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Abstract: Due to the simplicity and competitive classification performance of the naive Bayes (NB),
researchers have proposed many approaches to improve NB by weakening its attribute independence
assumption. Through the theoretical analysis of Kullback–Leibler divergence, the difference between
NB and its variations lies in different orders of conditional mutual information represented by
these augmenting edges in the tree-shaped network structure. In this paper, we propose to relax
the independence assumption by further generalizing tree-augmented naive Bayes (TAN) from
1-dependence Bayesian network classifiers (BNC) to arbitrary k-dependence. Sub-models of TAN
that are built to respectively represent specific conditional dependence relationships may “best match”
the conditional probability distribution over the training data. Extensive experimental results reveal
that the proposed algorithm achieves bias-variance trade-off and substantially better generalization
performance than state-of-the-art classifiers such as logistic regression.

Keywords: tree-augmented naive Bayes; Kullback–Leibler divergence; attribute independence
assumption; probability distribution

1. Introduction

Supervised classification is an important task in data-mining and pattern recognition [1]. It requires
building a classifier that can map an unlabeled instance into a class label. Traditional approaches to
classification problems include decision trees, logistic regression etc. More recently, Bayesian network
classifiers (BNCs) have attracted more attention from researchers in terms of explicit, graphical,
interpretable representation and competitive performance against state-of-the-art classifiers.

Among numerous BNCs, naive Bayes (NB) is an extremely simple and remarkably effective
approach to classification [2]. It infers the conditional probability by assuming that the attributes are
independent given the class label [3]. It follows logically that relaxing NB’s independence assumption
is a feasible and effective approach to build more powerful BNCs [4,5]. Researchers proposed to
extend NB from 0-dependence BNC to 1-dependence BNCs [6,7] (e.g., tree-augmented naive Bayes or
TAN), and then to arbitrary k-dependence BNCs [8,9] (e.g., k-dependence Bayesian classifier or KDB).
These BNCs learn from training data and allow additional edges between attributes that capture the
dependence relationships among them. These restricted BNCs also capture another assumption behind
NB, i.e., every attribute is dependent on the class variable and thus the class is the root in the network.

Given a random instance x = (x1, · · · , xn), where xi ∈ ΩXi , classification is done by applying
Bayes rule to predict the class label y∗ that corresponds to the highest posterior probability of the class
variable, i.e., y∗ = arg max P(y|x), where y ∈ Ωy. By using Bayes theorem, for restricted BNC we have

y∗ = arg max P(y|x) = arg max
P(y, x)
P(x)

= arg max P(y, x) = arg max P(x|y)P(y) (1)

Entropy 2019, 21, 721; doi:10.3390/e21080721 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e21080721
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/21/8/721?type=check_update&version=2


Entropy 2019, 21, 721 2 of 20

The objective of restricted BNC learning is to induce a network (or a set of networks) that
may “best match” the conditional probability distribution P(x|y) given different class labels over the
training data and explicitly represent statements about conditional independence. Information theory,
which is proposed by Shannon, has established mathematical basis for the rapid development of BN.
Mutual information (MI) I(Xi; Y) is the most commonly used criterion to rank attributes for attribute
sorting or filtering [10,11], and conditional mutual information (CMI) I(Xi; Xj|Y) is used to measure
conditional dependence between attribute pair Xi and Xj for identifying possible dependencies.

Among numerous proposals to improve the accuracy of NB by weakening its attribute
independence assumption, TAN demonstrates remarkable classification performance, yet at the
same time maintains the computational simplicity and robustness that characterize NB. However,
it can only model 1-dependence relationships among attributes. The optimization process of BNCs
is implemented in practice by using heuristic search techniques to find the best candidate over the
space of possible networks. The search process relies on a scoring function that evaluates each network
with respect to the training data, and then to search for the best network according to this function.
The likelihood function, e.g., Kullback–Leibler divergence, plays a fundamental role in Bayesian
statistics [12,13]. The likelihood principle states that all relevant information for inference is contained
in the likelihood function for the observed data given the assumed statistical model. We prove from
the viewpoint of Kullback–Leibler divergence that the difference between NB and its variations lies in
different orders of CMIs represented by these augmenting edges in the tree-shaped network structure.
The CMIs may vary greatly for different class labels. Thus, in this paper we propose to generalize TAN
from 1-dependence BNC to arbitrary k-dependence one. Different sub-models of TAN are introduced
to respectively represent specific conditional dependence relationships depending on y. The Bayes
rule is applied to select the maximum of the joint probability distribution P(y, x) for classification.
Extensive experimental results reveal that the proposed algorithm, called Extensive TAN (ETAN),
achieves competitive generalization performance and outperforms several state-of-the-art BNCs such
as KDB while retaining excellent computational complexity.

2. Prior Work

A BNC is a graphical representation of the joint probability distribution P(y, x). It comprises
two components. Firstly, a directed acyclic graph G = (U ,V), where U = X ∪Y. X = {X1, · · · , Xn}
and Y respectively represent the attributes and class variable. V represents the set of arcs or direct
dependencies. Secondly, a set of parameters, which are usually conditional probability distributions
for each attribute in U . Given a training data set D, the goal of learning a BNC is to find the Bayesian
network B that best represents P(u) or P(y, x) and predicts the class label for an unlabeled instance by
selecting arg maxy P(y, x). According to the chain rule of joint probability, P(y, x) is calculated by

P(u) = P(y, x) = P(y)P(x1|y)P(x2|x1, y) · · · P(xn|x1, · · · , xn−1, y), (2)

For discrete probability distributions P(u) and Q(u), the Kullback–Leibler divergence (also called
relative entropy) is a measure of distance between these two probability distributions and is defined
to be [14]

KL(P||Q) = ∑
u

P(u) log
P(u)
Q(u)

= HQ(U )− HP(U ) (3)

It is the expectation of the logarithmic difference between P(u) and Q(u), where the expectation
is taken using P(u). In other words, it is also the difference between HQ(U ) and HP(U ). Suppose that
B is a Bayesian network over U , PB(u) is the joint probability encoded in B, the Kullback–Leibler
divergence between the expected P(u) in Equation (2) and PB(u) is

KL(P||B) = ∑
u

P(u) log
P(u)

PB(u)
= HB(U )− HP(U ) (4)
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where HB(U ) = −∑u P(u) log PB(u). The entropy function HP(U ) is the optimal number of bits
needed to store all possible combinations of attribute values of U . Thus, KL(P||B) can measure the
difference between the information quantity carried by D and that encoded in B.

NB, which is the simplest BNC, involves no dependence in its network structure according to
conditional independence assumption [15]. Figure 1a shows an example of its network structure.
Hence, for NB, PNB(u) is calculated by

PNB(u) = P(y)P(x1|y)P(x2|y) · · · P(xn|y), (5)

Thus, HNB(U ) can be calculated by

HNB(U ) =− ∑
y,x1,··· ,xn

P(y, x1, · · · , xn)logP(y)P(x1|y)P(x2|y) · · · P(xn|y)

=− ∑
y,x1,··· ,xn

P(y, x1, · · · , xn)logP(y)− ∑
y,x1,··· ,xn

P(y, x1, · · · , xn){
n

∑
i=1

logP(xi|y)}

=−∑
y

P(y)logP(y)−
n

∑
i=1

∑
y,x1,··· ,xn

{P(y, x1, · · · , xn)logP(xi|y)}

=−∑
y

P(y)logP(y)−
n

∑
i=1

∑
y,xi

{P(y, xi)logP(xi|y)}

=H(Y) +
n

∑
i=1

H(Xi|Y)

(6)

(a) Naive Bayes (b) Tree-augmented Naive Bayes (c) k-dependence Bayesian Classifier
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Figure 1. Examples of different BNCs. (a) Naive Bayes, (b) Tree-augmented naive Bayes, (c) k-dependence
Bayesian Classifier.

