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Abstract: Fairness, through its many forms and definitions, has become an important issue facing
the machine learning community. In this work, we consider how to incorporate group fairness
constraints into kernel regression methods, applicable to Gaussian processes, support vector machines,
neural network regression and decision tree regression. Further, we focus on examining the effect
of incorporating these constraints in decision tree regression, with direct applications to random
forests and boosted trees amongst other widespread popular inference techniques. We show that
the order of complexity of memory and computation is preserved for such models and tightly binds
the expected perturbations to the model in terms of the number of leaves of the trees. Importantly,
the approach works on trained models and hence can be easily applied to models in current use and
group labels are only required on training data.

Keywords: machine learning; algorithmic fairness; kernel methods; constrained learning;
Gaussian process; decision tree; neural network

1. Introduction

As the proliferation of machine learning and algorithmic decision making continues to grow
throughout industry, the net societal impact of them has been studied with more scrutiny. In the USA
under the Obama administration, a report on big data collection and analysis found that “big data
technologies can cause societal harms beyond damages to privacy” [1]. The report feared that
algorithmic decisions informed by big data may have harmful biases, further discriminating against
disadvantaged groups. This along with other similar findings has led to a surge in research around
algorithmic fairness and the removal of bias from big data.

The term fairness, with respect to some sensitive feature or set of features, has a range of potential
definitions. In this work, impact parity is considered. In particular, this work is concerned with group
fairness under the following definitions as taken from [2].

Group Fairness: A predictor H : X — Y achieves fairness with bias € with respect to groups A, B C X
and O C Y being any subset of outcomes iff,

[P{#H(x;) € Olx; € A} —P{H(xj) € Olx; € B}| <e.

The above definition can also be described as statistical or demographical parity. Group fairness
has found widespread application in India and the USA, where affirmative action has been used to
address discrimination against caste, race and gender [3-5].

The above definition does not, unfortunately, have natural application to regression problems.
One approach to get around this would be to alter the definition to bound the absolute difference
between the respective marginal distributions over the output space. However, this is a strong
requirement and may hinder the model’s ability to model the function space appropriately. Rather,
a weaker and potentially more desirable constraint would be to force the expectation of the marginal
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distributions over the output space to equate. Therefore, statements such as “the average expected
outcome for population A and B is equal” would be valid. This can be seen as a constraint such that
the total entropy of the partition is maximised.

The second issue encountered is that the generative distribution of groups A and B are generally
unknown. In this work, it is assumed that the empirical distribution p4(x) and pg(x), as observed
from the training set, is equal to or negligibly perturbed from the true generative distributions.

Combining these two caveats, we arrive at the definition:

Group Fairness in Expectation: A regressor f(-) : X — Y achieves fairness with respect to groups
A,B C X iff,

E[f(x;)|x; € A] - E[f(x;)|xj € B] = 0

/ (pa(x) = pp(x)) f(x)dx = 0.

There are many machine learning techniques with which Group Fairness in Expectation constraints
(GFE constraints) may be incorporated. While constraining kernel regression is introduced in Section 3,
the main focus of the paper is examining decision tree regression and respective ensemble methods
which build on decision tree regression such as random forests, extra trees and boosted trees due to
their widespread use in industry and hence their extensive impact on society [6]. The reason for this is
to show that such an approach will not affect the order of computational or memory complexity of
the model.

The main contributions of this paper are:

I We use quadrature approaches to enforce GFE constraints on kernel regression with applications
to Gaussian processes, support vector machines, neural network regression and decision tree
regression, as outlined in Section 3.

II  We incorporate these constraints on decision tree regression without affecting the computational
or memory requirements, as outlined in Sections 5 and 6.

Il We derive a tight bound for the variance of the perturbations due to the incorporation of GFE
constraints on decision tree regression in terms of the number of leaves of the tree, as outlined in
Section 7.

