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Abstract: This paper develops the interval maximum entropy model for the interval European
option valuation by estimating an underlying asset distribution. The refined solution for the model
is obtained by the Lagrange multiplier. The particle swarm optimization algorithm is applied to
calculate the density function of the underlying asset, which can be utilized to price the Shanghai
Stock Exchange (SSE) 50 Exchange Trades Funds (ETF) option of China and the Boeing stock option
of the United States. Results show that maximum entropy distribution provides precise estimations
for the underlying asset of interval number situations. In this way, we can get the distribution of the
underlying assets and apply it to the interval European option pricing in the financial market.
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1. Introduction

Information entropy [1–3] has been widely used in financial engineering, especially where the
maximum entropy method is employed within the field of option pricing [4–6]. It is important to
note that the information utilized in the related models is limited to certain values, in such a way that
the information from the financial market cannot be fully exploited. For example, the option price
and the underlying asset price both have the highest and the lowest prices containing a large amount
of information. It is therefore particularly necessary to study how to construct a maximum entropy
model which can infer the distribution of the asset prices in the cases when the known option price
has an uncertain value, such as being denoted by an interval number [7]. The probability distribution
of the underlying asset can be deduced by using the interval price, and then the highest and lowest
prices of the other relevant financial products can be predicted. If the lowest and highest prices of asset
could be predicted based on the known information, then their corresponding risks can be controlled
in advance. This would then provide a decision-making basis for asset pricing and risk management.

The principle of maximum entropy can be used in many fields. The maximum entropy solutions
are shown to display a variety of behaviors if adequate dynamical information is inserted [8]. Elith
et al. described the maximum entropy model from a statistical perspective [9]. Zambrano et al.
proposed a thermodynamic model based on the maximum entropy principle, with dynamical prior
information [10]. Hu et al. modeled the distribution changes of six typical Kobresia species in four
periods by using the maximum entropy model [11]. Raney and Leopold used the maximum entropy
model to estimate fen distribution throughout New York State [12]. In 1973, Cozzolino and Zahner first
used the principle of maximum entropy to infer the probability distribution of future stock prices [13].
Based on the no-arbitrage principle, Bartiromo obtained the distribution of stock price fluctuations by
maximizing information entropy [14].

In the field of option pricing, Jackwerth and Rubinstein used non-parametric methods to extract
risk neutral probability distribution of the underlying asset [15]. Buchen and Kelly applied the
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principle of maximum entropy to estimate distribution of an underlying asset price [16]. Borwein
et al. also revisited the maximum entropy principle and used partially finite convex programming to
recover the probability distribution of an asset [17]. Similarly, Rompolis suggested a new method for
implementing the principle of maximum entropy to retrieve the risk-neutral density of a future stock
or of any other asset from the returns of European call and put prices [18]. Neri and Schneider also
obtained the maximum entropy distribution of an asset from its call and digital option prices, while also
offering detailed mathematical proof for its existence and exponential form [19]. Neri and Schneider
also investigated the position of the Buchen-Kelly density within the family of entropy-maximizing
densities, and observed that, within the market, all the densities matched European call option prices
for a given maturity [20]. The entropy pricing theory established by Gulko showed that the distribution
of future price changes was the most random, that was, the choice of price change obeyed the maximum
entropy method [21,22]. Tapiero further emphasized the degree of uncertainty in statistical information
with incomplete states, and modeled the cross-section of options bid-ask spreads with their strikes
by maximizing the Kaniadakis entropy [23]. The above literature clearly shows that the entropy
pricing theory can make full use of the known information and that the maximum entropy method has
a certain degree of advantage when used in option pricing. The given information about a probability
distribution (i.e., the distribution which maximizes entropy) is subject to constraints, but remains the
least committal with respect to unknown or missing information and is for this reason also the least
biased. The maximum entropy distribution is also a distribution which does not introduce correlations
or additional structural details beyond those strictly required by the given constraints.