The remarkable classification performance of NB has stimulated the exploration of improving its
classification performance [16]. However, the dependency relationships between attributes always
violate this assumption in many learning tasks. Many methods [17–20] attempt to improve the
classification performance of NB by relaxing its independence assumption, such as TAN.

TAN constructs the tree structure by finding a maximum weighted spanning tree [21]
(see Figure 1b). The structure is determined by extending Chow-Liu tree [22], which uses CMI to
measure the weight of arcs. The CMI between Xi and Xj given the class Y, I(Xi; Xj|Y), is defined as
follows [23],

I(Xi; Xj|Y) = ∑
xi

∑
xj

∑
y

P(xi, xj, y) log
P(xi, xj|y)

P(xi|y)P(xj|y)
(7)

For each attribute Xi ∈ X , its parent set is πi = {Xj ∈ X | Xj → Xi ∈ V}. The learning procedure
of TAN is shown in Algorithm 1.
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Algorithm 1: The Tree-augment Naive Bayes.

Input: Training data set D with attribute set X = {X1, · · · , Xn} and the class Y.
Output: TAN

1 Let G be a directed graph G = (U ,V), in which U is a set of attributes and V is a set of arcs.
2 U = {Y}, X ∗ = Ø, V =Ø, where X ∗ represents a set of attributes in G.
3 Calculate I(Xi; Xj|Y) from D for each pair of attributes.
4 Select attribute pair {X̂i, X̂j} = arg max I(Xi; Xj|Y), where Xi, Xj ∈ X .
5 X ∗ = X ∗ ∪ {X̂i, X̂j}, X = X\{X̂i, X̂j}, V = V ∪ {Y → X̂i, Y → X̂j, X̂i → X̂j}.
6 while X 6=Ø do
7 Select {X̂m, π̂m} = arg max I(Xm; πm|Y), where Xm ∈ X , πm ∈ X ∗.
8 X ∗ = X ∗ ∪ X̂m, X = X\X̂m, V = V ∪ {Y → X̂m, πm → X̂m}.
9 end

10 Calculate conditional probability distribution for a Bayesian network parameter Θ with G.
11 Let TAN be a BNC with Θ and G.
12 return TAN

To illustrate the learning process of TAN, we take dataset Balance-Scale as an example.
Dataset Balance-Scale is from the University of California Irvine (UCI) machine learning repository
and has 625 instances, 4 attributes, and 3 class labels. As a 1-dependence BNC, TAN requires that
each attribute can have at most 1 parent. In the first step we need to find the most significant
dependence between attributes. As shown in Figure 2a, I(X2; X4|Y) corresponds to the maximum of
I(Xi; Xj|Y) for any attribute pairs. Then arc X2 − X4 is added to the topology of TAN. In the second
step, we need to find the next significant dependence relationship between attributes. As shown
in Figure 2b, I(X1; X4|Y) corresponds to the maximum of I(Xi; Πi|Y) where Πi ∈ {X2, X4} and
Xi 6∈ {X2, X4}. Then arc X1 − X4 is added to the topology. The next iteration begins. As shown
in Figure 2c, I(X2; X3|Y) corresponds to the maximum of I(Xi; Πi|Y) where Πi ∈ {X1, X2, X4} and
Xi 6∈ {X1, X2, X4}. Then arc X2 − X3 is added to the topology. Finally, there exist at least 1 dependence
relationship between any attribute Xi and other attributes and the learning procedure of TAN stops.

According to the structure of TAN, PTAN(u) is calculated by

PTAN(u) = P(y)P(x1|y)P(x2|x1, y) · · · P(xn|πn, y) = P(y)P(x1|y)
n

∏
i=2

P(xi|πi, y), (8)

where πi ( i > 1) represents the parent attribute of Xi ( i > 1). Correspondingly, HTAN(U ) can be
calculated by

HTAN(U ) =− ∑
y,x1,··· ,xn

P(y, x1, · · · , xn)logP(y)P(x1|y)P(x2|x1, y) · · · P(xn|πn, y)

=− ∑
y,x1,··· ,xn

P(y, x1, · · · , xn)logP(y)− ∑
y,x1,··· ,xn

P(y, x1, · · · , xn)logP(x1|y)

− ∑
y,x1,··· ,xn

{P(y, x1, · · · , xn)
n

∑
i=2

logP(xi|πi, y)}

=−∑
y

P(y)logP(y)− ∑
y,x1

P(y, x1)logP(x1|y)− ∑
y,xi ,πi

{P(y, xi, πi)
n

∑
i=2

logP(xi|πi, y)}

=H(Y) + H(X1|Y) +
n

∑
i=2

H(Xi|πi, Y),

(9)
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According to Equation (6) and Equation (9), the difference between HNB(U ) and HTAN(U ) can be
calculated by

HNB(U )− HTAN(U ) ={H(Y) +
n

∑
i=1

H(Xi|Y)} − {H(Y) + H(X1|Y) +
n

∑
i=2

H(Xi|πi, Y)}

=
n

∑
i=2

H(Xi|Y)−
n

∑
i=2

H(Xi|πi, Y)

=
n

∑
i=2

I(Xi; πi|Y),

(10)

Y

X1 X2 X3 X4

L={X
  
, X  , X  , X }, M ={}. {X , X }= arg max I(X ; X |Y ) , where {X , X }∈ L.1 2 3 4 2 4

Add an arc from X  to X . L=L / {X , X }, M =M U{X  ,X }.42 2 4

L={X
  
,  X  }, M ={X , X }. X = arg max I(X ; X |Y ), where X ∈ L , X ∈ M.1 3

Add an arc from X  to X . L=L / X , M =M U X .

2 4

Y

X1 X2 X3 X4

i ji j

i ji j1

4 2

4 1 1 1

L={ X  }, M ={X , X , X }. X = arg max I(X ; X |Y ), where X ∈ L , X ∈ M.

Add an arc from X  to X . L=L / X , M =M U X .

j

2 3 3 3

iji4213 3

Y

X1 X2 X3 X4

(c)

(b)

(a)

Figure 2. The learning procedure of TAN on Balance-Scale.
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Thus, the difference between HNB(U ) and HTAN(U ) is the summation of 1-order CMIs that
correspond to the conditional dependence relationships among attributes. Equation (10) can clarify
why TAN applies CMI to fully describe the 1-dependence relationships in the maximum weighted
spanning tree. As TAN is a successful structure augmentation of NB, many researchers suggest that
identifying significant dependencies can help to achieve more precise classification accuracy [24,25].
Ziebart et al. [26] model the selective forest-augmented naive Bayes by allowing attributes to be
optionally dependent on the class. Jing and Pavlovi [27] presented the boosted BNC which greedily
builds the structure with the arcs with the highest value of CMI.

