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Abstract: An approach for security enhancement of a class of encryption schemes is pointed out and
its security is analyzed. The approach is based on certain results of coding and information theory
regarding communication channels with erasures and deletion errors. In the security enhanced
encryption scheme, the wiretapper faces a problem of cryptanalysis after a communication channel
with bits deletion and a legitimate party faces a problem of decryption after a channel with bit
erasures. This paper proposes the encryption-decryption paradigm for the security enhancement
of lightweight block ciphers based on dedicated error-correction coding and a simulator of the
deletion channel controlled by the secret key. The security enhancement is analyzed in terms of the
related probabilities, equivocation, mutual information and channel capacity. The cryptographic
evaluation of the enhanced encryption includes employment of certain recent results regarding the
upper-bounds on the capacity of channels with deletion errors. It is shown that the probability
of correct classification which determines the cryptographic security depends on the deletion
channel capacity, i.e., the equivocation after this channel, and number of codewords in employed
error-correction coding scheme. Consequently, assuming that the basic encryption scheme has certain
security level, it is shown that the security enhancement factor is a function of the deletion rate and
dimension of the vectors subject to error-correction encoding, i.e., dimension of the encryption block.

Keywords: encryption; cryptographic security enhancement; erasure error correction; channel with
deletion errors; mutual information; channel capacity; the probability of classification error

1. Introduction

The main aim of the error-correction codes is overcoming the noise in public communication
channels, but there is a long record of results on employment of error-correction coding theory for
developing systems for secret communications. These systems belong to one of the following two
main categories: the systems without the so called cryptographic keys, as well as the cryptographic
keys controlled ones (see [1], for example).

The first coding based technique for secret communication over noisy channels without
employment of cryptographic keys have been proposed in [2] where a dedicated coding scheme
has been employed which provides secret communication over a public channel under assumption
that the wiretapper faces sample collection through the channel with an ε higher noise in comparison
with the one in the main channel over which communicate the legitimate parties, and a lot of papers
have appeared as a follow-up of [2].

Employment of error-correction codes controlled by the cryptographic keys have been addressed
in the both two major settings: the secret (symmetric) key setting and the public (asymmetric) key
one. The most famous coding based system is McEliece public key encryption system [3] and this
proposal has been followed by a number of results on its analysis and alternative proposals. McEleiece
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public key system is based on difficulty of decoding a random block error correcting code which is
NP-complete in the worst case scenario as shown in [4].

Within the secret key cryptographic setting there are the following two major directions of
employment error correction coding: (i) developing certain code-based encryption techniques;
and (ii) enhancing security of certain lightweight encryption schemes. A number of symmetric
key encryption schemes have been reported based on employment of the code-based and noisy
channel paradigm. An illustrative and recent example on code-based secret key encryption schemes
is the proposal [5] and its cryptanalysis reported in [6] which has shown insecurity of the proposal.
The previous example illustrates that design of efficient code based symmetric encryption techniques
appears as a tricky issue.

An alternative approach is to employ coding theory in symmetric key crypto-systems for security
enhancement of certain lightweight encryption techniques, and goal of this paper is to add some novel
results to this approach. Employment of results on error-correction coding and noisy channels for the
security enhancement has been reported in a number of papers, and we could identify the following
main directions within this approach. One direction is the enhancement employing a model of noisy
channel with the additive noise and related coding results. The other direction is employment of the
paradigm of the channels with synchronization errors and results on the related coding techniques.
Illustrative techniques for security enhancement based on a model of noisy channels with additive
errors have been reported in [7–11], and security evaluation of a generic model of these techniques from
information-theoretic and computational complexity points of view are reported in [12,13], respectively.
The enhancement approach based on the channels with synchronization errors and in particular an
encryption approach which involves a communication channel with the errors in the form of bits
insertion is reported in [14,15].

Motivation for the work. According to the above consideration of the topic, security enhancement of
lightweight encryption techniques employing results on communication channels with synchronization
errors and related coding appears as an interesting issue, and a particular goal could be consideration of
the enhancement employing a deletion channel controlled by the secret key. Also, the addressed issue
could be considered as a generalization of the shrinking and self-shrinking encryption techniques reported
in [16,17], and a way to overcome the reported weaknesses of these techniques (see, [18–20], for example).