This paper proposes an interval maximum entropy model to use the interval price obtained from
the market as a representative of the limited information, while aiming at estimating the probability
distribution of the asset price. In addition, the output of model can be applied to price the Shanghai
Stock Exchange (SSE) 50 Exchange Trades Funds (ETF) option and the US Boeing stock option. For
the linear optimization problem caused by the objective function and the constraint condition both
being represented by interval numbers, Liu et al. proposed the concept of constraint satisfactory
degree [24]. In this way, the issue can be transformed into a parametric linear programming problem
with real coefficients.

The rest of this paper is organized as follows. Section 2 gives the definition of interval European
option and introduces the interval maximum entropy model. The solution of model is obtained in
this section. Section 3 shows the results of pricing interval European option from two empirical parts.
Finally, Section 4 summarizes the paper.

2. The Interval Maximum Entropy Model

2.1. Interval European Option

Interval European option is the European option where we selected data in the form of interval
number, including the highest and lowest prices. Assume that, in the interval case, D= [d, d] is the
interval option price corresponding to the strike price, d is the lowest price and d is the highest price.
Suppose the asset prices are [x, x], similarly, the x represents the lowest price, while x represents the
highest price.

Therefore, for the interval European option, the properties on the distribution can be expressed as
an expectation, namely in the form of,

∞∫
0

p(x)C(x)dx = D, (1)

where C(x)= [c(x), c(x)] is the yield function that is known and it denotes the discounted expiry value

of the option when the asset prices are [x, x]. Note that c(x) is the lowest value, while c(x) is the highest
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value. Assume there is an interval European option which does not pay dividends. Under risk-neutral
conditions, the yield function can be defined as a discounted function of the return on the maturity date
T. Then, the call option yield function Cc(x) and the put option yield function Cp(x) are expressed as:

Cc(x) = [c(x), c(x)] = D(T)([x, x] − k)+ = D(T)max(0, [x, x] − k)
= D(T)[max(0, x− k), max(0, x− k)]
= [D(T)max(0, x− k), D(T)max(0, x− k)]

,

Cp(x) = [c(x), c(x)] = D(T)(k− [x, x])+ = D(T)max(0, k− [x, x])
= D(T)[max(0, k− x), max(0, k− x)]
= [D(T)max(0, k− x), D(T)max(0, k− x)]

,

where k represents the strike price of option. The function D(T) denotes the non-stochastic present-value
discount factor to time T and acts only as a multiplicative constant. For example, we choose D(T) = e−rT

with a constant risk-free rate r.

2.2. Model Setting

Assume that market is arbitrage-free. Let X be a continuous random variable representing the
price of some asset or security at some fixed expiration time T. In order to price the derivative, we need
to estimate the probability density p(x) of X on 0 < x < ∞, using the information of a set of option
interval prices from certain derivatives of X which expire at T. The entropy of the distribution p(x) is
defined as

S(p) = −

∞∫
0

p(x) log p(x)dx. (2)

Note that lim
p→0

p log p = 0, p(x) ≥ 0 and
∞∫
0

p(x)dx = 1.

Therefore, the interval maximum entropy model (IMEM) of interval European option with n
strike prices can be established as follows:

max
p(x)

S(p) = −
∞∫
0

p(x) log p(x)dx

s.t.



∞∫
0

p(x)dx = 1

∞∫
0

p(x)Ci(x)dx = Di

p(x) ≥ 0

. (3)

Here, Di= [di, di] and Ci(x)= [ci(x), ci(x)] (i = 1, 2 . . . , n) are the interval option price and yield
function corresponding to the ith strike price. The IMEM only relies on observable option prices, which
can be expressed as expectations of known functions for the underlying asset price.

2.3. Solution of the Model

The IMEM is a constrained interval number optimization problem. When taking the option
price into consideration, the objective function is a nonlinear function, while the constraint condition
is an interval number function. The interval number constraint condition can be transformed into
a deterministic constraint condition by using the constraint satisfactory degree of the constraint
condition, which is proposed from literature [24].