IV We show that these fair trees can be combined into random forests, boosted trees and other
ensemble approaches while maintaining fairness, as shown in Section 8.

2. Related Work

There are many ways in which the now huge volume of literature on algorithmic fairness may
be split. One such approach is to break the proposed literature into three branches of research based
upon the stage of the machine learning life cycle they belong. The first is the data alteration approach,
which endeavours to modify the original dataset in order to prevent discrimination or bias due to the
protected variable [7,8]. The second is an attempt to regularise such that the model is penalised for
bias [9-13]. Finally, the third endeavours to use post-processing to re-calibrate and mitigate against
bias [14,15].

The literature also differs dramatically as to what is the objective of the fairness algorithm.
Recent work has made efforts towards grouping these into consistent objective formalisation [2,16].
Often, the focus of algorithmic fairness is on classification problem with regression receiving very
little attention.

The approach applied to enforce fairness may be from a plethora of definitions,
anti-classification [16], or fairness through unawareness as it is also referred to as [2], endeavour to treat
data agnostic of protected variables and hence enforces fairness via treatment rather than outcome.
The second popular method is classification parity, i.e., the error with respect to some given measure
is equal across groups defined by the protected variable. Finally, calibration is the term used when
outcomes are independent of protected group conditioned on risk.
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Narrowing our focus to regression, two contradicting objectives once again arise, namely group
level fairness and individual fairness. Individual fairness implies that small changes to a given
characteristic of an individual leads to small changes in outcome. Group fairness on the other hand
endeavours to make aggregate outcomes of protected groups similar. The latter is the focus of this work
and an overview of where this fits into the broader litterature may be found in Table 1.

Table 1. This table is amended from [2], highlighting some of the major contribution currently in the
domain of fairness in machine learning. Parity versus preference refers to whether fairness means
achieving equality or satisfying the preferences. Treatment versus impact refers to whether fairness is to
be maintained in treatment or process of the learning algorithm or resulting output of the system. To the
best of the authors knowledge, this work is the first group fair framework for regression problems.

Parity Preference
Treatment Unawareness Counterfactual Preferred Treatment
[7,17] [18-20] [21]
Group Fairness Individual Fairness Preferred Impact
[22-24] [7,10,17] [21,25]
Outcome Equal Opportunity
[26-29]

Our work endeavours to create group level parity of expected outcome, of Group Fairness in
Expectation as introduced in this work, with application to all kernel based regression which minimise
the L2 norm. This includes decision trees, Gaussian processes and multi-layer perceptrons.

Specifically to decision trees, discrimination aware decision trees have been introduced [30] for
classification. They offer dependency aware tree construction and leaf relabelling approach. Later,
fair forests [13] introduced a further tree induction algorithm to encourage fairness. They did this
by introducing a new gain measure to encourage fairness. However, the issue with adding such
regularisation is two-fold. Firstly, discouraging bias via a regularising term does not make any
guarantee about the bias of the post trained model. Secondly, it is hard to make any theoretical
guarantees about the underlying model or the effect the new regulariser has had on the model.

The approach offered in this work seeks to perform model inference in a constrained space,
leveraging basic theory from Bayesian quadrature such that the predicted marginal distributions are
guaranteed to have equal means. Such moment constraints have a natural relationship to maximum
entropy methods. By utilising quadrature methods, it is also possible to derive bounds for the
expected absolute perturbation induced by constraining the space. This is shown explicitly in Section 7.
Ultimately, the paper develops a general framework to perform group-fair regression, an important
open problem as pointed out in [23].

We emphasise to the reader that, as outlined in the next section, there are many definitions
of fairness, each with reasonable motives but conflicting values. Group fairness, addressed in this
work, inherently leads to individual unfairness, i.e., to create equal aggregate statistics between
sub-population, individuals in each sub-population are treated inconsistently. The reverse is also true.
As such, we should always think through the adverse effects of our approach before applying it in
the real world. The experiments in this paper are aimed to explore and demonstrate the approach
introduced, but are not meant to advocate using group fairness specifically for the task in hand.