Summary of the results. This paper yields: (i) a proposal of the encryption-decryption scheme
for the security enhancement of lightweight block ciphers based on a binary block error-correction
coding and a simulator of the deletion channel controlled by the secret key, and (ii) cryptographic
security evaluation of the proposed scheme. We suppose that a building component for developing
security enhanced scheme is a block encryption algorithm with a known security level (specified by
Definition 2), and we consider this algorithm which is the subject of enhancement as the “initial”
encryption scheme. Main results of the paper are in Sections 2.2 and 4.2. Section 2.2 provides a
construction for security enhancement of a given encryption scheme employing a suitable block
error-correction code for a binary erasure channel which performs mapping {0, 1}n → {0, 1}n′ ,
n′ > n, and a simulator of a binary channel with the deletions rate d controlled by the secret key.
The construction is such that the wiretapper faces a problem of cryptanalysis after a communication
channel with bits deletion and the legitimate party should only perform the decryption after a channel
with bit erasures correctable by the employed error-correction code. The security enhancement is
analyzed in terms of the related probabilities, equivocation, mutual information and channel capacity,
and it includes employment of certain recent results regarding the upper-bounds on the capacity
of channels with deletion errors. Main result of Section 4.2 is Theorem 1 which in a generic way
proves the security enhancement showing that the adversary’s probability to win the specified security
evaluation game (specified by Definition 1) is reduced for certain factor δ << 1 which upper bound is
derived, and it is a decreasing function of the coding parameter n and the deletion rate d.

Organization. The paper is organized as follows. Section 2 proposes a framework for security
enhancement based on the secret key controlled simulation of a deletion channel and dedicated
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error-correction coding. Technical background for the security evaluation is summarized in
Section 3. Security evaluation results are given in Section 4, and the final Section 5 provides a
concluding discussion.

2. A Proposal for the Security Enhanced Encryption

An encryption and decryption algorithm which provide a provably enhanced cryptographic
security are proposed in this section. The enhanced security appears as a consequence of the design
based on employment of the simulator of a binary noisy channel which appears as the erasure channel
at the legitimate party and the deletion one at the wiretapper.

2.1. Underlying Ideas

The underlying ideas for the design could be summarized as follows. Enhance security of
encryption based on information-theoretic and coding results when a wiretapper faces sample
collection after a channel with deletions assuming a binary deletion channel with deletion probability
d which takes input binary string and deletes each bit independently with the probability d. A model
of the deletion channel is illustrated in Figure 1.

1 

Shrinked vector after the chanel with  

random bits deletion 

Deletion of bits is RANDOM - Positions of deleted bits are UNKNOWN  

Initial vector with bits subject to deletion 

Figure 1. A model of the deletion channel.

Let a string Z = {0, 1}n denotes an input to a binary deletion channel and let the deletion pattern
D is an increasing subsequence of {1, 2, . . . , n} representing the bits that are not deleted. Consequently,
ZD denotes the “transformation” of Z after a deletion channel with deletion pattern D.

Note that when the deletion pattern D is known, the deletion channel reduces to the erasure
channel and we could consider that (D, ZD) is the output of erasure channel for given input Z.

The main underlying idea which this paper employs is to enhance cryptographic security of a
given encryption scheme in such a way that a legitimate user faces an erasure channel, and a wiretapper
faces a deletion channel, i.e., a legitimate party knows the deletion patternD and a wiretapper does not
know this pattern. Assuming that the deleted bits positions are selected in a pseudorandom manner
controlled by the secret key and generated by the encryption/decryption algorithm, note that the
legitimate party knows D, but the wiretapper who does not know the secret key does not know D and
consequently faces a deletion channel instead the erasure one faced by a legitimate party. Accordingly,
the corresponding paradigm is displayed in Figure 2.
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Figure 2. Model of the decryption at a legitimate party versus cryptanalysis at the wiretapper side
which faces problem of cryptanalysis after a channel with deletion errors.

2.2. Framework for Encryption and Decryption

The design proposed in this paper is based on the following building blocks:

• a lightweight block cipher;
• implementation of an error correction code encoding/decoding for binary erasure channel;
• simulation of a deletion channel where the deletion pattern D is generated by the employed

block cipher.

It is assumed that encryption and decryption parties share a secret key. As usually, before the
session, the both parties (encryption and decryption ones) establish a session key (to be used later on),
employing the secret key and the public data.

The encryption and decryption are performed as follows.

• Encryption:

- a lightweight block cipher generates n dimensional binary vector C′ = EK(M) where EK(·)
denotes the block cipher encryption according to the secret key K and performs one-to-one
mapping {0, 1}n → {0, 1}n;

- an erasure error correction encoding capable to provide correction up to t erasure errors
generates n′′-bit vector C′′ as the corresponding mapping {0, 1}n → {0, 1}n′′ , n′′ > n, where t
is a given parameter, and n′′ − t > n;

- a simulator of a binary channel with random bits deletion performs mapping
{0, 1}n′′ → C ∈ {0, 1}n′′−` controlled by a vector X generated by the employed block
cipher, ` ≤ t.