For interval number A = [a, a], B = [b, b], let len(A) = a − a, len(B) = b − b. Thus P(A ≤ B) =
max(0,len(A)+len(B)−max(0,a−b))

len(A)+len(B) represents the possibility degree of A ≤ B.
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For each solution p(x) of the linear programming model with an interval number, let β =

P(
∞∫
0

p(x)Ci(x)dx ≤ Di) represent the constraint satisfactory degree of p(x) to the ith constraint. Therefore,

when the satisfactory degree is β (β ∈ [0, 1]), the interval number constraint
∞∫
0

p(x)Ci(x)dx ≤ Di can be

transformed into a deterministic constraint, namely:
∞∫

0

(1− β)p(x)ci(x) + βp(x)ci(x)

dx ≤ βdi + (1− β)di.

Equation (3) can be transformed into a deterministic optimization problem in order to infer the
probability density function (PDF) of the asset price and price the interval European option. First,
we choose the satisfactory degree of 0 and 1 distinguishingly. Therefore, when β equals 0 and when it
equals 1, Equation (3) is transformed into the following model:

max
p(x)

S0(p) = −
∞∫
0

p(x) log p(x)dx

s.t.



∞∫
0

p(x)dx = 1

∞∫
0

p(x)ci(x)dx = di

p(x) ≥ 0

max
p(x)

S1(p) = −
∞∫
0

p(x) log p(x)dx

s.t.



∞∫
0

p(x)dx = 1

∞∫
0

p(x)ci(x)dx = di

p(x) ≥ 0

. (4)

Equation (4) can further be simplified into the following unconstrained optimization problem [25]:

S0max = log u−
n∑

i=1

λidi, u =

∞∫
0

exp(
n∑

i=1

λici(x))dx, (5)

S1max = log u−
n∑

i=1

λidi, u =

∞∫
0

exp(
n∑

i=1

λici(x))dx, (6)

where λ1 . . . ,λn are the decision parameters. Second, for an arbitrary value of β, the model is:

max
p(x)

S(p) = −
∞∫
0

p(x) log p(x)dx

s.t.



∞∫
0

p(x)dx = 1∞∫
0
(1− β)p(x)ci(x) + βp(x)ci(x)

dx = βdi + (1− β)di

p(x) ≥ 0

. (7)

The Lagrange multiplier method can be used to solve Equation (7). The corresponding Lagrange
function is constructed according to its objective function and constraints, which can be expressed
as follows:

H(p) = −

∞∫
0

p(x) log p(x)dx + (1 + λ0)

∫
∞

0
p(x)dx +

n∑
i=1

λi

∞∫
0

(1− β)p(x)ci(x) + βp(x)ci(x)dx.

Here, λ0,λ1 . . . ,λn are all Lagrange multipliers.
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H(p) will be maximized or minimized when its derivative, namely the first variation of H(p) with
respect to the admissible variations of p(x), is zero. Additionally, the Hessian matrix is a diagonal
matrix with the diagonal elements negative. Obviously, the Hessian matrix is negative definite and the
function H(p) will achieve a maximum value. This leads to the following explicit representation of
the IMEM:

p(x) = 1
u exp(

n∑
i=1

((1− β)λici(x) + βλici(x))),

u =
∞∫
0

exp(
n∑

i=1
((1− β)λici(x) + βλici(x)))dx = e−λ0

.

The original objective function can be simplified by λ1 . . . ,λn, such that Equation (7) can be
simplified into the following unconstrained optimization problem (NCOP):

Smax(λi) = log u−
n∑

i=1

λi
(
βdi + (1− β)di

)
. (8)

Here, u =
∞∫
0

exp(
n∑

i=1
((1− β)λici(x) + βλici(x)))dx, λ1 . . . ,λn are the decision variables.

The particle swarm optimization algorithm (developed by Kennedy and Eberhar in literature [26])
can be used to solve NCOP Equation (8). Equation (4) can therefore be regarded as a special case of
general Equation (8) with the values of β = 0 and β = 1.

3. Empirical Analyses

Through the above process, the distribution of the underlying assets according to the interval option
is obtained. Therefore, we can price the interval European option based on the known distribution.