KDB [28] extends the network structure further by using variable k to control the attribute
dependence spectrum (see Figure 1c). KDB first sorts attributes by comparing MI I(Xi; Y). Suppose that
the attribute order is {X1, X2, · · · , Xn}, PKDB(u) is calculated by

PKDB(u) = P(y)P(x1|y)P(x2|x1, y) · · · P(xk|x1, · · · , xk−1, y)P(xk+1|Πk+1, y) · · · P(xn|Πn, y)

= P(y)P(x1|y)
k

∏
i=2

P(xi|x1, · · · , xi−1, y)
n

∏
j=k+1

P(xj|Πj, y)
(11)

where Πi is the set of k parent attributes of Xi when k < i ≤ n. Whereas when k ≥ i, Xi takes the first
i− 1 attributes in the order as its parent attributes. Correspondingly, HKDB(U ) can be calculated by

HKDB(U ) =− ∑
y,x1,··· ,xn

P(y, x1, · · · , xn)logP(y)P(x1|y)P(x2|x1, y) · · · P(xn|Πn, y)

=− ∑
y,x1,··· ,xn

P(y, x1, · · · , xn)logP(y)− ∑
y,x1,··· ,xn

P(y, x1, · · · , xn)logP(x1|y)

− ∑
y,x1,··· ,xn

k

∑
i=2

P(y, x1, · · · , xn)logP(xi|x1, · · · , xi−1, y)

− ∑
y,x1,··· ,xn

n

∑
j=k+1

P(y, x1, · · · , xn)logP(xj|Πj, y)

=−∑
y

P(y)logP(y)− ∑
y,x1

P(y, x1)logP(x1|y)−
k

∑
i=2

∑
y,x1,··· ,xi

P(y, x1, · · · , xi)logP(xi|x1, · · · , xi−1, y)

−
n

∑
j=k+1

∑
y,xj ,Πj

P(y, xj, Πj)logP(xj|Πj, y)

=H(Y) + H(X1|Y) +
k

∑
i=2

H(Xi|X1, · · · , Xi−1, Y) +
n

∑
j=k+1

H(Xj|Πj, Y)

(12)

According to Equation (6) and Equation (12), the difference between HNB(U ) and HKDB(U ) can
be calculated by

HNB(U )− HKDB(U )

={H(Y) +
n

∑
i=1

H(Xi|Y)} − {H(Y) + H(X1|Y) +
k

∑
i=2

H(Xi|X1, · · · , Xi−1, Y) +
n

∑
j=k+1

H(Xj|Πj, Y)}

=
k

∑
i=2

I(Xi; X1, · · · , Xi−1|Y) +
n

∑
j=k+1

I(Xj; Πj|Y)

(13)

Thus, the difference between HNB(U ) and HKDB(U ) is actually the summation of these CMIs of
different orders.
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Extending the network structure with high attribute dependence spectrum has become popular
to improve the classification performance of BNCs [29]. Pernkopf and Bilmes [30] establish k-graphs
via ranking attributes by means of a greedy algorithm and selecting the k best parents by scoring
each possibility with the classification accuracy. Lu and Mineichi [31] propose k-dependence classifier
chains with label-specific features and demonstrate the effectiveness of the method.

3. Extensive Tree-Augmented Naive Bayes

KDB allows us to construct classifiers at arbitrary points (values of k) along the attribute
dependence spectrum. To build an ideal KDB, we need to learn how to maximize the Kullback–Leibler
divergence shown in Equation (13). The original KDB sort attributes by comparing MI and uses
a set of 1-order CMIs (e.g., I(Xi; X1|Y), I(Xi; X2|Y) · · · , I(Xi; Xi−1|Y)) rather than one higher-order
CMI (e.g., I(Xi; X1, · · · , Xi−1|Y)) to measure the conditional dependencies between Xi and its parent
attributes. To illustrate the difference between these two measures, we take data set Census-income,
which has 299,285 instances, 41 attributes and 2 class labels, for example to learn specific KDB,
corresponding distributions of ∑Xj∈Πi

I(Xi; Xj|Y) and I(Xi; Πi|Y) are shown in Figure 3, where the
X-axis denotes the index of attributes sorted in the decreasing order of I(Xi; Πi|Y). From Figure 3,
the distribution of ∑Xj∈Πi

I(Xi; Xj|Y) differs greatly to that of I(Xi; Πi|Y), thus the former is not
appropriate to approximate the latter.

CMI or I(Xi; Xj|Y) is a popular measure to evaluate the dependency relationship between
attributes, and the maximum weighted spanning tree learned by TAN describes the most significant
dependencies in its 1-dependence structure. While I(Xi; Xj|Y) may fail to discriminate the dependency
relationships given different class labels. The definition of CMI shown in Equation (7) can be
represented as follows,

I(Xi; Xj|Y) = ∑
xi

∑
xj

∑
y

P(xi, xj, y) log
P(xi, xj|y)

P(xi|y)P(xj|y)

= ∑
y

P(y){∑
xi

∑
xj

P(xi, xj|y) log
P(xi, xj|y)

P(xi|y)P(xj|y)
}

= ∑
y

P(y)I(Xi; Xj|y)

(14)

where I(Xi; Xj|y) measures the informational correlation between Xi and Xj given specific class label
y and is defined as follows,

I(Xi; Xj|y) = ∑
xi

∑
xj

P(xi, xj|y) log
P(xi, xj|y)

P(xi|y)P(xj|y)
, (15)

From Equation (1), for restricted BNCs the most important issue is how to deeply mine the
significant conditional dependencies among attributes given class label y. Whereas from Equation (14),
CMI or I(Xi; Xj|Y) is just a simple uniform averaging of I(Xi; Xj|y), and the latter assumes that
the data set has been divided into |Y| subsets and each subset corresponds a specific class label.
To illustrate the variety of I(Xi; Xj|y) with different class labels, we present their comparison on
data set Census-income in Figure 4. As Figure 4 shows, the distribution of I(Xi; Xj|y) differs greatly
as y changes. Correspondingly the network structures, in which the conditional dependencies are
measured by I(Xi; Xj|y), should be different.
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Figure 4. I(Xi; Xj|y) with different class labels on Census-income.

According to Figures 3 and 4, ∑Xj∈Πi
I(Xi; Xj|Y) may not be able to approximate I(Xi; Πi|Y),

and to discriminate the conditional dependence between attributes, I(Xi, Xj|y) rather than I(Xi, Xj|Y)
is appropriate to measure the conditional dependencies implicated in different subspaces of training
data. Thus, motivated by the learning schemes of TAN and KDB, the structure of the proposed BNC
is just like an extension of TAN from 1-dependence BNC to arbitrary k-dependence BNC, and we
respectively learn |Y| sub-classifiers from |Y| subspaces of training data. The attributes are sorted
in such a way that the Kullback–Leibler divergence will be maximized and each attribute can have
at most k parent attributes. Supposed that the attribute order is {X1, X2, · · · , Xn}, from the chain
rule of joint probability of BNC (see Equation (2)) we know that any possible parents of attribute Xi
must be selected from {X1, X2, · · · , Xi−1}. As a k-dependence BNC, ETAN uses a heuristic search
strategy and the learning procedure of ETAN is divided into two parts: when i ≤ k + 1, all attributes
in {X1, X2, · · · , Xi−1} will be selected as the parents of Xi; when i > k + 1, only k attributes in
{X1, X2, · · · , Xi−1} will be selected as the parents of Xi. The learning procedure of one sub-model of
ETAN is shown in Algorithm 2.
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Algorithm 2: Sub-ETAN (y,k).

