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Abstract: In a neural network, an autapse is a particular kind of synapse that links a neuron
onto itself. Autapses are almost always not allowed neither in artificial nor in biological neural
networks. Moreover, redundant or similar stored states tend to interact destructively. This paper
shows how autapses together with stable state redundancy can improve the storage capacity of
a recurrent neural network. Recent research shows how, in an N-node Hopfield neural network
with autapses, the number of stored patterns (P) is not limited to the well known bound 0.14N,
as it is for networks without autapses. More precisely, it describes how, as the number of stored
patterns increases well over the 0.14N threshold, for P much greater than N, the retrieval error
asymptotically approaches a value below the unit. Consequently, the reduction of retrieval errors
allows a number of stored memories, which largely exceeds what was previously considered possible.
Unfortunately, soon after, new results showed that, in the thermodynamic limit, given a network
with autapses in this high-storage regime, the basin of attraction of the stored memories shrinks to
a single state. This means that, for each stable state associated with a stored memory, even a single
bit error in the initial pattern would lead the system to a stationary state associated with a different
memory state. This thus limits the potential use of this kind of Hopfield network as an associative
memory. This paper presents a strategy to overcome this limitation by improving the error correcting
characteristics of the Hopfield neural network. The proposed strategy allows us to form what we call
an absorbing-neighborhood of state surrounding each stored memory. An absorbing-neighborhood
is a set defined by a Hamming distance surrounding a network state, which is an absorbing because,
in the long-time limit, states inside it are absorbed by stable states in the set. We show that this
strategy allows the network to store an exponential number of memory patterns, each surrounded
with an absorbing-neighborhood with an exponentially growing size.

Keywords: recurrent neural networks; Hopfield neural networks; pattern storage

1. Introduction

Hopfield neural networks are a particular kind of recurrent neural networks (RNN), for this
reason, we may refer to them as Hopfield RNN. Hopfield RNN have several applications, [1,2].
Among others, these neural networks can be used as storage devices capable of storing patterns,
and can model “associative memory”. The general concept in this applications is that the attractor
states of these neural networks can be considered as stored patterns. This is possible because, given
sufficient time, Hopfield neural networks assign to each initial activation pattern σ̄i a final activation
pattern which can be composed by a steady state σ̄o, or a limit cycle composed of several states.
Consequently, if we set the values of the initial activation pattern σ̄i to an input vector, which we call
stimulus, we find that the network evolves from σ̄i to a final activation pattern that corresponds to
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a recovered memory pattern. Thus, in this framework, an RNN is a dynamical system, which connects
an input-stimulus to an output-memory, and can be regarded as a content addressing memory that
connects input states to output states.

This is possible because a Hopfield neural network is an RNN defined in discrete-time, and it
is a deterministic dynamical system. This is why a Hopfield RNN is completely characterized by N
neurons connected in a network formed of at most N2 edges, the weights of which form the connectivity
matrix J. The neural network’s instantaneous state is defined by a neuron activation vector σ̄, which in
Hopfield RNNs is a binary vector. The collection of all the neurons’ activation vectors σ̄ forms a discrete
space that contains all the possible 2N binary vectors. The neural activation vectors σ̄ may be separated
in three categories: states that belong to limit cycles, steady states, and transient states. Limit cycles
are neural activation states that repeat cyclically after a given number of transitions. Steady states are
states that do not change in time. Transient states are neither limit cycles nor steady states, thus they
are states that, if visited, are never visited again. Clearly, steady states may be regarded as limit cycles
of length 1. Because a Hopfield RNN has a deterministic dynamics, any state σ̄(t) can only transit into
a single state σ̄(t + 1). Consequently, any input pattern always converges to the same limit cycle or
steady state. For this reason, RNNs do not exclusively model associative memories, but more generally
RNNs model how responses are associated with stimuli in stimulus-response behaviors.