When PDF of the future asset price is presented, the call interval European option price Dc and
the put interval European option price can be computed by:

Dc = [d, d] =
∞∫
0

p(x)C(x)dx

=
∞∫
0

p(x)D(T)([x, x] − k)+dx =
∞∫
0

p(x)D(T)max(0, [x, x] − k)dx

Dp = [d, d] =
∞∫
0

p(x)C(x)dx

=
∞∫
0

p(x)D(T)(k− [x, x])+dx =
∞∫
0

p(x)D(T)max(0, k− [x, x])dx
.

Hence, we obtain the distribution of the underlying assets according to the established model,
and then can price the interval European option. This section consists of two parts, the first with the
constraint satisfactory degree of 0 or 1. The second part considers the constraint satisfactory degree
from 0 to 1, divided into 11 values. The data is selected from 50 ETF options and Boeing stock options.
There is only one formal option in China, a 50 ETF option listed on the Shanghai stock exchange.
In addition, according to Yahoo Finance, Boeing stock has the largest market cap in Industrials Services
Sector. Therefore, we chose these two options. The former is a comprehensive index, which has only
the systemic risk, no Idiosyncratic risk. The latter is a stock option, having both heterogeneous risk
and systemic risk.

3.1. β Equal to 0 or 1

For the purpose of exploring the PDF of the asset price and interval option pricing when the
constraint satisfactory degree is 0 and 1, respectively, we selected the China SSE 50 ETF call option [27,28].
This includes the highest and lowest prices, with the maturity date of 22 June and 28 September as
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established at 20 April 2016. The data is shown in Table 1. Accordingly, the risk-free rate r f is 2.2%.
The current price of SSE 50ETF is 2.154.

Table 1. The highest and lowest prices for June and September.

50ETF June Call Option 50ETF September Call Option

Strike
Price Highest Lowest Strike

Price Highest Lowest Strike
Price Highest Lowest

1.80 0.3627 0.3400 2.25 0.0530 0.0436 1.80 0.3688 0.3502
1.85 0.3150 0.2928 2.30 0.0390 0.0321 1.85 0.3184 0.3160
1.90 0.2683 0.2492 2.35 0.0291 0.0241 1.90 0.2850 0.2737
1.95 0.2271 0.2066 2.40 0.0207 0.0162 1.95 0.2529 0.2415
2.00 0.1886 0.1684 2.45 0.0146 0.0115 2.00 0.2202 0.2072
2.05 0.1525 0.1329 2.50 0.0108 0.0085 2.05 0.1902 0.1793
2.10 0.1193 0.1061 2.55 0.0076 0.0061 2.10 0.1645 0.1501
2.15 0.0936 0.0801 2.60 0.0054 0.0045 2.15 0.1430 0.1266
2.20 0.0708 0.0605 2.65 0.0045 0.0036 2.20 0.1190 0.1105

2.25 0.1010 0.0966
2.30 0.0855 0.0750

Based on the information about the interval option prices for June, we calculated the PDF of the
SSE 50 ETF price corresponding to the expiration date. We assumed that the PDF of the SSE 50 ETF
price for September can be approximated. Selecting a constraint satisfactory degree of 0 and then of
1 results in two PDFs. Moreover, if the stock price is an interval number, the obtained option price is
also an interval number. The price of the two obtained sets of intervals was compared with the actual
price of the call option on 28 September.

Figure 1 depicts the comparison between the estimated interval price and the actual interval price
of the call option with the expiration date of 28 September. This was obtained with the IMEM for the
case when the constraint satisfactory degree equals zero.
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Figure 1. Interval price and actual option price with the constraint satisfactory degree of 0.

As can be seen from Figure 1, when the execution price is relatively smaller than the current price,
the actual option price is within the predicted range. In other words, the lower bound of the predicted
value is smaller than that of the actual value, and the upper bound of the predicted value is larger than
that of the actual value. In contrast, when the execution price is relatively larger than current price, the
actual option price is larger than the predicted price, that is, the upper bound of the predicted value
is smaller than the lower bound of the actual value. The root mean square error (RMSE) is used to
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calculate the error between the market value and the estimated value. The RMSE of the highest price is
0.0265, while the RMSE of the lowest price is 0.0287.

