 5.0 4.0 6.0 3.0 7.0 1.5 1.5
Lymphography 1.0 3.5 7.0 2.0 6.0 3.5 5.0
Sonar 4.5 2.0 6.5 3.0 1.0 6.5 4.5
Glass-id 7.0 3.5 3.5 6.0 1.0 5.0 2.0
New-thyroid 2.0 5.0 6.0 1.0 7.0 3.5 3.5
Heart-disease-c 1.0 4.5 7.0 3.0 6.0 2.0 4.5
Soybean-large 6.0 4.5 3.0 1.0 4.5 7.0 2.0
Ionosphere 7.0 2.0 3.0 4.0 5.0 6.0 1.0
Dermatology 2.0 3.0 7.0 1.0 4.0 6.0 5.0
House-votes-84 7.0 5.0 3.0 4.0 1.0 6.0 2.0
Chess 7.0 2.0 4.0 5.0 6.0 2.0 2.0
Soybean 7.0 1.0 5.0 2.0 6.0 4.0 3.0
Breast-cancer-w 1.0 5.0 7.0 2.0 3.0 4.0 6.0
Tic-tac-toe 7.0 5.0 3.0 6.0 4.0 1.0 2.0
Vowel 7.0 1.0 6.0 2.0 4.0 5.0 3.0
Car 7.0 3.0 1.0 6.0 5.0 4.0 2.0
Mfeat-mor 6.0 1.0 5.0 7.0 2.0 3.0 4.0
Segment 7.0 3.0 6.0 1.0 4.0 2.0 5.0
Hypothyroid 7.0 3.0 4.0 6.0 5.0 1.0 2.0
Kr-vs-kp 7.0 5.0 3.0 6.0 1.0 4.0 2.0
Dis 6.5 6.5 5.0 3.0 4.0 2.0 1.0
Hypo 6.0 7.0 4.0 1.0 5.0 2.5 2.5
Sick 7.0 3.0 1.0 6.0 4.0 5.0 2.0
Abalone 6.0 5.0 4.0 2.0 7.0 3.0 1.0
Waveform-5000 7.0 5.0 6.0 1.0 2.0 4.0 3.0
Phoneme 5.0 6.0 3.0 4.0 1.0 7.0 2.0
Wall-following 7.0 6.0 5.0 2.0 1.0 4.0 3.0
Page-blocks 7.0 6.0 5.0 4.0 1.0 3.0 2.0
Satellite 7.0 5.0 2.0 4.0 3.0 6.0 1.0
Thyroid 7.0 5.0 3.0 4.0 6.0 1.0 2.0
Pendigits 7.0 5.0 4.0 1.5 6.0 1.5 3.0
Sign 7.0 5.0 3.0 6.0 1.0 4.0 2.0
Nursery 7.0 5.0 2.0 6.0 1.0 4.0 3.0
Magic 7.0 4.0 2.0 6.0 3.0 5.0 1.0
Letter-recog 7.0 6.0 5.0 3.0 4.0 1.0 2.0
Adult 7.0 4.0 5.0 6.0 1.0 2.0 3.0
Shuttle 7.0 6.0 5.0 4.0 1.0 2.0 3.0
Connect-4 7.0 5.0 3.0 6.0 1.0 4.0 2.0
Waveform 5.0 4.0 6.0 1.0 7.0 3.0 2.0
Localization 7.0 5.0 3.0 6.0 4.0 1.0 2.0

Sum of ranks 246.5 179.5 175.5 160.5 155.5 149.5 109.0
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Table A6. Ranks in terms of RMSE of different learners.

Dataset NB TAN KDB AODE RF kdbe KDBe

Contact-lenses 2.0 7.0 1.0 4.0 6.0 5.0 3.0
Labor 1.0 4.0 2.0 3.0 6.0 7.0 5.0
Echocardiogram 5.0 4.0 7.0 6.0 1.0 2.0 3.0
Lymphography 1.0 4.0 7.0 2.0 5.0 6.0 3.0
Sonar 7.0 5.0 4.0 6.0 1.0 3.0 2.0
Glass-id 7.0 4.0 5.0 6.0 1.0 3.0 2.0
New-thyroid 1.0 6.0 7.0 3.0 2.0 4.0 5.0
Heart-disease-c 5.0 6.0 7.0 2.0 4.0 1.0 3.0
Soybean-large 5.0 4.0 3.0 2.0 7.0 6.0 1.0
Ionosphere 7.0 4.0 5.0 2.0 1.0 6.0 3.0
Dermatology 1.0 3.0 4.0 2.0 5.0 7.0 6.0
House-votes-84 7.0 6.0 4.0 5.0 1.0 3.0 2.0
Chess 7.0 1.0 2.0 4.0 5.0 6.0 3.0
Soybean 7.0 1.0 4.0 3.0 6.0 5.0 2.0
Breast-cancer-w 1.0 4.0 7.0 3.0 2.0 6.0 5.0
Tic-tac-toe 7.0 6.0 3.0 5.0 1.0 4.0 2.0
Vowel 7.0 1.0 5.0 2.0 4.0 6.0 3.0
Car 7.0 3.0 1.0 6.0 5.0 4.0 2.0
Mfeat-mor 7.0 1.0 5.0 4.0 6.0 2.0 3.0
Segment 7.0 4.0 5.0 1.0 6.0 3.0 2.0
Hypothyroid 7.0 4.0 3.0 6.0 1.0 5.0 2.0
Kr-vs-kp 7.0 4.0 2.0 6.0 1.0 5.0 3.0
Dis 7.0 6.0 3.0 5.0 1.0 4.0 2.0
Hypo 7.0 6.0 3.0 2.0 4.0 5.0 1.0
Sick 7.0 3.0 2.0 6.0 4.0 5.0 1.0
Abalone 7.0 4.0 5.0 1.0 6.0 2.5 2.5
Waveform-5000 7.0 3.0 6.0 1.0 5.0 4.0 2.0
Phoneme 4.0 6.0 3.0 5.0 1.0 7.0 2.0
Wall-following 7.0 6.0 5.0 3.0 1.0 4.0 2.0
Page-blocks 7.0 6.0 5.0 4.0 2.0 1.0 3.0
Satellite 7.0 5.0 3.0 4.0 2.0 6.0 1.0
Thyroid 7.0 4.0 5.0 3.0 6.0 1.0 2.0
Pendigits 7.0 4.0 3.0 1.0 6.0 5.0 2.0
Sign 7.0 5.0 3.0 6.0 1.0 4.0 2.0
Nursery 7.0 5.0 2.0 6.0 1.0 4.0 3.0
Magic 7.0 2.0 3.0 5.0 6.0 4.0 1.0
Letter-recog 7.0 5.0 4.0 2.0 6.0 3.0 1.0
Adult 7.0 3.0 4.0 5.0 6.0 2.0 1.0
Shuttle 7.0 6.0 5.0 3.0 4.0 1.0 2.0
Connect-4 7.0 4.0 3.0 5.0 1.0 6.0 2.0
Waveform 7.0 4.0 6.0 2.0 1.0 5.0 3.0
Localization 7.0 5.5 4.0 5.5 3.0 1.0 2.0

Sum of ranks 250.0 178.5 170.0 157.5 144.0 173.5 102.5
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