Input: Training data set D with attribute set X = {X1, · · · , Xn} and the specific class label y.
Output: A sub-ETAN classifier

1 Let Gy be a directed graph Gy = (Uy,Vy), in which Uy is a set of attributes and Vy is a set of arcs.
2 Uy = {Y},X ∗y = Ø; Vy =Ø; where X ∗y represents a set of attributes in Gy.
3 Calculate I(Xi; Xj|y) for each pair of attributes.
4 Select attribute pair {X̂i, X̂j} = arg max I(Xi; Xj|y), where Xi, Xj ∈ X .
5 X ∗y = X ∗y ∪ {X̂i, X̂j}, X = X\{X̂i, X̂j}, Vy = Vy ∪ {Y → X̂i, Y → X̂j, X̂i → X̂j}.
6 while X 6= Ø do
7 if X ∗y .size 6 k then
8 Select X̂m = arg max I(Xm;X ∗y |y), where Xm ∈ X .
9 X ∗y = X ∗y ∪ X̂m, X = X\X̂m, Vy = Vy ∪ {Y → X̂m,X ∗y → X̂m}.

10 else
11 Select {X̂m, Π̂m} = arg max I(Xm; Πm|y), where Xm ∈ X , Πm ⊂ X ∗y .
12 X ∗y = X ∗y ∪ X̂m, X = X\X̂m, Vy = Vy ∪ {Y → X̂m, Πm → X̂m}.
13 end
14 end
15 Calculate conditional probability distribution for a Bayesian network parameter Θy with Gy.
16 Let sub-ETAN be a BNC with Θy and Gy.
17 return sub-ETAN

To illustrate the learning process of ETAN, we also take dataset Balance-Scale as an example
and set Y = y1, k = 2. In the first step we need to find the most significant dependence between
attributes. As shown in Figure 5a, I(X3; X4|y1) corresponds to the maximum of I(Xi; Xj|y1) for any
attribute pairs. Then arc X3 − X4 is added to the topology of ETAN. In the second step, we need
to find the next significant dependence relationship between attributes. As shown in Figure 5b,
I(X2; X3, X4|y1) corresponds to the maximum of I(Xi; Πi|y1) where Πi ∈ {X3, X4} and Xi 6∈ {X3, X4}.
Then arcs X2 − X4 and X2 − X3 are added to the topology. The next iteration begins. As shown in
Figure 5c, I(X1; X3, X4|y1) corresponds to the maximum of I(Xi; Πi|y1) where Πi ∈ {X2, X3, X4} and
Xi 6∈ {X2, X3, X4}. Then arcs X1 − X3 and X1 − X4 are added to the topology. Finally, there exist
at least k dependence relationship between any attribute Xi and other attributes and the learning
procedure of ETAN stops.

For testing instance x, its class label y will correspond to one of the |Y| candidate classifiers,
whose structure may lead to the maximum of joint probability P(y, x), i.e., y∗ = arg max P(y, x|BNC).
The prediction procedure of our proposed method, the extensive tree-augmented naive Bayes, is shown
in Algorithm 3.
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Figure 5. The learning procedure of ETAN with k = 2 on Balance-Scale.
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Algorithm 3: The Extensive tree-augmented naive Bayes (ETAN).

Input: Training data set D with attribute set X = {X1, · · · , Xn} and the class Y and a test
instance x = (x1, · · · , xn), and the parameter k.

Output: The predicted class label y∗

1 Let B be the model space of BNCs. Each sub-model is represented by Bi, 1 ≤ i ≤ |Y|, where
|Y| represents the number of class labels in ΩY.

2 for i = 1 to |Y| do
3 Bi = Sub-ETAN(yi, k) /*Algorithm 2*/
4 y∗i = arg max P(yi, x|Bi).
5 end
6 Select y∗ = arg max P(y∗i , x|Bi), where 1 ≤ i ≤ |Y|.
7 return y∗

4. Experimental Results

We compare the performance of our proposed methods with other algorithms. All experiments
are carried out on 40 data sets from UCI machine learning repository. Table 1 shows the details of each
data set used, including the number of instances, attributes, and the class. These data sets are arranged
in the order of the number of instances. For each data set, numeric attributes are discretized using
Minimum Description Length discretization [32]. To allow the proposed algorithm to be compared
with Weka’s algorithms, missing values for qualitative attributes are replaced with modes and those
for quantitative attributes are replaced with means from the training data.

Table 1. Data sets.

No. Data Set Ins. Att. Class No. Data Set Inst. Att. Class

1 Labor 57 16 2 21 Vowel 990 13 11
2 Labor-Negotiations 57 16 2 22 Led 1000 7 10
3 Lymphography 150 4 3 23 Car 1728 6 4
4 Iris 150 4 3 24 Hypothyroid 3163 25 2
5 Hungarian 294 13 2 25 Dis 3772 29 2
6 Heart-Disease-C 303 13 2 26 Sick 3772 29 2
7 Soybean-Large 307 35 19 27 Abalone 4177 8 3
8 Ionosphere 351 34 2 28 Spambase 4601 57 2
9 House-Votes-84 435 16 2 29 Waveform-5000 5000 40 3

10 Musk1 476 166 2 30 Page-Blocks 5473 10 5
11 Cylinder-Bands 540 39 2 31 Optdigits 5620 64 10
12 Chess 551 39 2 32 Satellite 6435 36 6
13 Syncon 600 60 6 33 Mushrooms 8124 22 2
14 Balance-Scale 625 4 3 34 Thyroid 9169 29 20
15 Soybean 683 35 19 35 Letter-Recog 20000 26 2
16 Credit-A 690 15 2 36 Adult 48842 14 2
17 Breast-Cancer-W 699 9 2 37 Connect-4 67557 42 3
18 Pima-Ind-Diabetes 768 8 2 38 Waveform 100000 21 3
19 Vehicle 846 18 4 39 Census-Income 299285 41 2
20 Anneal 898 38 6 40 Poker-Hand 1025010 10 10

The following algorithms are compared for experimental study,

• NB, naive Bayes.
• TAN, standard tree-augmented naive Bayes.
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• KDB, k-dependence Bayesian classifier with k = 2.
• LR, Logistic Regression.
• ETAN, Extensive TAN with k = 2.
• AODE, averaged one-dependence estimators [33].
• WAODE, weighted averaged one-dependence estimators [34].

In machine learning, zero-one loss is the most common function to measure the classification
performance. Kohavi and Wolpert [35] presented a bias-variance decomposition of zero-one loss
for analyzing supervised learning scenarios. Bias represents the systematic component of error,
which measures how closely the classifier can describe surfaces for a data set. Variance represents
the component of error that stems from sampling, which represents the sensitivity of the classifier to
changes in training data. The estimation of these measures is using 10-fold cross validation to provide
an accurate evaluation of the performance of algorithms. The experimental results of zero-one loss,
bias and variance are shown in Tables A1–A3 respectively in Appendix A. Statistically, we employ
win/draw/loss when two algorithms are compared with respect to a performance measure. A win
and a draw respectively indicate that the algorithm has significantly and not significantly lower error
than the comparator. We assess a difference as significant if the outcome of a one-tailed binomial
sign test is less than 0.05. Base probability estimates with M-estimation which leads to more accurate
probabilities are applied in our paper, where the value of M is 1 [36].

4.1. ETAN vs. BNCs

In this section, we present experimental results of our proposed algorithms, ETAN. Table 2
displays the win/draw/loss records summarizing the relative zero-one loss, bias, and variance of
different algorithms. Cell [i, j] in Table 2 contains win/draw/loss records for the BNC on row i against
the BNC on column j.

Table 2. The records of win/draw/loss for BNCs and our algorithms.