It has been shown that, if we train an RNN with Hebbian learning, in the long time limit, all the
network’s limit cycle are steady states, while, more generally, deterministic RNN may evolve to limit
cycles of length larger than 1. In conclusion, Hopfield RNNs may have interesting applications as
memory storage devices because, in principle, a Hopfield RNN can store an arbitrary number of 2N

binary vectors in a structure defined by N2 continuous parameters [3–5].
RNNs belong to a broader class of synchronous distributed systems that perform tasks

collectively [6,7]. Because RNNs offer a versatile model of stimulus response association, RNN models
are not restricted to memory storage. Indeed, neuroscientists started using RNNs to model brain
activity in different cognitive tasks. Monte et al. [8] and Carnevale et al. [9] use RNNs respectively
to model the prefrontal cortex integration of context information, and the response modulation of
the premotor cortex. The majority of approaches that use RNNs to model the storage of responses
in association with stimuli can be divided into two main categories, the “Hebbian” approach and
the innate approach. The “Hebbian” approach was proposed by Hebb himself [8]. In this approach,
the neural network starts without connections between neurons, and, at each time, a new memory
pattern is stored in the neural network, connections are added or updated to allow the new memory
pattern to become a stationary state in the network dynamics. Consequently, in these systems, we have
a recall when a state is absorbed by the correctly associated memory. Moreover, we get a recall error
when a previously stored memory fails to form a stable state. Thus, when the network activation states
are set to the memory, the network evolves outside of the memory. A limit of Hebb’s approach is
that, as new patterns are stored, they start interfering with the previously stored patterns. The second
approach is the “innate” approach [5,10], in which the neural network is innate and does not change.
New memories are added, by associating to each new memory an existing stable state through
an addressing system. Perin et al. find that innate neural assemblies can be found in the rats’ neural
cortex [10]. Moreover, they present data that shows how analogous neural assemblies from different
animals have similar connectivity properties, and they argue that these assemblies are used as building
blocks for the formation of composite complex memories. In both learning strategies, the neural
network J is represented by a set of interconnected neurons with an associated RNN model dynamics.
The major difference between the two approaches is how J develops. For either learning strategy,
the limit of the number of stimuli-response associations that can be stored in a neural network J is
given by the maximum storage capacity C which is bounded by the number of attractors in the RNN.
In this paper, we focus on a generalized form of the “Hebbian” approach in which we allow autapses
and we surround each stored memory with a neighborhood of redundant stable states. This approach
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allows us to greatly overcome the well known storage limit of the more traditional Hopfield RNN
constructed with a Hebbian approach.

The storage capacity limit of Hopfield RNNs without autapses was immediately recognized by
Amit, Gutfreund, and Sompolinsky [11,12]. This limit is linear with N because the attempt to store
a number P of memory elements larger than αcP, with αc ≈ 0.14, results in a “divergent” number
of retrieval errors (order P). In plain words, for a Hopfield RNN to be effective, the retrieval error
probability must be low, and a Hopfield RNN can only be efficient if the stored memories do not
exceed 14% of the network size. This strongly limits the application of neural networks for information
storage. Nevertheless, this observation is hard to reconcile with what we observe in randomly
generated (symmetric) neural networks, where the number of limit behaviours is exponentially large
2γN with γ = 0.29 [13,14], which leads us to believe the opposite conclusions.

After Amit et al. [11,12] results, the following research focused on how modifications of the
Hebbian rule affected the behavior of a Hopfield RNN, with the objective of finding more efficient
learning strategies. Abu-Mostafa and St. Jaques [15] claimed that, for a Hopfield model with a generic
coupling matrix, the upper bound value of the storable patterns is the number of neurons N
(i.e., P < N). Immediately afterwards, McEliece and colleagues [16], found an even more severe
upper bound when considering matrices constructed exclusively with the Hebbian dyadic form.
The authors in [16] claims that the maximum P scales as N/ log(N). More recently, the authors in [17]
discussed how to design networks of specific topologies, and how to reach αc values larger than 0.14.
Unfortunately, it still finds a bound on the number of limiting behaviours that scale linearly to N.
Clearly, the optimal storage problem is still open and how to achieve this optimal storage is still the
subject of research [18].