Figure 2 depicts the comparison between the estimated interval price and the actual interval price
of the call option with the expiration date of September 28. This was obtained with the IMEM for the
case when the constraint satisfactory degree equals one.
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As can be seen from Figure 2, when the execution price is smaller, the actual option price is within
the predicted range. In other words, the lower bound of the predicted value is smaller than that of the
actual value, and the upper bound of the predicted value is larger than that of the actual value. When
the execution price is relatively larger, the actual option price is larger than the predicted price, that is,
the upper bound of the predicted value is smaller than the lower bound of the actual value. The RMSE
of the highest price is 0.0293, while the RMSE of the lowest price is 0.0415. In Figure 1, it can easily be
observed that the execution price at the point where the curve intersection changes has a value of 2.05.
In Figure 2, the execution price at the point where the curve intersection changes has a value of 1.95.

3.2. β Belonging to [0, 1]

3.2.1. China SSE 50 ETF Option Pricing

In order to examine the effect of the constraint satisfactory degree on the PDF of the underlying
asset price and on the option pricing problem, we selected the call and put options of the China SSE 50
ETF. We included the highest and the lowest prices, with the maturity date of 28 March as established
at the 20 November 2017 time point. The data is shown in Table 2. The quantity of strike price is 13.
In this case, the r f is 4.01%. The current price of SSE 50ETF is 2.998.

Table 2. The highest and lowest price of call option and put option.

Strike Price 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.10 3.20

Call
option

Highest 0.5309 0.4822 0.4350 0.3870 0.3425 0.2962 0.2520 0.2107 0.1740 0.1410 0.1122 0.0685 0.0400
Lowest 0.4927 0.4455 0.3988 0.3502 0.3067 0.2624 0.1900 0.1765 0.1405 0.1100 0.0842 0.0471 0.0262

Put
option

Highest 0.0062 0.0070 0.0088 0.0112 0.0143 0.0189 0.0254 0.0349 0.0481 0.0669 0.0901 0.1522 0.2287
Lowest 0.0047 0.0051 0.0068 0.0086 0.0104 0.0144 0.0200 0.0279 0.0401 0.0550 0.0750 0.1308 0.2031

We calculated the PDF of the SSE 50 ETF price corresponding to the expiration date based on the
information about the interval call option prices for March. The constraint satisfactory degrees used
were 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1, thus obtaining 11 corresponding PDFs. When the
stock price is an interval number, then the obtained option price is also represented by an interval
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number. The PDF of the SSE 50 ETF price corresponding to the put option for the same maturity date
remained consistent. As a result, the obtained interval prices were compared with the actual interval
price of the put option with the same maturity date.

It can be seen from Table 3 and Figure 3 that the constraint satisfactory degree of β = 0.6 performs
better for the lowest price prediction of the interval option price, and that the RMSE is the lowest for in
this case. The observed trend is that the predicted expected price for the 50 ETF at the maturity date
decreases with each increase in β. The highest expected price is obtained when β = 0, while the lowest
expected price is obtained when β = 0.9.

Table 3. The lowest forecast price of options under different constraint satisfactory degrees.

K
β

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2.50 0.0032 0.0034 0.0060 0.0038 0.0042 0.0058 0.0042 0.0071 0.0052 0.0061 0.0054
2.55 0.0042 0.0044 0.0079 0.0050 0.0055 0.0075 0.0055 0.0093 0.0068 0.0080 0.0070
2.60 0.0053 0.0057 0.0099 0.0064 0.0070 0.0095 0.0070 0.0116 0.0087 0.0102 0.0088
2.65 0.0069 0.0074 0.0122 0.0083 0.0090 0.0117 0.0092 0.0141 0.0111 0.0131 0.0108
2.70 0.0090 0.0099 0.0148 0.0111 0.0117 0.0143 0.0121 0.0170 0.0145 0.0167 0.0134
2.75 0.0121 0.0131 0.0180 0.0151 0.0152 0.0175 0.0155 0.0202 0.0189 0.0209 0.0165
2.80 0.0159 0.0169 0.0219 0.0202 0.0195 0.0213 0.0198 0.0241 0.0247 0.0258 0.0207
2.85 0.0211 0.0221 0.0275 0.0269 0.0258 0.0270 0.0268 0.0304 0.0326 0.0334 0.0284
2.90 0.0295 0.0308 0.0367 0.0370 0.0364 0.0372 0.0385 0.0411 0.0434 0.0455 0.0405
2.95 0.0412 0.0432 0.0497 0.0518 0.0515 0.0530 0.0550 0.0560 0.0599 0.0627 0.0585
3.00 0.0566 0.0596 0.0673 0.0723 0.0706 0.0736 0.0769 0.0754 0.0840 0.0849 0.0813
3.10 0.1044 0.1094 0.1176 0.1256 0.1244 0.1301 0.1356 0.1321 0.1436 0.1453 0.1414
3.20 0.1612 0.1686 0.1782 0.1889 0.1905 0.1993 0.2054 0.2015 0.2145 0.2189 0.2120