BNC NB TAN KDB AODE WAODE

TAN 27/5/8 - - - -

KDB 25/10/5 16/13/11 - - -

Zero-one loss AODE 29/8/3 13/15/12 13/14/13 - -

WAODE 28/7/5 19/14/7 18/13/9 14/19/7 -

ETAN 30/6/4 21/11/8 19/12/9 18/13/9 15/15/10

TAN 28/5/7 - - - -

KDB 26/8/6 18/14/8 - - -

Bias AODE 31/7/2 14/10/16 13/6/21 - -

WAODE 24/2/14 19/4/17 18/4/18 18/4/18 -

ETAN 32/4/4 18/14/8 9/19/12 20/13/7 19/3/18

TAN 6/2/32 - - - -

KDB 9/2/29 10/7/23 - - -

Variance AODE 10/11/19 30/3/7 29/3/8 - -

WAODE 12/5/22 21/3/16 21/1/18 12/4/24 -

ETAN 4/5/31 15/8/17 24/6/10 3/6/31 18/3/19

As shown in Table 2, ETAN respectively performs significantly better than NB on 28 datasets in
terms of zero-one loss. In particular, ETAN shows obvious advantages when compared with TAN
(19 wins). ETAN has a clear edge over KDB with win/draw/loss records of 17/14/9. Ensemble of
classifiers, e.g., AODE and WAODE, brings improvement in accuracy in the sense that small variations
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in the training set would lead them to produce very different models, which help achieve higher
classification accuracy compared to these single-structure classifiers. ETAN is also an ensemble but has
higher attribute dependence spectrum than AODE or WAODE. It retains the advantage over AODE
and WAODE in terms of zero-one loss, although less significantly. As structure complexity increases,
ETAN uses higher-order CMI to measure the high-dependence relationships that may help to improve
the classification performance.

The win/draw/loss records of bias and variance are also shown in Table 2. Bias-variance analysis
of BNCs is given in the following discussion. By modeling BNCs with respect to the class labels, ETAN
makes full use of the training data. For bias, ETAN performs better than NB (32/4/4). When ETAN is
compared with 1-dependence classifier, ETAN beats TAN on 17 datasets and loses on 8 datasets. As each
sub-model in ETAN is k-dependence classifier, ETAN beats AODE on 20 datasets. It indicates that BNCs
with more interdependencies can perform better in terms of bias. Variance-wise, NB performs the best,
because the structure of NB is definite and insensitive to variations in training data. For single-structure
BNCs, higher-dependence BNCs (e.g., KDB) performs worse than lower-dependence BNCs (e.g., TAN).
This also holds for ensemble classifiers, and ETAN performs worse than AODE and WAODE.
The reason may be that further dependence discovery will result in overfitting.

ETAN is a structural augmentation of TAN where every attribute takes the class variable and
at most k other attributes as its parents. k-order CMI is introduced to measure the conditional
dependencies among attributes and the final structure is an extended maximum spanning tree.
This alleviates some of NB’s independence assumption and therefore reduces its bias at the expense
of increasing its variance. As can be seen from Table 2, ETAN performs better in terms of variance
than NB on 4 datasets, i.e., Anneal, Vowel, Dis and Mushrooms. Each dataset has smaller number of
instances and larger number of attributes. That may lead to sparsely distributed data and imprecise
estimate of probability distribution. For lower quantities of data, the lower variance results in lower
error for ETAN, while for larger quantities of data the lower bias results in lower error. ETAN may
underfit the sparsely distributed training data that will lead to lower variance and then higher
classification accuracy. The ideal datasets on which ETAN has better variance prediction accuracy are
those with small data quantity and sparse data. For example, dataset Anneal has only 898 instances
but 38 attributes and 6 class labels.

4.2. ETAN vs. Logistic Regression (LR)

In this section, our proposed algorithms are compared with the state-of-the-art algorithm,
Logistic Regression (LR). LR can be viewed as a partially parametric approach [37], hence, a BNC
can be mapped to a LR model [38]. We use LR’s implementation in Weka, an open source provided
by the University of Waikato for machine learning. Weka offers an improved implementation of LR,
which use a quasi-Newton to search for the optimized values of attributes and considers the instance
weights. The experimental results in terms of zero-one one loss, bias and variance have been shown in
the fifth column of Tables A1–A3 in Appendix A. Table 3 shows the win/draw/loss results. Due to the
computational constraints of LR, the size of data sets has an obvious effect on its training time; hence,
we have not been able to learn the classification models for the two largest data sets. That is why the
sum of the number of all cells is exactly 38.

Table 3. The records of win/draw/loss for LR and our algorithms.

LR

Zero-one loss 26/4/8

ETAN Bias 22/5/11

Variance 21/3/14
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As we can see from Table 3, ETAN beats LR on 26 data sets, which means ETAN achieves better
classification performance than LR. ETAN results in not only better bias performance on 22 data sets
but also better variance performance on 21 data sets. In the other words, ETAN is difficult to be
beaten by LR.

To further illustrate the advantages of our algorithms, we present the comparison results with
respect to zero-one loss in Figure 6, where the X-axis represents the zero-one loss results of ETAN
and the Y-axis represents those of LR. Most of the points in Figure 6 are above the diagonal lines,
which means that our algorithms have shown better classification performance in general. LR is a
popular binary classifier and attempts to predict outcomes based on a set of independent attributes.
Among those data sets which correspond to the points under the diagonal lines, most of them have 2
class labels, less than 1000 instances and at least 8 attributes. Obviously, the sparsely distributed data
and binary classification may be the main reasons why LR performs better. However, for data sets
containing non-binary attributes, ETAN allows us to build (more expressive) non-linear classifiers,
which is impossible for LR, unless one “binarizes” all attributes and this may artificially introduce noise.

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

ETAN

L
R

Figure 6. Comparison between LR and ETAN in terms of zero-one loss.

4.3. Comparison of All Algorithms

To compare multiple algorithms over multiple data sets, Friedman test is used in the following
discussion, which ranks the algorithms for each data set [39]. We calculate the rank of each algorithm
for each data set separately (assign average ranks in case of tie). The null hypothesis is that there is no
significant difference in the average ranks. The Friedman statistic is distributed according to χ2

F with
t− 1 degrees of freedom. For any level of significance α, the null hypothesis will be rejected if χ2

F > χ2
α.

The critical value of χ2
α for α = 0.05 with t− 1 = 6 degrees of freedom is 14.07. The Friedman statistic

for zero-one loss is 37.90. Therefore, the null hypothesis is rejected.
As the null hypothesis is rejected, we perform Nemenyi test which is used to analyze which

pairs of algorithms are significantly different [40]. If the difference between the average ranks of two
algorithms is less than the critical difference (CD), their performance is significantly different. For these
7 algorithms and 38 data sets, the value of CD is 1.462.

The comparison of all algorithms against each other with Nemenyi test in terms of zero-one loss
is shown in Figure 7. We plot the algorithms on the left line according to average ranks, the higher
the position of algorithms, the lower average ranks will be, hence the better performance. As we can
see, the rank of ETAN is significantly better than that of other algorithms. WAODE and AODE also
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achieve lower average rank than KDB, TAN, and NB. It indicates that ensemble classifiers may help to
improve performance of the single-structure classifiers. The advantage of ETAN over ADOE and that
of KDB over TAN may be attributed to the increasing attribute dependence spectrum.

1

2

3

4

5

6

7

ETAN

WADOE

ADOE
KDB
TAN

LR

NB

CD

Figure 7. Nemenyi test for all algorithms.