3. Constrained Kernel Regression

We first show how one can create such linear constraints on kernel regression models. This work
builds on the earlier contributions in [31], where the authors examined the incorporation of linear
constraints on Gaussian processes (GPs). Gaussian processes are a Bayesian kernel method most
popular for regression. For a detailed introduction to Gaussian processes, we refer the reader to [32].
However, for the reader unfamiliar with GPs specifically, they may simply think of a high dimensional
Gaussian distribution parameterised by a kernel K(-, ), with zero mean and unit variance without loss
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of generality. Given a set of inputs and respective outputs, {x;,y;})¥ ;, split into training and testing
sets, {x;,y;}I; and (%, 7.3 i, inference is performed as,

E[y] = Kf,xK;,}ch
V[y] = Kzx — KexKy 1Ky x

where K, » denotes the kernel matrix between training examples, Ky x is the kernel matrix between the
test and training examples and Ky ¢ is the prior variance on the prediction point defined by the kernel
matrix. Gaussian processes differ from high dimensional Gaussian distributions as they can model the
relationships between points in continuous space, via the kernel function, as opposed to being limited
to a finite dimension.

An important note is that any combination of Gaussian distributions via addition and subtraction
is a closed space, i.e., the sum of Gaussians is also Gaussian and so on. While this may at first appear
trivial, it is, in fact, a very useful artefact. For example, let us assume there are two variables, 2 and
b, drawn from Gaussian distributions with mean and variance y,, yb,a,f,ag, respectively. Further,
assume that the correlation coefficient p describes the interaction between the two variables. Then,
a new variable ¢, which is equal to the difference a and b, is drawn from a Gaussian distribution with
mean and variance,

He = Ha — Wby
(TCZ = (73 + (75 — 200,0y.

We can thus write all three variables in terms of a single mean vector and covariance matrix,

Ha — Hp
= Ha
Ko
02 + 02 — 20040, 02 — 0,0, OF — poa0y
K= 02 — P00 o? 0007
— P00} 00a0) of

Given any two of the above observations, the third can be inferred exactly. We refer to this as a
degenerate distribution as K will naturally be low rank. If we observe that y,; — p;, is equal to zero,
we are thus constraining the distribution of a and b. This can easily be extended to the relationship
between sums and differences of more variables.

Bayesian quadrature [33] is a technique used to incorporate integral observations into the Gaussian
process framework. Essentially, quadrature can be derived through an infinite summation and the
above relationship between these summations can be exploited [34]. An example covariance structure
thus looks akin to,

I [p(x) )p(x)dxdx’ [ p(x)K(x,x0)dx [ p(x)K(x,x1)d
K= fP K(x, x0)dx K(xo, x0) K(x1,x0)
J p(0)K(x,x1)dx K(x1,x0) K(x1,x1)

where p(x) is some probability distribution over the domain of x, on which the Gaussian process is
defined and against which the quadrature is performed against.

Reiterating the motivation of this work, given two generative distributions p4(x) and pg(x)
which subpopulations A and B of the data are generated from, we wish to constrain the inferred

function f(-) such that,
[ pat)fds = [ pa(x)f(x)x
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This constraint can be rewritten as,

[ (patx) = pa(x)) flx)dx =0,

which allows us to incorporate the constraint on f(-) as an observation in the above Gaussian process.
Let g4 5(x) = pa(x) — pp(x) be the difference between the generative probability distributions of A
and B; then, by setting the corresponding observation as zero, the covariance matrix becomes,

J [aap(x)K(x,x")gap(x")dxdx" [ gap(x)K(x,x0)dx [ gap(x)K(x,x1)dx
K= J aap(x)K(x, x0)dx K(xg,x0) K(x1,x0)

(
J qa,8(x)K(x, x1)dx K(x1, x0) K(x1,x1)

We refer to these as equality constrained Gaussian processes. Let us now turn to incorporate these
concepts into decision tree regression.