The authors in [19] give an analytical expression for the number of retrieval errors, and, when it
restricts itself to the region P < N, it retrieves the bound P < αcN, which is analytically predicted
in [11,12]. On the contrary, when it allows autapses, which implies that the diagonal elements in
the connectivity matrix J may be different from zero, it finds that a new region exists, with P � N,
where the number of retrieval errors decreases on increasing P. In this new region, the number of
retrieval errors reaches values lower than one, thus it finds new favorable conditions for an effective
and efficient storage of memory patterns in an RNN. Moreover, it shows that, in this region, the number
of storable patterns grows exponentially with N. In response to these results, Rocchi et al. [20] found
that, in the thermodynamic limit at P � N, the basin of attraction of the stationary states vanishes.
Thus, asymptotically, the basing of attraction of the stationary state coincides with the stationary state
itself. Once more, this observation raises a serious doubt on the effective potential of this method for
the development of realistic memory storage applications. In this paper, we discuss how to effectively
overcome this limitation.

Here, we show that we can overcome the limitations of previous storage approaches when we
introduce the concept of “memory neighborhood”, where a neighbor is a state that has a number of
flipped neural states smaller than a value k. This neighborhood forms a set of redundant network
states that are almost identical. Thus, to store a certain memory ξ, we do not use Hebbs’ rule to only
store the state ξ, but we apply Hebbs’ rule to the entire neighborhood. We find from the analytical
results and the simulations that, because these neighbor states are similar, they end up cooperating to
form a set of stable states inside the neighborhood of ξ. Each attractor from this set forms a basin of
attraction, and, altogether, the union of their basins of attraction forms a composite basin of attraction
that forces the states in the neighborhood to stay inside. We find through analytical considerations that
the optimal size of the neighborhoods includes states with neuron patterns that differ at most for 4% of
the total neurons. This allows us to store a number of memory patterns that grows exponentially with
N. Furthermore, surrounding the stored memory patterns, we form a basin of attraction that includes
all states with an activation pattern that differs at most for 4% of the neurons.
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2. How to Use Autapses to Overcome the Hebbian Memory Bound

As we discussed in the introduction, if we use autapses to overcome the P < N bound, the number
of attractors increase exponentially, but the attractors’ basins shrink until they contain only a single
stationary state. Consequently, to overcome the P < N bound with a Hopfield RNN with autapses,
without shrinking the basin of attractions, we propose a strategy based on data storage redundancy.
Thus, to generate redundancy, we construct neighborhoods of packed stable states surrounding each
memory state that we are trying to store. The states that form this neighborhood are states which are
identical to the target memory pattern, except for the activation of a small number of neurons. Once we
have a memory and its surrounding neighborhood, we sum together all the corresponding dyadic
terms for each neighbor. The reason we do this is that we expect that together these states form a region
composed entirely of absorbing states which capture the dynamics of the Hopfield RNN. We find from
the analytical discussion and from the experimental validation that, for large N, these neighbor states
cooperate together absorbing the states in the neighborhood.

Given this attractor storage methodology, we show that the number of patterns with the respective
neighborhoods that we are able to store grows exponentially with N. Furthermore, we discuss that
the number of neighbors needed for an efficient and effective memory storage may be set to grow
exponentially with N, but at a slower rate than the maximum number of storable memory patterns
P. This allows for a true advantage in the use of this method. Specifically, we show that this strategy
achieves the following three properties: (i) the number of stored memory patterns scales exponentially
with N; (ii) the basin of attraction size grows exponentially with N; and (iii) the stored patterns form
a neighborhood region that allows the recognition of the original pattern up to an estimated 4–5% of
input errors.