• Decryption:

- an erasure error correction decoding controlled by a vector X generated by the employed block
cipher generates n-bit vector C′ by the corresponding mapping {0, 1}n′′−` → {0, 1}n, ` ≤ t;

- a lightweight block cipher generates n dimensional binary vector M = E−1
K (C′) where E−1

K (·)
denotes the block cipher decryption according to the secret key K.

The proposed encryption and decryption framework is displayed in Figure 3.
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decoding of the binary erasure error correction code binary deletion channel f or control of the simulator control of decoding M C´
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C´´ C
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X
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Figure 3. Model of a security enhanced encryption employing a simulator of a noisy channel which
appears as a deletion channel from the wiretappers prospective: the upper part shows the transmitter,
and the lower part the receiver.

The objective of this paper is to provide a framework for the security enhancement and show the
enhancement gain. Accordingly, consideration of particular instantiations of the framework is out of
the scope of this paper. We just point out that a candidate coding scheme could be the polar coding,
and that [21] provides an illustrative discussion of polar coding over a binary erasure channel, as well
as the decoding complexity after a deletion channel.

Regarding similarity/dissimilarity of the proposed framework and the one reported in [5], note the
following. The scheme [5] is based on a suitable block error-correction code and two shift registers
which provide that the wiretapper faces a problem of decoding after a channel with flipping, insertion
and deletion of the codeword bits. On the other hand, the proposed scheme is based on an (initial)
encryption algorithm which has certain security level and a simulator of the deletion channel which
in a provable way enhances security of the entire scheme. So, although the block representation of
the both schemes has a similarity, they are substantially different because the one reported in [5] is a
code-based design of encryption and the one proposed in this paper belongs to a class of the security
enhanced encryption employing dedicated coding and simulator of a noisy channel.

3. Security Evaluation Background

3.1. Notations and Preliminaries

A random variable is denoted by an upper-case letter (e.g., A) and its realization is denoted by
a lower-case letter (e.g., a). The entropy of a random object A is denoted by H(A), and the mutual
information between two random objects A and B is denoted by I(A; B). The binary entropy function
is denoted by h(p) = −p log2 p− (1− p) log2(1− p).

The entropy of a random variable A is defined as:

H(A) := ∑
x∈support(A)

Pr[A = a] log2
1

Pr[A = a]
, (1)

The mutual information I(A; B) between jointly distributed random variables A and B is defined
as follows:

I(A; B) := H(A)− H(A|B) = H(B)− H(B|A) (2)
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where conditional entropy is defined as

H(A|B) = ∑
b∈supp(B)

Pr(B = b)H(A|B = b) (3)

and
H(A|B = b) = ∑

a∈supp(A)

Pr(A = a|B = b) log2
1

Pr(A = a|B = b)
(4)

Consequently, the conditional mutual information when the third variable Z is given is:

I(A, B|Z) := H(A|Z)− H(A|B, Z) = H(B|Z)− H(B|A, Z). (5)

Following [1], the mutual information I(M; C) between the message M and the related sample
C, or the uncertainty, i.e., the equivocation H(M|C) are traditionally employed as the main
information-theoretic security metric. On the other hand, according to certain recent considerations,
the average mutual information Ī(M, C) should be addressed as a strong information-theoretic security
metric, and 1

n Ī(M, C) as a corresponding weak one.

3.2. The Probability of Error and The Equivocation after a Noisy Channel

Let A and B be discrete random variables which correspond to input and output, respectively,
of a communication channel. Let the possible realizations of A and B are ai, i = 1, 2, . . . , m and
bi, i = 1, 2, . . . , n, respectively, m > n, and let a decision rule on A when B can be considered
as identification of a realization ai when bi is given, and we denote by Perr the probability of the
identification (classification) error.

Suppose the random variables A and B represent input and output messages (out of m possible
messages), and the given conditional entropy H(A|B) represents the average amount of information
lost on A when B is given. According to [22] or [23], for example, we have the following general upper
bound on the equivocation:

H(A|B) ≤ h(Perr) + Perrlog2(m− 1) (6)

where h(·) ≤ 1 is the binary entropy function and Perr = 1− Pr(A = ai|B = bi). The above inequality
can be rewritten as follows:

H(A)− I(A, B) ≤ h(Perr) + Perrlog2(m− 1), (7)

and when A is such that it has the maximum possible entropy we have:

m− I(A, B) ≤ h(Perr) + Perrlog2(m− 1), (8)

which can be further transformed into:

1− I(A, B)
m

≤ 1
m

+
Perr

m
log2(m− 1). (9)

3.3. The Capacity of a Deletion Channel

The Shannon capacity of a channel is denoted by Cap and is defined as

Cap := sup{I(A; B)}, (10)

where A corresponds the channel input, B corresponds to the channel output, and the supremum is
over the choice of the distribution of A.
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As reported in [24], the capacity Cap(d) of a deletion channel with the deletion rate d is
upperbounded as follows:

Cap(d) = (1− d)loge
1 +
√

5
2

(11)

for d > 1/2, and logarithm is taken to base e.