5. Conclusions

Our work was primarily motivated by the consideration that the structure difference between NB
and its variations can be measured by different orders of CMIs in terms of Kullback–Leibler divergence,
and conditional dependencies between attributes may vary greatly for different class labels. In this
paper, we provide a novel learning algorithm, ETAN, which extends TAN to arbitrary k-dependence
BNC. The final network structure is similar to an extended version of maximum weighted spanning tree
and corresponds to the maximum of sum of CMIs. ETAN substantially achieves better performance
with respect to different evaluation functions and is highly competitive with the state-of-the-art
higher-dependence BNC, e.g., KDB.
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Appendix A. Detailed Experimental Results

Table A1. Experimental results of zero-one loss.

Data Set NB TAN KDB LR ETAN AODE WAODE

Labor 0.0289 0.0211 0.0279 0.0211 0.0274 0.0205 0.0200

Labor-Negotiations 0.0505 0.0763 0.0553 0.0422 0.0237 0.0268 0.0268

Lymphography 0.0902 0.0976 0.1041 0.1422 0.0814 0.0853 0.0951

Iris 0.0590 0.0550 0.0656 0.0343 0.0760 0.0626 0.0624

Hungarian 0.1646 0.1454 0.1480 0.1057 0.1456 0.1597 0.1611

Heart-Disease-C 0.1297 0.1263 0.1299 0.1300 0.1300 0.1171 0.1092

Soybean-Large 0.1070 0.1275 0.1086 0.1104 0.0964 0.0812 0.0655

Ionosphere 0.1220 0.0800 0.0855 0.1117 0.0817 0.0903 0.0061

House-Votes-84 0.0899 0.0410 0.0258 0.0307 0.0406 0.0518 0.0406

Musk1 0.1847 0.1563 0.1535 0.1357 0.1527 0.1670 0.1501

Cylinder-Bands 0.2000 0.3242 0.1939 0.1863 0.1746 0.1684 0.1286

Chess 0.1413 0.1427 0.1119 0.0832 0.1192 0.1380 0.0180

Syncon 0.0516 0.0203 0.0314 0.1123 0.0339 0.0334 0.1827

Balance-Scale 0.1840 0.1843 0.1902 0.0753 0.1877 0.1905 0.0503

Soybean 0.1015 0.0504 0.0491 0.0656 0.0622 0.0690 0.0900

Credit-A 0.0912 0.1171 0.1137 0.1279 0.1266 0.0892 0.0953

Breast-Cancer-W 0.0187 0.0315 0.0449 0.0375 0.0263 0.0243 0.1941

Pima-Ind-Diabetes 0.1957 0.1946 0.1944 0.1898 0.1905 0.1935 0.2398

Vehicle 0.3330 0.2384 0.2494 0.1540 0.2482 0.2435 0.0194

Anneal 0.0354 0.0195 0.0073 0.0788 0.0186 0.0180 0.2104

Vowel 0.3301 0.1931 0.1745 0.1688 0.2135 0.2268 0.1811

Led 0.2322 0.2247 0.2317 0.2211 0.2348 0.2327 0.3766

Car 0.0937 0.0478 0.0387 0.0536 0.0524 0.0597 0.0633

Hypothyroid 0.0116 0.0105 0.0096 0.0181 0.0095 0.0094 0.0315

Dis 0.0165 0.0194 0.0191 0.0195 0.0194 0.0163 0.0078

Sick 0.0246 0.0208 0.0198 0.0277 0.0215 0.0221 0.3212

Abalone 0.4180 0.3134 0.3033 0.3613 0.3089 0.3201 0.0574

Spambase 0.0929 0.0571 0.0497 0.0560 0.0488 0.0631 0.1184

Waveform-5000 0.1762 0.1232 0.1157 0.1207 0.1122 0.1233 0.2172

Page-Blocks 0.0451 0.0306 0.0280 0.0282 0.0259 0.0259 0.0224

Optdigits 0.0685 0.0275 0.0250 0.0382 0.0182 0.0203 0.0902

Satellite 0.1746 0.0948 0.0808 0.1064 0.0834 0.0889 0.0002

Mushrooms 0.0237 0.0001 0.0001 0.0000 0.0001 0.0004 0.0561

Thyroid 0.0994 0.0572 0.0553 0.0999 0.0535 0.0658 0.0561

Letter-Recog 0.2207 0.1032 0.1387 0.1945 0.0569 0.0806 0.0892

Adult 0.1649 0.1312 0.1220 0.1394 0.1215 0.1440 0.0006

Connect-4 0.2660 0.2253 0.2022 0.2279 0.1981 0.2279 0.0158

Waveform 0.0219 0.0152 0.0210 0.0267 0.0140 0.0157 0.3068

Census-Income 0.2303 0.0544 0.0421 - 0.0450 0.0859 0.2083

Poker-Hand 0.4979 0.2865 0.1326 - 0.4040 0.4217 0.1716
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Table A2. Experimental results of Bias.