3. Discrete Time Hopfield RNN

RNNs’ store information in their connectivity matrix J. For each network, its matrix elements
Jij represent the weight of the links between all couples i and j. If Jij = 0, the nodes i and j are
disconnected. Otherwise, if Jij 6= 0, the nodes i and j share a link. In this context, Jij quantifies how
strongly the neuron j affects the neuron i. In biological terms, Jij represents how the pre-synaptic
signal is transmuted by the dendrite, to be integrated with all the other signals incoming in the cell.
More precisely, the Jij modulus indicates the strength of the influence, and the Jij sign indicates the
excitatory/inhibitory nature of the interaction. Here, we consider a particularly simple discrete-time
RNN with McCulloch–Pitts neurons, and a sign function as the activation function. Given these
assumptions, this RNN becomes a Hopfield RNN, and follows the dynamics equation:

σi(t + 1) = θ
( N

∑
j=1

Jijσj(t)
)

, (1)

where θ(x) is a sign function or Heaviside step function (θ(x) = 1 for x ≥ 0, and θ(x) = −1, otherwise),
and σi(t) ∈ {−1, 1}. In general, connectivity matrices may be symmetric if for all i and j, Jij = Jij,
or asymmetric if there exist an i and j couple such that Jij 6= Jij. A Hopfield RNN allows for both
symmetric and asymmetric connectivity matrices.

4. Storing Patterns

Research on RNN memory storage was influenced by the pioneering observations discussed
by Hebb [21], which lead to the Hebbian rule, and the “Hebbian” approach for memory storage.
This approach emphasizes the role of “synaptic plasticity”, and is based on the concept that a neural
network is born without connections, such that, for all i and j, Jij = 0. Each time, a new memory
is stored.

New links are reinforced or added to this network. Thus, the neural network connectivity matrix
dynamically evolves as new memories are added. More specifically, in the “Hebbian” approach,
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to store a set of P memory patterns ξ̄(µ), where µ is an integer index, 1 ≤ µ ≤ P, we recursively add all
the dyadic products of each memory ξ̄(µ) with itself, and we obtain a connectivity matrix given by

Jij =
P

∑
µ=1

ξ
(µ)
i ξ

(µ)
j . (2)

As mentioned earlier, this leaning strategy has an upper limit for the number of patterns P that it is
able to store [11,12]. The number P of memory elements that can be stored must be lower than αcN,
with αC ≈ 0.14.

Figure 1 depicts the learning strategy we propose. This strategy is aimed at overcoming the αcN
limit. A given memory vector ξ̄(µ) is represented in the picture as a single point in the N-dimensional
binary space Ω = [0, 1]N . Consequently, Ω collects all possible RNN states, |Ω| = 2N . In general,
as discussed earlier, a memory is effectively stored, if it becomes a stable state, regardless of the
learning strategy we employ. Thus, given that the recall error is given by the fraction of memory
patterns that are not stable states, as more memories are effectively stored, the recall error tends to zero.
In the “Hebbian” learning approach, if P different memory patterns are stored, then the connectivity
matrix J takes the form reported in Equation (2). Figure 1 depicts two conditions that overcome the
“Hebbian” learning approach. In the upper pannel, as reported in [19], we show how, given autopses,
the number of stored memories P can be much larger than N. Furthermore, at the same time, autapses
allow a retrieval probability larger than the error probability by a factor of e in [19]. It is important
to point out that, even if greater than N, the number of stored patterns P must be smaller than 2N .
It is also important to consider that, most likely, P must be smaller than the number of average fixed
points that are present in a random symmetric fully connected matrix, which is ΩTE = 2γN with
γ = 0.29 [13]. We thus bound the maximum number of storable points with ΩTE [13]. Unfortunately,
as pointed out by Rocchi et al. [20], the basin of attraction of these points shrinks to the point that it
contains only the stable states. In the lower panel, we show how, with our approach, we overcome
this limit. Our approach consists of associating a set of neighbor vectors to each memory vector ξ̄(µ) in
order to form a cloud of surrounding neighborhood vectors similar to the original memory. To do this,
we have to choose a distance relation in order to define a neighborhood surrounding an arbitrary vector.
The distance relation that we choose is the Hamming distance, which, given two binary vectors ā and b̄,
is defined as the number of different elements such that ai 6= bj. Furthermore, we consider two binary
vectors ā and b̄ as neighbors, if they have a Hamming distance d(a, b) smaller than an integer value
k. Thus, the set of ξ̄(µ) neighbor vectors is V(µ)

k = {ξ̄(ν) ∈ Ω|d(ξ̄(µ), ξ̄(ν)) < k}, where k is an integer

parameter (k � N). Given V(µ)
k , the number of vector states that are at a Hamming distance of k or

lower is vN(k). Clearly, vN(k) is equal to the number of elements in V(µ)
k . Consequently, to add the

redundancy of all the neighbor states and with the objective of obtaining a neighborhood of attractor
stable states, we change the Hebbian rule expressed with Equation (2) with the new rule