4. Trees as Kernel Regression

Decision tree regression (DTR) and related approaches offer a white box approach for practitioners
who wish to use them. These methods are among the most popular methods in machine learning [6]
in practice as they are generally intuitive even for those not from statistics, mathematics or computer
science background. It is their proliferation, especially in businesses without machine learning
researchers, that makes them of particular interest.

DTR regress data by sorting them down binary trees based partitions in the input domain.
The trees are created by recursively partitioning the domain of input along axis aligned splits
determined by a given metric of the data in each partition, such as information gain or variance
reduction. In this work, we do not consider the many possible techniques for learning decision
trees, but rather assume that the practitioner has a trained decision tree model. For a more complete
description of decision trees, the authors refer the readers to [35].

For the purposes of this work, DTR can be described as a partitioning of space such that predictions
are made by averaging the observations in the local partition, referred to as the leaves of the tree.
As such, DTR has a very natural formulation as a degenerate kernel whereby,

1, 1fL(xl) = L(X])

0, otherwise

K(xi, xj) = {

where L(-) is the index of the leaf in which the argument belongs. The kernel hence becomes naturally
block diagonal and the classifier /regressor written as,

f(%) = E[y] = KexKizy
with Kz denoting the vector of kernel values between X and the observations, Ky denoting the
covariance matrix of the observations as defined by the implicit decision tree kernel and y denoting
the values of the observations.

It is also worth noting how one can also write the decision tree as a two-stage model: first by
averaging the observations of associated with each leaf and then by using a diagonal kernel matrix
to perform inference. Trivially, the diagonal kernel matrix acts only as a lookup and outputs the leaf
average that corresponds to the point being predicted. Let us refer to this compressed kernel matrix
approach as the compressed kernel representation and the block diagonal variant as the explicit kernel
representation.

5. Fairness Constrained Decision Trees

Borrowing concepts from the previous section on equality constrained Gaussian processes using
Bayesian quadrature, decision trees may be constrained in a similar fashion. The first consideration
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to note is that we wish the constraint observation to act as a hard equality, i.e., noiseless. In contrast,
we are willing for the observations to be perturbed in order to satisfy this hard equality constraint.
To achieve this, let us add a constant noise term, Uiois "
matrix. Similar to ordinary least squares regression, the regressor now minimises the L2-norm of the
error induced on the observations, conditioned on the equality constraint, which is noise free. In the
explicit kernel representation, this implies the minimum induced noise per observation, whereas in
compressed kernel representation this implies the minimum induced noise per leaf.

An important note is that the constraint is applied to the kernel regressor equations, hence the

method is exact for regression trees or when the practitioner is concerned with relative outcomes of

to the diagonals of the decision tree kernel

various predictions. However, in the case that the observations range within [0, 1], as is the case in
classification, then we must renormalise the output to [0, 1]. This no longer guarantees a minimum
L2-norm perturbation and while potentially still useful, is not the focus of this work.

The second consideration is how to determine the generative probability distributions p4(x)
and pp(x). Given the frequentist nature of decision trees, it makes sense to consider p4(x) and
pp(x) as the empirical distributions of subpopulations A and B, as described in Section 1. Thus,
the integral of the empirical distribution on a given leaf, [, pa(x)dx, is defined as the proportion of
population A observed in the partition associated with leaf L;. We emphasise that how p4(x) and
pp(x) are determined is not the core focus of this work and many approaches have merit. For example,
a Gaussian mixture model could be used to model the input distribution, in which case [, pa(x)dx
would equal the cumulative distribution of the generative PDF over the bounds defined bly the leaf.
This is demonstrated in the Experimental Section. Many other such models would also be valid and
determining which method to use to model the generative distribution is left to the practitioner with
domain expertise.