RMSE 0.0156 0.0129 0.0086 0.0045 0.0044 0.0025 0.0018 0.0038 0.0062 0.0080 0.0046
E 3.0366 3.0265 3.0133 3.0082 2.9911 2.9774 2.9704 2.9749 2.9587 2.9515 2.9633Entropy 2019, 21, x FOR PEER REVIEW 9 of 14 
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The results presented in Table 4 and Figure 4 demonstrate that when β = 0.4, then the forecast for
the highest price of the interval option price is the best; at the same time, the RMSE is the lowest for
in this case. Therefore, our comprehensive comparison of the forecasting effect on the interval price
shows that the smallest RMSE value is obtained at the constraint satisfactory degree of 0.4.



Entropy 2019, 21, 788 9 of 13

Table 4. The highest forecast price of options under different constraint satisfactory degrees.

K
β

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2.50 0.0042 0.0044 0.0079 0.0050 0.0055 0.0075 0.0055 0.0093 0.0068 0.0080 0.0070
2.55 0.0053 0.0057 0.0099 0.0064 0.0070 0.0095 0.0070 0.0116 0.0087 0.0102 0.0088
2.60 0.0069 0.0074 0.0122 0.0083 0.0090 0.0117 0.0092 0.0141 0.0111 0.0131 0.0108
2.65 0.0090 0.0099 0.0148 0.0111 0.0117 0.0143 0.0121 0.0170 0.0145 0.0167 0.0134
2.70 0.0121 0.0131 0.0180 0.0151 0.0152 0.0175 0.0155 0.0202 0.0189 0.0209 0.0165
2.75 0.0159 0.0169 0.0219 0.0202 0.0195 0.0213 0.0198 0.0241 0.0247 0.0258 0.0207
2.80 0.0211 0.0221 0.0275 0.0269 0.0258 0.0270 0.0268 0.0304 0.0326 0.0334 0.0284
2.85 0.0295 0.0308 0.0367 0.0370 0.0364 0.0372 0.0385 0.0411 0.0434 0.0455 0.0405
2.90 0.0412 0.0432 0.0497 0.0518 0.0515 0.0530 0.0550 0.0560 0.0599 0.0627 0.0585
2.95 0.0566 0.0596 0.0673 0.0723 0.0706 0.0736 0.0769 0.0754 0.0840 0.0849 0.0813
3.00 0.0783 0.0821 0.0901 0.0972 0.0950 0.0994 0.1042 0.1012 0.1122 0.1127 0.1094
3.10 0.1324 0.1386 0.1474 0.1564 0.1566 0.1638 0.1697 0.1659 0.1780 0.1812 0.1760
3.20 0.1909 0.1993 0.2099 0.2226 0.2255 0.2360 0.2424 0.2382 0.2522 0.2578 0.2490

RMSE 0.0130 0.0097 0.0059 0.0035 0.0025 0.0055 0.0081 0.0076 0.0134 0.0154 0.0115
E 3.0366 3.0265 3.0133 3.0082 2.9911 2.9774 2.9704 2.9749 2.9587 2.9515 2.9633
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3.2.2. US Boeing Stock Option Pricing

In order to examine the effect of the constraint satisfactory degree β on the PDF of the underlying
asset price and on the option pricing problem, we selected the call and put options of the US Boeing
stock. This includes the highest and the lowest prices, with the maturity date of 15 June as established
at the 31 May 2018 time point. The data is shown in Table 5. The number of strike price is 10. The
current price of Boeing stock is 3.5809. All price data was divided by 100. Accordingly, the r f is 1.83%.