Jij =
P

∑
µ=1

∑
ξ̄(ν)∈V(µ)

k

ξ
(ν)
i ξ

(ν)
j . (3)

In this sum, PvN(k) terms are added to form a connectivity matrix J that we expect should store P
memory states, by forming around each memory state a neighborhood of absorbing states of size vN(k).
Here, we must redefine the concept of recall error because we use a set of absorbing states instead of
single absorbing states. Thus, we define the recall error for a neighborhood V(µ)

k , as a failure to retrieve

an attractor inside V(µ)
k starting from a state inside of the neighborhood V(µ)

k . Consequently, the recall

error rate would correspond to the rate of states in V(µ)
k that evolve to attractors outside this state. Now,

we have to set k considering two constraints, k must scale with N, and the absorbing-neighborhood
must not vanish in the thermodynamic limit. Consequently, we chose β = k/N. This straightforward



Entropy 2019, 21, 726 6 of 12

storage strategy works, if and only if, for each memory pattern, there is enough “room” for all vN(k)
neighbor vector-sets. At the same time, we assume that the redundant stable states we add here should
not exceed the theoretical maximum storage capacity that we obtain in a randomly fully connected
network. Thus, to fulfill an efficient and effective memory storage, PvN(k) � ΩTE. The explicit
expression for vN(k) is given by

vN(k) =
k

∑
m=0

(
N
m

)
. (4)

Figure 1. Sketch of the vector states space of a Hopfield RNN. Each point of Ω is one of all the 2N

possible binary vectors. Among these states, 2γN with γ = 0.29 may be steady states and belong to ΩTE.
(A) In the standard approach to memory storage, each stable state is a single memory state, or a spurious
memory ξ̄(µ) ∈ ΩTE. (B) In the approach proposed here, each memory element is represented by
a neighborhood of vectors ξ̄(µ,l) ∈ ΩTE which surrounds the “seed” vector ξ̄(µ). This neighborhood is
obtained by the collection of all vectors ξ̄(ν) that differ from ξ̄(µ) of k-bits at the most. The neighborhood

of ξ̄(µ) is defined with the shorthand V(µ)
k = {ξ̄(ν) ∈ Ω|d(ξ̄(µ), ξ̄(ν)) < k}.

Unfortunately, this quantity does not have a closed expression, nevertheless, for k < N/2, we can
write a lower and upper bound of the form [22]

2NH(β)√
8Nβ(1− β)

< vN(K) < 2NH(β), (5)
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where H(β) is the binary entropy of β, H(β) = −β log2(β)− (1− β) log2(1− β). If we set aside the
logarithmic corrections which vanish in the limit for large N, the condition PvN(k) � ΩTE can be
promptly rewritten as P� Pc where Pc is expressed as

Pc = 2N[γ−H(β)], (6)

with γ = 0.29 [13]. This condition tells us that an exponentially large number of memory patterns may
be allowed providing that γ > H(β). Clearly, this condition implies β < βc = 0.051. Furthermore,
if we set

∆J(µ)ij = ∑
ξ̄(ν)∈V(µ)

k

ξ
(ν)
i ξ

(ν)
j , (7)

then the ∆J(µ)ij are the sums of the contribution of all the ξ̄(µ)’s neighbor vectors. Now, we may rewrite
Equation (3) as

Jij =
P

∑
µ=1

∆J(µ)ij . (8)

Counting the contribution of the different states that form the neighborhood, Equation (8) can be
explicitly expanded.