Data Set NB TAN KDB LR ETAN AODE WAODE

Labor 0.0289 0.0211 0.0279 0.0211 0.0274 0.0205 0.0200

Labor-Negotiations 0.0505 0.0763 0.0553 0.0422 0.0237 0.0268 0.0268

Lymphography 0.0902 0.0976 0.1041 0.1422 0.0814 0.0853 0.0951

Iris 0.0590 0.0550 0.0656 0.0343 0.0760 0.0626 0.0624

Hungarian 0.1646 0.1454 0.1480 0.1057 0.1456 0.1597 0.1611

Heart-Disease-C 0.1297 0.1263 0.1299 0.1300 0.1300 0.1171 0.1092

Soybean-Large 0.1070 0.1275 0.1086 0.1104 0.0964 0.0812 0.0655

Ionosphere 0.1220 0.0800 0.0855 0.1117 0.0817 0.0903 0.0061

House-Votes-84 0.0899 0.0410 0.0258 0.0307 0.0406 0.0518 0.0406

Musk1 0.1847 0.1563 0.1535 0.1357 0.1527 0.1670 0.1501

Cylinder-Bands 0.2000 0.3242 0.1939 0.1863 0.1746 0.1684 0.1286

Chess 0.1413 0.1427 0.1119 0.0832 0.1192 0.1380 0.0180

Syncon 0.0516 0.0203 0.0314 0.1123 0.0339 0.0334 0.1827

Balance-Scale 0.1840 0.1843 0.1902 0.0753 0.1877 0.1905 0.0503

Soybean 0.1015 0.0504 0.0491 0.0656 0.0622 0.0690 0.0900

Credit-A 0.0912 0.1171 0.1137 0.1279 0.1266 0.0892 0.0953

Breast-Cancer-W 0.0187 0.0315 0.0449 0.0375 0.0263 0.0243 0.1941

Pima-Ind-Diabetes 0.1957 0.1946 0.1944 0.1898 0.1905 0.1935 0.2398

Vehicle 0.3330 0.2384 0.2494 0.1540 0.2482 0.2435 0.0194

Anneal 0.0354 0.0195 0.0073 0.0788 0.0186 0.0180 0.2104

Vowel 0.3301 0.1931 0.1745 0.1688 0.2135 0.2268 0.1811

Led 0.2322 0.2247 0.2317 0.2211 0.2348 0.2327 0.3766

Car 0.0937 0.0478 0.0387 0.0536 0.0524 0.0597 0.0633

Hypothyroid 0.0116 0.0105 0.0096 0.0181 0.0095 0.0094 0.0315

Dis 0.0165 0.0194 0.0191 0.0195 0.0194 0.0163 0.0078

Sick 0.0246 0.0208 0.0198 0.0277 0.0215 0.0221 0.3212

Abalone 0.4180 0.3134 0.3033 0.3613 0.3089 0.3201 0.0574

Spambase 0.0929 0.0571 0.0497 0.0560 0.0488 0.0631 0.1184

Waveform-5000 0.1762 0.1232 0.1157 0.1207 0.1122 0.1233 0.2172

Page-Blocks 0.0451 0.0306 0.0280 0.0282 0.0259 0.0259 0.0224

Optdigits 0.0685 0.0275 0.0250 0.0382 0.0182 0.0203 0.0902

Satellite 0.1746 0.0948 0.0808 0.1064 0.0834 0.0889 0.0002

Mushrooms 0.0237 0.0001 0.0001 0.0000 0.0001 0.0004 0.0561

Thyroid 0.0994 0.0572 0.0553 0.0999 0.0535 0.0658 0.0561

Letter-Recog 0.2207 0.1032 0.1387 0.1945 0.0569 0.0806 0.0892

Adult 0.1649 0.1312 0.1220 0.1394 0.1215 0.1440 0.0006

Connect-4 0.2660 0.2253 0.2022 0.2279 0.1981 0.2279 0.0158

Waveform 0.0219 0.0152 0.0210 0.0267 0.0140 0.0157 0.3068

Census-Income 0.2303 0.0544 0.0421 - 0.0450 0.0859 0.2083

Poker-Hand 0.4979 0.2865 0.1326 - 0.4040 0.4217 0.1716
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Table A3. Experimental results of Variance.

Data Set NB TAN KDB LR ETAN AODE WAODE

Labor 0.0395 0.0632 0.0721 0.0328 0.0779 0.0268 0.0221

Labor-Negotiations 0.0653 0.1395 0.1289 0.0655 0.0868 0.0626 0.0626

Lymphography 0.0343 0.1106 0.1408 0.1212 0.0961 0.0412 0.0478

Iris 0.0390 0.0510 0.0364 0.0327 0.0460 0.0394 0.0396

Hungarian 0.0201 0.0556 0.0561 0.0751 0.0411 0.0270 0.0317

Heart-Disease-C 0.0248 0.0479 0.0582 0.0920 0.0591 0.0304 0.0383

Soybean-Large 0.0783 0.1127 0.0982 0.1542 0.0899 0.0747 0.0855

Ionosphere 0.0242 0.0414 0.0581 0.0946 0.0448 0.0319 0.0242

House-Votes-84 0.0066 0.0170 0.0197 0.0714 0.0083 0.0068 0.0123

Musk1 0.1108 0.1191 0.1320 0.1691 0.1157 0.1153 0.1010

Cylinder-Bands 0.0656 0.0724 0.0750 0.1437 0.0888 0.0827 0.0364

Chess 0.0401 0.0491 0.0531 0.0791 0.0578 0.0385 0.0230

Syncon 0.0204 0.0222 0.0301 0.1764 0.0246 0.0161 0.0913

Balance-Scale 0.0848 0.0941 0.0872 0.0339 0.0863 0.0854 0.0334

Soybean 0.0302 0.0593 0.0439 0.0839 0.0395 0.0288 0.0321

Credit-A 0.0249 0.0555 0.0768 0.0737 0.0673 0.0269 0.0264

Breast-Cancer-W 0.0010 0.0372 0.0504 0.0395 0.0376 0.0118 0.0700

Pima-Ind-Diabetes 0.0715 0.0663 0.0689 0.0425 0.0697 0.0729 0.1276

Vehicle 0.1120 0.1297 0.1283 0.0797 0.1330 0.1246 0.0161

Anneal 0.0168 0.0156 0.0152 0.0593 0.0139 0.0118 0.0604

Vowel 0.2542 0.2466 0.2325 0.2239 0.2310 0.2465 0.2489

Led 0.0333 0.0536 0.0565 0.0640 0.0460 0.0372 0.1106

Car 0.0520 0.0375 0.0434 0.0385 0.0427 0.0431 0.0509

Hypothyroid 0.0031 0.0029 0.0024 0.0062 0.0039 0.0026 0.0083

Dis 0.0069 0.0006 0.0011 0.0038 0.0009 0.0048 0.0056

Sick 0.0047 0.0052 0.0043 0.0084 0.0063 0.0038 0.1543

Abalone 0.0682 0.1690 0.1769 0.0746 0.1679 0.1536 0.0111

Spambase 0.0092 0.0157 0.0214 0.0243 0.0177 0.0098 0.0420

Waveform-5000 0.0259 0.0687 0.0843 0.0310 0.0693 0.0403 0.1311

Page-Blocks 0.0135 0.0144 0.0177 0.0123 0.0139 0.0111 0.0137

Optdigits 0.0153 0.0185 0.0254 0.0752 0.0162 0.0133 0.0364

Satellite 0.0139 0.0368 0.0455 0.0517 0.0395 0.0325 0.0001

Mushrooms 0.0043 0.0002 0.0002 0.0001 0.0001 0.0001 0.0239

Thyroid 0.0205 0.0252 0.0272 0.0453 0.0239 0.0202 0.0241

Letter-Recog 0.0471 0.0591 0.0113 0.0422 0.0523 0.0709 0.0417

Adult 0.0069 0.0165 0.0285 0.0108 0.0236 0.0104 0.0004

Connect-4 0.0156 0.0149 0.0309 0.0127 0.0373 0.0199 0.0023

Waveform 0.0009 0.0053 0.0037 0.0024 0.0059 0.0023 0.0632

Census-Income 0.0052 0.0100 0.0110 - 0.0144 0.0138 0.0224

Poker-Hand 0.0000 0.0424 0.0633 - 0.0440 0.0273 0.0602



Entropy 2019, 21, 721 19 of 20

References

1. Acid, S.; Campos, L.M.; Castellano, J.G. Learning Bayesian network classifiers: Searching in a space of
partially directed acyclic graphs. Mach. Learn. 2005, 59, 213–235. [CrossRef]

2. Hand, D.J.; Yu, K. Idiot’s Bayes not so stupid after all? Int. Stat. Rev. 2001, 69, 385–398.
3. Kontkanen, P.; Myllymaki, P.; Silander, T.; Tirri, H. BAYDA: Software for Bayesian classification and feature

selection. In Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD-1998);
AAAI Press: Menlo Park, CA, USA, 1998; pp. 254–258.

4. Langley, P.; Sage, S. Induction of selective Bayesian classifiers. In Uncertainty Proceedings 1994;
Morgan Kaufmann: Burlington, MA, USA, 1994; pp. 399–406.

5. Ekdahl, M.; Koski, T. Bounds for the loss in probability of correct classification under model based
approximation. J. Mach. Learn. Res. 2006, 7, 2449–2480.

6. Yang, Y.; Webb, G.I.; Cerquides, J. To select or to weigh: A comparative study of linear combination schemes
for superparent-one-dependence estimators. IEEE Trans. Knowl. Data Eng. 2007, 19, 1652–1665. [CrossRef]

7. Pernkopf, F.; Wohlmayr, M. Stochastic margin-based structure learning of Bayesian network classifiers.
Pattern Recognit. 2013, 46, 464–471. [CrossRef] [PubMed]

8. Xiao, J.; He, C.; Jiang, X. Structure identification of Bayesian classifiers based on GMDH. Knowl. Based Syst.
2009, 22, 461–470. [CrossRef]

9. Louzada, F.; Ara, A. Bagging k-dependence probabilistic networks: An alternative powerful fraud
detection tool. Expert Syst. Appl. 2012, 39, 11583–11592. [CrossRef]

10. Pazzani, M.; Billsus, D. Learning and revising user profiles: The identification of interesting web sites.
Mach. Learn. 1997, 27, 313–331. [CrossRef]

11. Hall, M.A. Correlation-Based Feature Selection for Machine Learning. Ph.D. Thesis, University of Waikato,
Hamilton, New Zealand, 1999.