6. Efficient Algorithm For Equality Constrained Decision Trees

At this point, an equality constrained variant of a decision tree has been described, in both explicit
representation and compressed representation. In this section, we show that equality constraints on a
decision tree do not change the computational or memory order of complexity. The motivation for
considering the order of complexities is that decision trees are one of the more scalable machine learning
models, whereas kernel methods such as Gaussian processes naively scale at O(n%) in computation
and O(n?) in memory, where 7 is the number of observations. While the approach presented in
this work utilises concepts from Bayesian quadrature and linearly constrained Gaussian processes,
the model’s usefulness would be drastically hindered if it no longer maintained the performance
characteristics of the classic decision tree, namely computational cost, and memory requirements.

6.1. Efficiently Constrained Decision Trees in Compressed Kernel Representation

As Figure 1 shows, the compressed kernel representation of the constrained decision tree creates
an arrowhead matrix. Itis well known that the inverse of an arrowhead matrix is a diagonal matrix with
arank-1 update. Letting D represent the diagonal principal sub-matrix with diagonal elements equal to
one, z being vector such that the ith element is equal to the relative difference in generative populations
distributions for leaf i, z; = [ I, (pa(x) — pp(x))dx, then the arrowhead inversion properties state that,

D z| D! T
ZT 0 = OT 0 + ouu-,
. 1 D~ 1 z . . .
withp = —g—-andu = |~ _|. Note that the integral of the difference between the two generative

distributions when evaluated over the entire domain is equal to zero, as both p4(x) and pp(x) must
sum to one by definition and hence their differences to zero. Returning to the equation of interest,
namely f(X) = Kz Ky ly with y as the average value of each leaf of the tree, and subbing in Kz x as a
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vector of zeros with a one indexing the jth leaf in which the predicted point belongs to and is equal to
zero, as it does not contribute to the empirical distributions, we arrive at,

o1 i ZiYi
f(X)*il_i_U% <y]'+z] Y, 2 )

Figure 1. This is a visualisation of a decision tree kernel matrix with marginal constraint, left in explicit
representation and right in compressed representation. The dark cell in the upper left of the matrix is the
double integrated kernel function with respect to the difference of input distributions, which constrain
the process. The solid grey row and column are single integrals of the kernel function. White cells have
zero values and the dashed (block) diagonals are the kernel matrix between observations or leaves of
the tree. We can note that the above, compressed representation kernel matrix is an arrowhead matrix,
which we exploit to create an efficient algorithm.

The term HLZ is the effect of the prior under the Gaussian process perspective; however,

n

by post-multiplying by (1 + ¢2), this prior effect can be removed. While relatively simple to derive,
the above equation shows that only an additive update to the predictions is required to ensure group
fairness in decision trees. Further, if the same relative population is observed for Group A and Group
B on a single leaf j, then z; = 0 and no change is applied to the original inferred prediction before the
constraint is applied other than the effect of the noise. In fact, the perturbation to a leaf’s expectation
grows linearly with the bias in the population of the leaf.

From an efficiency standpoint, only the difference in generative distributions, z, needs to be stored,
which is an additional O(L) extra memory requirement and the update per leaf can be pre-computed
in O(L). These additional memory and computational requirements are negligible compared to O(N)
cost of the decision tree itself.

6.2. Efficiently Constrained Decision Trees in Explicit Kernel Representation

Let us now turn our attention to the explicit kernel representation case, where the D in the
previous subsection is replaced with the block diagonal matrix equivalent. First, let us state the
bordering method, a special case of the block diagonal inversion lemma,

-1
D z
zl 0

D! —pD 1zz'D1 pD~ !z
pz' D —p

withp = — ﬁ once again. Substituting this into the kernel regression equation once more, we find,

D-1
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-1

- L||D z y
— |77
f(X) 0 ZT 0 0‘|
_|Lj| |[D7'=pDt2zz"D7! pD7'z| |y
|0 pz' D1 -0 |0

where [[; denotes a vector of zeros with ones placed in all elements relating to observations in the same
leaf. Expanding the above linear algebra,

f(x) = H]D_ly + ijD_lzzTD_ly.