4. Security Evaluation of the Enhanced Encryption

4.1. Security Notation

We employ a traditional approach for analyzing cryptographic security based on the following two
issues: (i) a description of what a “break” of the scheme means, and (ii) a specification of the assumed
power of the adversary. A cryptographic scheme is considered as secure one in a computational sense,
if for every probabilistic polynomial-time adversary A performing an attack of some specified type,
and for every polynomial p(n), there exists an integer N such that the probability that A succeeds
(where success of the attack is also well-defined) is less than 1

p(n) for every n > N. Accordingly,
the following two definitions specify a security evaluation scenario and a security statement.

Definition 1. The Adversarial Indistinguishability Experiment consists of the following steps:

1. The adversary A chooses a pair of messages (m0; m1) of the same length n, and passes them on to the
encryption system for encrypting.

2. A bit b∈{0,1} is chosen uniformly at random, and only one of the two messages (m0; m1), precisely mb,
is encrypted into ciphertext Enc(mb) and returned to A;

3. Upon observing Enc(mb), and without knowledge of b, the adversary A outputs a bit b0;
4. The experiment output is defined to be 1 if b0 = b, and 0 otherwise; if the experiment output is 1, denoted

shortly as the event (A→1), we say that A has succeeded.

Definition 2. An encryption scheme provides indistinguishable encryptions in the presence of an eavesdropper,
if for all probabilistic polynomial-time adversaries A

Pr[A → 1|Enc(mb)] ≤
1
2
+ ε , (12)

where ε = negl(n) is a negligibly small function.

Definitions 1 and 2 are more precisely discussed in [25].

4.2. Evaluation of the Security Gain

We consider the encryption/decryption scheme proposed in Section 2.2 which is a security enhanced
scheme of certain basic one. Our goal is to estimate the advantage ofA in the indistinguishability game
specified by Definition 1 when c ← Enc(mb) where c is a particular realization of C, assuming that the
advantage of A is known when m0 and m1 are two chosen realizations of M and the corresponding
realization c′b of C′ is given, i.e., the advantage ofA is known for the basic (security non-enhanced) scheme.

We assume that in the corresponding statistical model, the considered encryption scheme is
such that

I(X, C) = 0 and I(X, C|M) = 0 , (13)

i.e., the knowledge of C and M does not leak (provide) any information on X.
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Lemma 1. Let the mapping of m into c′ be such that 1
2+ε equals the advantage of the adversary A (specified by

Definition 2) to win the indistinguishability game (specified by Definition 1). Under these assumptions,

Pr[A → 1|C = c] =
1
2
+ ε · δ

where
δ

∆
= Pr(C′′ = c′′b |C = c) . (14)

Proof. For simplicity, it is assumed that 1
2+ε equals the advantage of the adversary A (specified by

Definition 2) to win the indistinguishability game. Consequently, let b which denotes the index of the
selected message be realization of the random variable B.

The probability Pr(B = b|C = c) that A wins the game is determined by the following.

Pr(B = b|C = c) =
Pr(B = b, C = c)

Pr(C = c)

=
∑x Pr(B = b, C = c, C′′ = c′′)

Pr(C = c)

=
∑x Pr(B = b|C = c, C′′ = c′′)Pr(C = c, C′′ = c′′)

Pr(C = c)

=
∑c′′ Pr(B = b|C′′ = c′′)Pr(C = c, C′′ = c′′)

Pr(C = c)
.