Table 5. The highest and lowest price of call option and put option.

Strike Price 3.425 3.450 3.500 3.550 3.575 3.600 3.625 3.650 3.675 3.700

Call
option

Highest 0.1720 0.1615 0.1241 0.0900 0.0720 0.0610 0.0490 0.0395 0.0305 0.0231
Lowest 0.1615 0.1351 0.0991 0.0697 0.0575 0.0470 0.0385 0.0296 0.0225 0.0165

Put
option

Highest 0.0261 0.0316 0.0463 0.0700 0.0780 0.0925 0.1075 0.1195 0.1335 0.1606
Lowest 0.0170 0.0205 0.0315 0.0479 0.0585 0.0690 0.0855 0.0985 0.1203 0.1323

We calculated the PDF of the Boeing stock price corresponding to the expiration date based on the
information about the interval call option prices for June. The constraint satisfactory degrees used
were 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1; therefore, we obtained 11 corresponding PDFs.
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For the case in which the stock price is an interval number, the option price was also obtained in the
form of an interval number. The PDF of the Boeing stock price corresponding to the put option with
the same maturity date remained consistent. The obtained interval prices were then compared to the
actual interval price of the put option with the same maturity date.

In Table 6, all price data has been divided by 100. From Table 6 and Figure 5, it can be seen that
a value of β = 0.3 is better, as it leads to the lowest value of the interval option price and to the lowest
RMSE value. The expected price of the Boeing stock at the expiration date roughly decreases with each
increase in β. The highest expected price is obtained when β = 0, while the lowest expected price is
obtained when β = 1.

Table 6. The lowest forecast price of options under different constraint satisfactory degrees.

K
β

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

3.425 0.0152 0.0150 0.0157 0.0173 0.0157 0.0147 0.0117 0.0010 0.0010 0.0010 0.0011
3.450 0.0197 0.0194 0.0203 0.0224 0.0204 0.0191 0.0152 0.0033 0.0033 0.0035 0.0038
3.500 0.0305 0.0301 0.0313 0.0343 0.0311 0.0291 0.0241 0.0126 0.0130 0.0139 0.0153
3.550 0.0436 0.0431 0.0448 0.0485 0.0442 0.0423 0.0372 0.0281 0.0294 0.0314 0.0345
3.575 0.0510 0.0505 0.0525 0.0565 0.0520 0.0506 0.0462 0.0386 0.0404 0.0432 0.0472
3.600 0.0591 0.0587 0.0608 0.0651 0.0607 0.0601 0.0569 0.0507 0.0534 0.0570 0.0616
3.625 0.0679 0.0678 0.0700 0.0746 0.0706 0.0713 0.0695 0.0642 0.0679 0.0722 0.0775
3.650 0.0777 0.0779 0.0804 0.0851 0.0820 0.0840 0.0834 0.0787 0.0834 0.0882 0.0942
3.675 0.0885 0.0893 0.0921 0.0971 0.0953 0.0983 0.0986 0.0944 0.1001 0.1054 0.1118
3.700 0.1006 0.1021 0.1054 0.1108 0.1106 0.1144 0.1151 0.1114 0.1182 0.1236 0.1307

RMSE 0.0171 0.0168 0.0149 0.0115 0.0131 0.0118 0.0133 0.0212 0.0172 0.0144 0.0116
E 3.5598 3.5515 3.5415 3.5296 3.5253 3.5170 3.5131 3.5131 3.5025 3.4948 3.4862Entropy 2019, 21, x FOR PEER REVIEW 11 of 14 
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Figure 5. RMSE and expected prices at different constraint satisfactory degrees.