2

-1
m;zs
As D is a block-diagonal matrix, it is straight forward to show p = — (ZjeL miréz> where j is
] n

iterating over the set of leaves. Note that, when m i = 1 for all j, we arrive at the same value for p as we
did in the previous subsection. We can continue to apply this result to the other terms of interest,

my.
Xl = H]Dily = 7] ! )
m;j + oy
m;z;
Xy = HjD_lz =1 5
TYZ]“FU']
m;z;y.
X3 = ZTD_ly = Z 7] ]y]2
jeL mj + oy

where y; is once again the average output observation over leaf j. The terms have been labelled X3, X»
and X3 for shorthand. The computation time for the three terms, along with p, can be computed in
linear time with respect to the size of the data, O(n), and can be pre-computed ahead of time, hence
not affect the computational complexity of a standard decision tree. Once again, only z; and m; have to
be stored for each leaf and hence the additional memory cost is only O(L). As such, we can simplify
the full expression for the expected outcome as,

f()‘() = X1 + pX2X3.

6.3. Expected Perturbation Bounds

In imposing equality constraints on the models, the inferred outputs become perturbed.
In this section, the expected magnitude of the perturbation is analysed for the compressed kernel
representation. We define the perturbation due to the equality constraint, not due to the incorporation
of the noise, as,

»Zr .
GZZJZI l:zl
Yz

Theorem 1. Given a decision tree with L leaves, with expected value of leaf observations denoted by the vector
y € R normalised to have zero mean and unit variance and leaf frequency imbalance denoted as z € RE,
the expected variance induced by the perturbation due to the incorporating a Group Fairness in Expectation
constraint is bounded by,

E[ez] <

=

Proof. As the expectation of z; is zero due to it being the difference of two probability distributions,
the variance is equal to the expectation of €2,
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Z 2 Zl lyl 7” HZHZ” ( )2

2113

with z equal to z after normalisation. By Lemma 1, the expectation of the dot product (zy)? is equal
to +. Further, the 2-norm of z can be cancelled from the numerator and denominator. Finally, using the
L1, Lo norm inequality, ||z||2 < ||z]l1 < v'L||z||2, we can then tightly bound the worst case introduced
variance as,

1
2

Ble?] = SRzl <
O

Lemma 1. Given two vectors y, Z uniformly distributed on the unit hypersphere SL=1, the expectation of their
dot product is zero and variance,

Proof. As the inner product is rotation invariant when applied to both z and y, let us denote the vector
zas [1,0,...,0] without loss of generality. The first element of the vector y, denoted by vy, is thus equal
to zTy. The probability density mass of the random variable 1 is proportional to the surface area lying
at a height between y and v + dyg on the unit hypersphere. That proportion occurs within a belt

of height dyg and radius m, which is a conical frustum constructed out of an S¥~2 of radius

\/1 — 3, of height dyg, and slope \/7 Hence, the probability is proportional to,

Note that this last simplification of P(u) is equal to the probability density function of the Beta
distribution with both shape parameters equal « = = L71. The variance of the Beta distribution is,

ap 1

(a+pB)2(a+Bp+1) 4L

Rescaling to find the variance of o, we arrive at . As the expectation of E[zTy] = 0 due to the
properties of symmetry, E[(z7y)?] = 1

This is an interesting result as it implies that, if the model is not exploiting biases in the generative
distribution evenly across all of the leaves of the tree, i.e., ||z||; = v/L||z||2, then the resulting predictions
receive the greatest expected absolute perturbation when averaged over all possible y.