∆J(µ)ij =


∑k

m=0 (
N
m), if i = j,

∑k
m=0[(

N
m)− 2(N−1

m−1)− 2(N−2
m−1) + 2(N−2

m−2)], if i 6= j, ξ
(µ)
i = ξ

(µ)
j ,

∑k
m=0[−(

N
m) + 2(N−1

m−1) + 2(N−2
m−1)− 2(N−2

m−2)], otherwise.

(9)

Notice that neurons cooperate by either increasing their reciprocal tendency to align or to misalign
with each other.

5. Simulation Results

To run the simulations, we considered different values of N, and selected the values of β and P
according to Equation (6), because for P ≤ Pc, we expect from the arguments in the previous section
that we have a retrieval error close to 0. Indeed, as mentioned previously, β must be smaller than
βc = 0.051, thus we chose β = 4% because, for β = 5%, the value of Pc grows extremely slowly
and we can take advantage of the exponential scaling of P only for large values of N. Thus, as a
representative case, we show simulations for P = Pc with β = 4%. Consequently, we run our
simulation in the conditions for which we expect that most of the states in the neighborhood V(µ)

k are
recalled, which means that any state in the neighborhood evolves to an attractor in the neighborhood.

Figure 2 shows simulation results for a Hopfield RNN with a connectivity matrix J trained on
745 memories ξ̄(µ) with Equation (9). We used n = 200 and β = 4%, and consequently k = 8 and
P = Pc = 745. We define the distance dξ̄(µ) as the distance of any state from a given memory ξ̄(µ),
and the retrieval rate R(dξ̄(µ)) at a distance dξ̄(µ) as the rate of states at a certain distance dξ̄(µ) form the

memory ξ̄(µ) that in the long time limit is attracted by a stable state in the neighborhood of ξ̄(µ).
The figure shows the R(dξ̄(µ)) for all the P = 745 different stored memories, and the

average 〈R(dξ̄(µ))〉ξ̄(µ) computed over all the different memories ξ̄(µ). Given a memory ξ̄(µ) and its

neighborhood V(µ)
k , for different values of dξ̄(µ) , the rate R(dξ̄(µ)) is when possible computed extensively

and otherwise sampled, according to the following conditions. If the shell of states in a neighborhood
at a certain distance dξ̄(µ) has less then 1000 states, the recall rate R(dξ̄(µ)) is computed considering
all the states in the shell. Otherwise, for shells of states at a distance dξ̄(µ) with more than 1000 states,
only 200 states are sampled. We find that the system has a sharp transition when the state is at the
border of the memories neighborhood. This indicates that the states inside of the neighborhood are
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correctly recalled, while, on average, the states outside the neighborhood are not associated with the
neighborhood’s memory.

Figure 2. Given the neighborhood V(µ)
k of each memory ξ̄(µ), the dashed lines show how the retrieval

rate R(dξ̄(µ) ) changes for a sample of neighbors at a distance d from ξ̄(µ). The red line shows the

average of R(dξ̄(µ) ) over all ξ̄(µ). The vertical line represents the β = 4% limit which corresponds to the
neighborhood bound k = 8.

Figure 3 shows simulation results for the same Hopfield RNN as for Figure 2, given that each state
in the neighborhood is associated with an attractor stable state in the limit behavior. The figure shows
the distance of the attractor stable states D(dξ̄(µ)) for the associated states that are found at a distance

dξ̄(µ) from each memory ξ̄(µ). The figure shows D(dξ̄(µ)) for all the P = 745 different stored memories,
and the average 〈D(dξ̄(µ))〉ξ̄(µ) computed over all the different memories. D(dξ̄(µ)) is sampled as in
Figure 2.