12. Jiang, L.X.; Cai, Z.H.; Wang, D.H.; Zhang, H. Improving tree augmented naive bayes for class probability
estimation. Knowl. Based Syst. 2012, 26, 239–245. [CrossRef]

13. Grossman, D.; Domingos, P. Learning Bayesian network classifiers by maximizing conditional likelihood.
In International Conference on Machine Learning; ACM: Hyères, France, 2004.

14. Ruz, G.A.; Pham, D.T. Building Bayesian network classifiers through a Bayesian complexity monitoring
system. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2009, 223, 743–755. [CrossRef]

15. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann:
San Francisco, CA, USA, 1988.

16. Jingguo, D.; Jia, R.; Wencai, D. An improved evolutionary approach-based hybrid algorithm for Bayesian
network structure learning in dynamic constrained search space. In Neural Computing and Applications;
Springer: Berlin, Germany, 2018; pp. 1–22.

17. Jiang, L.; Zhang, L.; Li, C.; Wu, J. A Correlation-based feature weighting filter for naive bayes. IEEE Trans.
Knowl. Data Eng. 2019, 31, 201–213. [CrossRef]

18. Jiang, L.; Li, C.; Wang, S.; Zhang, L. Deep feature weighting for naive bayes and its application to text
classification. Eng. Appl. Artif. Intell. 2016, 52, 26–39. [CrossRef]

19. Zhao, Y.; Chen, Y.; Tu, K. Learning Bayesian network structures under incremental construction curricula.
Neurocomputing 2017, 258, 30–40. [CrossRef]

20. Wu, J.; Cai, Z. A naive Bayes probability estimation model based on self-adaptive differential evolution.
J. Intell. Inf. Syst. 2014, 42, 671–694. [CrossRef]

21. Friedman, N.; Dan, G.; Goldszmidt, M. Bayesian network classifiers. Mach. Learn. 1997, 29, 131–163.
[CrossRef]

22. Chow, C.K.; Liu, C.N. Approximating discrete probability distributions dependence trees. IEEE Trans.
Inf. Theory 1968, 14, 462–467. [CrossRef]

23. Shannon, C.E.; Weaver, W. The mathematical theory of communication. Bell Labs Tech. J. 1950, 3, 31–32.
[CrossRef]

24. Bielza, C. Discrete Bayesian network classifiers: A survey. ACM Comput. Surv. (CSUR) 2014, 47, 1–43.
[CrossRef]

25. Francois, P.; Wray, B.; Webb, G.I. Accurate parameter estimation for Bayesian network classifiers using
hierarchical Dirichlet processes. Mach. Learn. 2018, 107, 1303–1331.

http://dx.doi.org/10.1007/s10994-005-0473-4
http://dx.doi.org/10.1109/TKDE.2007.190650
http://dx.doi.org/10.1016/j.patcog.2012.08.007
http://www.ncbi.nlm.nih.gov/pubmed/24511159
http://dx.doi.org/10.1016/j.knosys.2009.06.005
http://dx.doi.org/10.1016/j.eswa.2012.04.024
http://dx.doi.org/10.1023/A:1007369909943
http://dx.doi.org/10.1016/j.knosys.2011.08.010
http://dx.doi.org/10.1243/09544062JMES1243
http://dx.doi.org/10.1109/TKDE.2018.2836440
http://dx.doi.org/10.1016/j.engappai.2016.02.002
http://dx.doi.org/10.1016/j.neucom.2017.01.092
http://dx.doi.org/10.1007/s10844-013-0279-y
http://dx.doi.org/10.1023/A:1007465528199
http://dx.doi.org/10.1109/TIT.1968.1054142
http://dx.doi.org/10.1063/1.3067010
http://dx.doi.org/10.1145/2576868


Entropy 2019, 21, 721 20 of 20

26. Ziebart, B.D.; Dey, A.K.; Bagnell, J.A. Learning selectively conditioned forest structures with applications to
DBNs and classification. In Proceedings of the 23rd Conference Annual Conference on Uncertainty in Artificial
Intelligence; AUAI press: Corvallis, OR, USA, 2007; pp. 458–465.

27. Jing, Y.; Pavlovi, V.; Rehg, J.M. Boosted Bayesian network classifiers. Mach. Learn. 2008, 73, 155–184.
[CrossRef]

28. Sahami, M. Learning limited dependence Bayesian classifiers. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining; AAAI: Menlo Park, CA, USA, 1996; pp. 335–338.

29. Luo, L.; Yang, J.; Zhang, B. Nonparametric Bayesian correlated group regression with applications to image
classification. IEEE Trans. Neural Netw. Learn. Syst. 2018, 99, 1–15. [CrossRef] [PubMed]

30. Pernkopf, F.; Bilmes, J.A. Efficient heuristics for discriminative structure learning of Bayesian network
classifiers. J. Mach. Learn. Res. 2010, 11, 2323–2360.

31. Sun, L.; Kudo, M. Optimization of classifier chains via conditional likelihood maximization. Pattern Recognit.
2018, 74, 503–517. [CrossRef]

32. Fayyad, U.M.; Irani, K.B. Multi-interval discretization of continuous valued attributes for classification
learning. In Proceedings of the 5th International Joint Conference on Artificial Intelligence; Organ Kaufmann
Publishers Inc.: San Francisco, CA, USA, 1993; pp. 1022–1029.

33. Webb, G.I.; Boughton, J.R.; Wang, Z. Not so naive Bayes: Aggregating one-dependence estimators. Mach. Learn.
2005, 58, 5–24. [CrossRef]

34. Jiang, L.; Zhang, H. Weightily averaged one-dependence estimators. In Proceedings of the 9th Biennial Pacific
Rim International Conference on Artificial Intelligence; Springer: Berlin, Germany, 2006; pp. 970–974.

35. Kohavi, R.; Wolpert, D. Bias plus variance decomposition for zero-one loss functions. In Proceedings of the
Thirteenth International Conference on Machine Learning; organ Kaufmann Publishers Inc.: San Francisco, CA,
USA, 1996; pp. 275–283.

36. Cestnil, B. Estimating probabilities: A crucial task in machine learning. Proc. Ninth Eur. Conf. Artif. Intell.
1990, 6–10, 147–149.

37. McLachlan, G. Discriminant Analysis and Statistical Pattern Recognition; John Wiley & Sons: Hoboken, NJ,
USA, 2004.

38. Roos, T.; Wettig, H.; Grunwald, P. On discriminative Bayesian network classifiers and logistic regression.
Mach. Learn. 2005, 59, 267–296. [CrossRef]

39. Demisar, J.; Schuurmans, D. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res.
2006, 7, 1–30.

40. Nemenyi, P. Distribution-Free Multiple Comparisons. Ph.D. Thesis, Princeton University, Princenton, NJ,
USA, 1963.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10994-008-5065-7
http://dx.doi.org/10.1109/TNNLS.2018.2797539
http://www.ncbi.nlm.nih.gov/pubmed/29994456
http://dx.doi.org/10.1016/j.patcog.2017.09.034
http://dx.doi.org/10.1007/s10994-005-4258-6
http://dx.doi.org/10.1007/s10994-005-0471-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Prior Work
	Extensive Tree-Augmented Naive Bayes
	Experimental Results
	ETAN vs. BNCs
	ETAN vs. Logistic Regression (LR)
	Comparison of All Algorithms

	Conclusions
	Detailed Experimental Results
	References