For the explicit kernel representation, the expected absolute perturbation bound can be analysed
whereby each leaf holds an even number of observations. In such a scenario, m; = m is equal for all
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leavesi € 1,..., L. Substituting this into the equations for p, X, and X3, we can find that the bounded
expected perturbation is equal to,
2 2
o, 1
E 21 < n -
= <m + 0'%) L

O

For the sake of conciseness, the full derivation of the above is left to the reader but follows the
same steps as the compressed kernel representation.

7. Combinations of Fair Trees

While it is intuitive to say that ensembles of trees with GFE constraints preserve the GFE constraint,
for the sake of completeness, this is now shown more formally. Random forests [36], extremely random
trees (ExtraTrees) [37] and tree bagging models [38] combine tree models by averaging over their
predictions. Denoting the predictions of the trees at point x as f;(x) foreachi € 1,..., T, where T is
the number of trees, we can easily show that the combined difference in expectation marginalised over
the space is equal to zero,

T

0= [(pa(x) — pa(x)) Y fi(x)dx
i=1
T

T
=% [(al0) = pu() i)y = 12 0

i=1

It can also be easily shown that modelling residual errors of the trees with other fair trees, such as
is the case for boosted tree models [39], also results in fair predictors. These concepts are not limited
to tree methods either and the core concepts set out in this paper of constraining kernel matrices can
have applications in models such as deep Gaussian process models [40].

8. Experiments

8.1. Synthetic Demonstration

The first experiment was a visual demonstration to better communicate the validity of
the approach. The models examined are ExtraTrees, Gaussian processes and a single hidden
layer perceptron. They endeavour to model an analytic function, f(x) = xcos(ax?) + sin(Bx),
with observations drawn from two beta distributions, p4(x) and pg(x), respectively. The parameters
of the two beta distribution are presented in Table 2. Figure 2 shows the effect of perturbing the models
using the approach presented to constrain the expected means of the two populations. The figure
shows the greater is the disparity between p4(x) and pp(x), the greater is the perturbation in the
inferred function. Both the compressed and explicit kernel representation lead to very similar plots for
the tree-based models, thus only the compressed kernel representation algorithm has been shown for
conciseness. Note, in the case of the ExtraTrees model, each tree was individually perturbed before
being combined. Further, in the case of the perceptron, a GMM was fit to the data in the inferred latent
space rather than in the original input space.

Table 2. Parameters of Beta distributions used to create synthetic samples.

Group pa(x) pp()

o 2 3
B 3 2
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Perturbed ExtraTrees
using Frequency Counts

Change in
Population Means

Perturbed ExtraTrees
with Gaussian Mixture Models

Change in
Population Means

Perturbed Gaussian Process
with Gaussian Mixture Models

Change in
Population Means

0.0 0.2 0.4 0.6 0.8 1.0

Perturbed 1-Layer Perceptron
with Latent Space GMM

pal@)  pp(x)

Change in
Population Means

0.0 0.2 0.4 0.6 0.8 1.0 pa(z) pB(®)

Sample Frequency and Density of GMM

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2. The figure shows synthetic data of two populations, pa(x) (blue) and pp(x) (orange).

The main plots show the observations and the perturbation to the respective models. Purple functions
identify the original inferred functions and green indicates the fair perturbed inferred functions. Below,
the main plots show a normalised histogram of the observations for the p4 (x) and pg(x) populations,
respectively, along with the PDF of the Gaussian mixture model of their respective densities. To the
right shows how the expected mean of the two populations have been perturbed to be equal.

110f15
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A downside to group fairness algorithms more generally, as pointed out in [7], is that candidate
systems which impose group fairness can lead to qualified candidates being discriminated against.
This can be visually verified as the perturbation pushes down the outcome of many orange points
below the total population mean in order to satisfy the constraint. By choosing to incorporate group
fairness constraints, the practitioner should be aware of these tradeoffs.