(15)

The lemma assumption implies:

Pr(B = b|C′ = c′b) =
1
2
+ ε , (16)

where c′b corresponds to the selected mb, and

Pr(B = b|C′′ = c′′) =
1
2

for any c′ 6= c′b . (17)

Note that the encoding mapping c′ → c′′ is a deterministic one-to-one mapping and consequently
has no impact on the advantage of adversary A, i.e., we have:

Pr[A → 1|C′′ = c′′] = Pr[A → 1|C′ = c′] =
1
2
+ ε . (18)

Consequently,
Pr(B = b|C = c) =

Pr(B = b|C′′ = c′′b )Pr(C = c, C′′ = c′′b )
Pr(C = c)

+

∑c′′ :c′′ 6=c′′b
Pr(B = b|C′′ = c′′)Pr(C = c, C′′ = c′′)

Pr(C = c)
,

Finally, we obtain:
Pr(B = b|C = c) =

( 1
2 + ε)Pr(C = c, C′′ = c′′b )−

1
2 Pr(C = c, C′′ = c′′b )

Pr(C = c)

+
1
2 ∑c′′ Pr(C = c, C′′ = c′′)

Pr(C = c)
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=
1
2
+ ε · Pr(C′′ = c′′b |C = c) . (19)

QED

Definition 1 implies that the security of an encryption scheme increases as difference on the
adversary A advantage from 1

2 decreases: The factor δ < 1 shows the reduction rate of the advantage,
and so we call it the advantage reduction factor.

Theorem 1. Let the basic encryption mapping {0, 1}n → {0, 1}n of m into c′, be such that 1
2+ε equals the

advantage of the adversary A (specified by Definition 2) to win the indistinguishability game (specified by
Definition 1), and the simulated deletion channel has the deletion rate d. Consequently, the advantage of the
adversary A, in the security enhanced scheme specified in Section 2.2 is:

Pr[A → 1|C = c] <
1
2
+ ε ·

(1− d)loge
1+
√

5
2 + 1

log2(2n − 1)
. (20)

Proof. According to the (9) we have

1− I(C′′, C)

n
≤ 1

n
+

Perr

n
log2(2

n − 1) , (21)

and taking into account that
Perr = 1− Pr(C′′ = c′′b |C = c) (22)

we obtain

1
n

Pr(C′′ = c′′b |C = c)log2(2
n − 1) ≤ −1 +

I(C′′, C)

n
+

1
n
+

1
n

log2(2
n − 1) <

I(C′′, C)

n
+

1
n

, (23)

and

Pr(C′′ = c′′b |C = c) <
I(C′′, C) + 1
log2(2n − 1)

. (24)

Finally, taking into account (10) and (11) we have:

Pr(C′′ = c′′b |C = c) <
(1− d)loge

1+
√

5
2 + 1

log2(2n − 1)
. (25)

Substitution of (25) into the statement of Lemma 1 yields the proof. QED

Lemma 1 shows that the encryption mapping m→c enhances the security because the probability
that A wins the game becomes closer to 1

2 , which corresponds to random guessing, by the factor

δ, and Theorem 1 shows that the upper bound on δ is (1−d)loge
1+
√

5
2 +1

log2(2n−1) << 1. Accordingly, Table 1
provides a numerical illustration on the upper bound on δ which determines reduction of the
advantage of A.
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Table 1. A numerical illustration of the advantage reduction factor δ upper bound (which shows
minimum reduction of the advantage of A) as a function of the encryption scheme parameters d and n,
the deletion rate and encryption block size, respectively.

d Upper Bound on δ for n = 64 Upper Bound on δ for n = 128

0.55 0.01901 0.00950
0.60 0.01863 0.00931
0.65 0.01825 0.00912
0.70 0.01788 0.00894
0.75 0.01750 0.00875
0.80 0.01712 0.00856
0.85 0.01675 0.00837
0.90 0.01637 0.00819
0.95 0.01600 0.00800
0.99 0.01570 0.00785

5. Concluding Notes

This paper has proposed a framework for security enhancement of certain encryption schemes
and its security evaluation. The final security evaluation result given in Theorem 1 also shows the
security gain which the security enhanced encryption provides in comparison with the initial one.
The lower bound on the security gain is a function of the encryption block size and the deletion rate in
the simulated channel with deletion errors. The result given in Theorem 1 is a generic one and it holds
for any particular instantiation of the proposed encryption framework.

An interesting future direction is design of particular instantiations of the proposed framework
within the given implementation constraints where dedicated basic (initial) encryption, a code for
correction of erasure errors and simulator of a channel with deletion errors controlled by the secret key
are specified, and complexity of implementation overhead implied by the enhancement is evaluated.
Regarding overhead implied by employment of the coding scheme, as an illustration, we point to the
polar coding [21] which provides encoding and decoding complexities O(n′′log2n′′) assuming that the
encoding performs the mapping {0, 1}n → {0, 1}n′′ , n′′ > n.
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12. Oggier, F.; Mihaljević, M.J. An information-theoretic security evaluation of a sass of randomized encryption
schemes. IEEE Trans. Inf. Forensics Secur. 2014, 9, 158–168. [CrossRef]
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