Now, we replicated the simulation eight times for different values of N. Each time we selected
uniformly at random P = Pc solutions, and we generated the corresponding connectivity matrix J with
Equation (9), with β = 4%. Figure 4 shows the mean 〈R(dξ̄(µ))〉r,ξ̄(µ) averaged over all Hopfield RNN

replications r, and all the memories ξ̄(µ) of each replication, for different network sizes N. We find
that, for N > 160, we get the sharp transition behavior that we expected, while, for smaller N, we get
size effects that influence the stability of the states. We have three different outcomes at different
ranges. For small N < 80, the size effects do not impact the performance of the storage algorithm, and,
on the contrary, seem to increase the basin of attraction of the memories. Differently, in the middle
range, e.g., N∼100, it appears that the larger number of memories causes them to interfere with each
other, completely destroying the basin of attraction of 1 or 2 of the memories. Indeed, in this network,
sometimes one or two neighborhoods have a very low retrieval rate. Consequently, the average overall
value of 〈R(dξ̄(µ))〉r,ξ̄(µ) decreases.
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Figure 3. Given each memory ξ̄(µ) and its neighborhood V(µ)
k , the dashed lines show the average

distance from ξ̄(µ) for the attractors of neighbors at a distance dξ̄(µ) from ξ̄(µ). The red line shows the

average of D(dξ̄(µ) ) over all ξ̄(µ). The vertical and the horizontal line represent the k = 8 limit and the
neighborhood bound.

Figure 4. Average 〈R(dξ̄(µ) )〉r,ξ̄(µ) computed over eight Hopfield RNN replicas for different N,
with β = 4%, and P = Pc. The vertical line represents the β = 4% limit and the neighborhood bound.

Figure 5 shows the average retrieval rate R for the state in the neighborhood of each memory ξ̄(µ).
We see that, for small N < 80, and, for N > 120, we have a retrieval rate close to 1, which indicates
an almost optimal retrieval. In the middle range, the retrieval rate is clearly sub-optimal. In conclusion,
we speculate that the reason this interference disappears for larger N probably has to do with the
randomness of the contribution of all the memories’ interacting with any single given memory,
as described in [19]. Indeed, in [19], the authors argue that, given a single memory, the effects of the
memories interacting with it contribute with a random term. Thus, the total effect of all these random



Entropy 2019, 21, 726 10 of 12

terms coming from different uncorrelated memories vanishes as the number of interacting memories
increase as a result of the law of large numbers.

Figure 5. Mean neighborhood retrieval rate R for eight Hopfield RNN replicas for different N values
averaged over all memory states ξ̄(µ), with β = 4%, and P = Pc. The horizontal line represents the
optimal recall of all state in the neighberhood.

6. Conclusions

We have proposed a strategy in which, for each memory vector ξ̄(µ), we associate a set of neighbor
vectors ξ̄(ν) ∈ V(µ)

k defined by a Hamming distance lower than k. This strategy allows for each
memory to construct a redundant basin of attraction, which is formed by memory patterns with at
the most k flipped bits. In other words, a stored memory pattern is no longer formed by a single
stable state in the binary vector space Ω, but is a cloud of vectors, obtained by surrounding the “seed”
memory state with a basin of neighbor vectors, which are formed by all the possible combinations
of binary vectors with up to k different bits. With this strategy, we demonstrate the three following
points: (i) the number of memory patterns P that can be stored in a neural network with N nodes
has an upper bound Pc, which scales exponentially with N, Pc = 2N[γ−H(β)]; (ii) if the parameter k
is chosen proportionally to N, k = βN, the size of the stored memory neighborhood vN(k) forms
a neighborhood of absorbing vectors for the stored memory which grows exponentially with N,
vN(k) = 2NH(β); (iii) the parameter β has upper bound βc = 0.051N, i.e., the largest basin of attraction
for the memory includes patterns which have 5% of errors at the most. We then run simulations to
show this results, and we find what we analytically demonstrated. More precisely, we found three
ranges. For N > 120, we get a sharp transition in the retrieval rate for states inside and outside each
memory neighborhood. For 80 < N < 120, the size effect seriously damages the retrieval rate of each
memory neighborhood. For N < 80, the size effects have the opposite influence and increase the basin
of attraction of the neighborhoods. These findings suggest that Hebbian RNNs with autapses may be
used to construct efficient and effective data storage systems that can store a number of solutions that
grows exponentially with N.
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