8.2. ProPublica Dataset—Racial Biases

Across the USA, judges, and probation and parole officers are increasingly using algorithms
to aid in their decision making. The ProPublica dataset (https://www.propublica.org/datastore/
dataset/compas-recidivism-risk-score-data-and-analysis) contains data about criminal defendants
from Florida in the United States. It is the Correctional Offender Management Profiling for Alternative
Sanctions (COMPAS) algorithm [41], which is often used by judges to estimate the probability that a
defendant will be a recidivist, a term used to describe re-offenders. However, the algorithm is said
to be racially biased against African Americans [42]. To highlight the proposed algorithm, we first
endeavoured to use a random forest to approximate the decile scoring of the COMPAS algorithm and
then perturbed each tree to remove any racial bias from the system.

The two subpopulations we considered constraining are thus African American and non-African
American. We encode the COMPAS algorithms decile score into an integer between zero and ten
such that minimising L, perturbation is an appropriate objective function. The fact the decile scores
are bounded in [0, 10] was not taken into account. The random forest used 20 decision trees as base
estimators and the explicit kernel representation version of the algorithm was used for the sake of
demonstrative purposes.

Figure 3 presents the marginal distribution of predictions on a 20% held out test set before and
after the GFE constraint was applied. It is visible that both the expected outcome for African Americans
is decreased and for non-African Americans is increased. Notice that, while the means are equal,
the structure of the two of distributions are quite different, indicating that GFE constraints still allow
greater flexibility than more strict group fairness such as that described in Section 1. The root square
difference between the predicted points before and after perturbation was 0.8. Importantly, the GFE
constraint described in this work was verified numerically with the average outputs recorded as shown
in Table 3.

African American Non-African American

0.30 q

0.25 9

0.201

0.151

Fraction by Bin

0.10 q

0.00 - -
o 2 4 6 8 10 2 4 6 8 10
Score Score

Figure 3. The figure shows the output distribution of decile scores for African Americans and
non-African Americans before (blue) and after (orange) the mean equality constraint was applied.
We can see that the respective means (vertical lines) become approximately equal after the inclusion of
the constraint using the empirical input distribution.

Table 3. Mean score before and after GFE perturbation.

Unconstrained Constrained

African Am. 4.82 441
non-African Am. 3.26 441
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8.3. Intersectionality: Illinois State Employee Salaries

The Illinois state employee salaries (https://data.illinois.gov/datastore /dump/1a0cd05c-7d17-
4e3d-938d-c2bfa2a4albl) since 2011 can be seen to have a gender bias and bias between veterans and
non-veterans. The motivation of this experiment was to show how we can deal with intersectionality
issues (multiple compounding constraints) such as if one wished to predict a fair salary for future
employees based on current staff. Gender labels were inferred using the employees’ first names,
parsed through the gender-geusser Python library. GFE constraints were applied between all
intersections of gender and veteran/non-veterans, the marginals of gender and the marginals of
veteran/non-veterans. Figure 4 visualises the perturbations to the marginals of each demographic
intersection due to the GFE constraints. The train-test split was set as 80—20% and the incorporation of
the GFE constraints increase the root mean squared error from $12,086 to $12,772, the cost of fairness.
The only difference to allow for intersectionality is the z is no longer a vector, but rather a matrix with
a column for each constraint. Thus,

%) = y; +2(z"2) 2T,

Female Male
0.15 | q |

Non-Veteran
©
=
o
!
.

Income Income
0.15 A | E |

! _ !
= Lullh el
0.00 |“ BNl gl . IIII I III .

30000 40000 50000 60000 70000 80000 30000 40000 50000 60000 70000 80000
Income Income

Figure 4. The above figure shows the effect of multiple GFE constraints acting on a single regression
task. Blue signifies the original model and orange the perturbed model. The dashed horizontal lines
signify the mean before and after perturbation.

9. Conclusions

This work offers an easily implementable approach to constrain the means of kernel regression,
which has direct applicability to decision tree regression, Gaussian process regression, neural network
regression, random forest regression, boosted trees and other tree-based ensemble models.
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