Once again, the price data in Table 4 has been divided by 100. The results in Table 7 and Figure 6
demonstrate that, when β = 0, then the forecast for the highest value of the interval option price is the
most favorable, while also having the lowest RMSE value. Comprehensively comparing the forecasting
effect observed on the interval price of the lowest and highest leads to obtaining the smallest RMSE
when the constraint satisfactory degree is 0.3.

In this part, the application of the model is designed. It is found that the distribution estimation of
the underlying asset and the prediction effect of the interval option price are very good for options that
exclude heterogeneity risk and options with heterogeneity risk, no matter whether the β is only 0 or 1,
or the β is from 0 to 1. For different sample sets, the optimal constraint satisfactory degree (considering
root mean square error of price prediction and the expectation of the underlying asset price) is different,
which is influenced by the selected sample data. The best value in the Chinese data is 0.4, and the best
value of US data is 0.3. β represents the weight of the lowest option price information when solving
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the probability density function. The smaller β means the smaller the weight of the lowest option price
information and the greater the weight of the highest price information. The optimal value of β reflects
the comprehensive utilization of highest price and lowest price information. The two optimal β values
show that the highest and the lowest price information both have an effect on forecasting.

Table 7. The highest forecast price of options under different constraint satisfactory degrees.

K
β

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

3.425 0.0368 0.0363 0.0378 0.038 0.0372 0.0352 0.0300 0.0196 0.0204 0.0218 0.0240
3.450 0.0436 0.0431 0.0448 0.0485 0.0442 0.0423 0.0372 0.0281 0.0294 0.0314 0.0345
3.500 0.0591 0.0587 0.0608 0.0601 0.0607 0.0601 0.0569 0.0507 0.0534 0.0570 0.0616
3.550 0.0777 0.0779 0.0804 0.0801 0.0820 0.0840 0.0834 0.0787 0.0834 0.0882 0.0942
3.575 0.0885 0.0893 0.0921 0.0914 0.0953 0.0983 0.0986 0.0944 0.1001 0.1054 0.1118
3.600 0.1006 0.1021 0.1054 0.1058 0.1106 0.1144 0.1151 0.1114 0.1182 0.1236 0.1307
3.625 0.1141 0.1164 0.1205 0.1127 0.1278 0.1322 0.1331 0.1299 0.1376 0.1433 0.1509
3.650 0.1290 0.1321 0.1371 0.1411 0.1462 0.1510 0.1523 0.1495 0.1580 0.1641 0.1721
3.675 0.1451 0.1488 0.1550 0.1552 0.1654 0.1706 0.1724 0.1702 0.1794 0.1859 0.1942
3.700 0.1619 0.1664 0.1737 0.1744 0.1853 0.1911 0.1933 0.1918 0.2017 0.2085 0.2170

RMSE 0.0096 0.0109 0.0145 0.0149 0.0200 0.0232 0.0236 0.0212 0.0276 0.0324 0.0387
E 3.5598 3.5515 3.5415 3.5296 3.5253 3.5170 3.5131 3.5131 3.5025 3.4948 3.4862Entropy 2019, 21, x FOR PEER REVIEW 12 of 14 
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4. Conclusions

Considering that both the stock price and the option price are interval numbers, we developed
an interval maximum entropy model with the constraint of the option price to infer the distribution
of interval asset. Essentially, this represents an interval number programming problem. Based on
the fuzzy constraint satisfactory method, we show that the interval number optimization problem
can be reduced to a deterministic parameter optimization problem by setting the degree of constraint
satisfactory. The Lagrange multiplier method is used to simplify the unconstrained programming
problem in order to get an analytical solution. Using the particle swarm optimization algorithm to
calculate the distribution, the empirical results of the SSE 50 ETF options of China and the US Boeing
stock options are obtained. Our research shows that the interval maximum entropy model is suitable
for obtain the distribution and the pricing of interval European options.

Our method can provide a basis for investors to reflect whether the market pricing is reasonable,
and help them to make options portfolios. The model also can give some market signals and early
warning of pricing bias to companies issuing options. Future research should investigate the uses of
this method in the effective risk management of options.
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