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Abstract: The percussion entropy index (PElorginal) was recently introduced to assess the complexity
of baroreflex sensitivity. This study aimed to investigate the ability of a speedy modified PEI
(i.e., PEINgw) application to distinguish among age-controlled subjects with or without diabetes.
This was carried out using simultaneous photo-plethysmo-graphy (PPG) pulse amplitude series and
the R wave-to-R wave interval (RRI) series acquired from healthy subjects (Group 1, number = 42),
subjects diagnosed as having diabetes mellitus type 2 with satisfactory blood sugar control (Group 2,
number = 38), and type 2 diabetic patients with poor blood sugar control (Group 3, number = 35).
Results from PElyrginal and multiscale cross-approximate entropy (MCAE) were also addressed with
the same datasets for comparison. The results show that optimal prolongation between the amplitude
series and RRI series could be delayed by one to three heartbeat cycles for Group 2, and one to four
heartbeat cycles for Group 3 patients. Group 1 subjects only had prolongation for one heartbeat
cycle. This study not only demonstrates the sensitivity of PEINgw and PElygina) in differentiating
between Groups 2 and 3 compared with MCAE, highlighting the feasibility of using percussion
entropy applications in autonomic nervous function assessments, it also shows that PEINgw can
considerably reduce the computational time required for such processes.

Keywords: autonomic nervous function; heart rate variability (HRV); baroreflex sensitivity (BRS);
photo-plethysmo-graphy (PPG); digital volume pulse (DVP); percussion entropy index (PEI)

1. Introduction

A depressed autonomic nervous function may lead to cardiovascular system damage, resulting in
the occurrence and development of various cardiovascular diseases [1]. A frequency domain analysis
of heart rate variability (HRV) using electrocardiography (ECG) has been used over the past 20 years to
assess autonomic function [2]. The low-frequency-to-high-frequency power ratio (LHR) is considered
to reflect the balance between sympathetic and parasympathetic activities [3,4].
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In the past decade, the autonomic nervous system has been shown to play a key role in the
physiological regulation of blood pressure and the heartbeat interval. Qualitatively, baroreflex refers to
a physiological phenomenon in which a decrease in blood pressure shortens the RR interval (RRI), and
an increase in blood pressure prolongs the RRI. Baroreflex sensitivity (BRS) refers quantitatively to
the degree of matching between changes in the RRI and blood pressure during a cardiac cycle [5,6].
Quantitatively, two identical increases (or decreases) in blood pressure during two successive cardiac
cycles are unlikely to produce two identical prolongations (or reductions) in RRI. In individuals with
a blunted baroreflex, two successive increases in blood pressure may not even produce two successive
RRI prolongations. The dynamic interactions of blood pressure and heartbeat interval contain very
important information about autonomic nervous function. Thus, as a nonlinear interaction approach to
evaluate autonomic nervous system activities, BRS can be reflexed by autonomic nervous function [7-9].

However, the synchronized physiological signal acquisition for blood pressure and heartbeat
interval is not practical for real-time applications [10,11]. Luckily, the amplitude time series acquired
noninvasively through digital volume pulse (DVP) signals from photo-plethysmo-graphy (PPG) has
been found to correlate well with changes in blood pressure [12-14]. PPG pulse amplitudes are
more easily acquired than blood pressure signals. A previous study [15] using synchronized PPG
pulse amplitude series and the RRI series highlighted the application of multiscale cross-approximate
entropy (MCAE) in noninvasively identifying changes in autonomic nervous function in persons
with or without diabetes. The results of autonomic nervous function assessments from LHR, the
pulse—pulse-interval-and-amplitude ratio (PAR), and multiscale entropy (MSE) were also computed
for comparison in [15].

In addition, among the three one-dimensional approaches to autonomic nervous function
assessment (i.e., LHR, the Poincaré index (SD1/SD2 ratio, SSR) and the small-scale multiscale entropy
index (MElgg)), only the MEIgs has been shown to successfully discriminate among nondiabetic
subjects, as well as those with diabetes with or without satisfactory blood sugar control [16]. In contrast
to MCAE, the percussion entropy index (PEI) [16] is based upon a simple method of assessing the
similarity in the fluctuation patterns of two synchronized time series (i.e., PPG pulse amplitude series
and ECG RR interval signals) to evaluate the BRS regulation capacity of a physiological system of the
human body for autonomic nervous function assessment. For example, in [16], the possibility of using
PEI to assess autonomic sensitivity by counting the percussion numbers between the two fluctuating
time series of DVP and RRI with shift numbers of 1-5 was assessed [17].

The BRS delay between RRI and blood pressure series in the computation of the BRS parameters
under various blood pressure perturbation techniques was discussed in [18-20], considering not
only cardiac BRS, but also sympathetic BRS. However, most of the above studies and corresponding
references focused upon healthy young humans or upper middle-aged subjects, not on diabetes
patients. Previous studies [21-23] have demonstrated that there may be different effects for different
shift numbers among nondiabetic subjects and diabetics with or without satisfactory blood sugar control,
because the BRS regulation capabilities between these groups are quite different. On the other hand,
using time and frequency domain methods, previous studies [24,25] have demonstrated that young
subjects with type 1 diabetes mellitus experience decreased sympathetic and parasympathetic activities
(i.e., BRS reduction), and a lower compliance between blood pressure and heart rate fluctuations
compared with healthy young subjects. In 2011, Professor Javorka et al. [26] reported that in addition
to the increase in time delay within BRS regulation in young patients with type 1 diabetes mellitus,
the level of similarity between blood pressure and heart rate fluctuations was significantly reduced.
Therefore, we conjecture that the percussion rate of the amplitude series and RR interval signals would
reach expectations in a shorter time (i.e., with a small shift number) for healthy humans than for those
with diabetes. In other words, a new modified percussion entropy index (i.e., PEINgw) with a smaller
shift number in the percussion rate computation for healthy humans compared to those with diabetes,
could be found [21-26].
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The objective of the current study was to test two hypotheses: (1) That the prolongation between
the amplitude series and RRI series could be more seriously delayed for type 2 diabetics and elderly
patients with poor blood sugar control, and (2) that this new approach (PEINgw) would significantly
reduce the computation time compared with the past PEI method. In other words, the aim of the
present study was to validate the hypothesis that nondiabetic elderly subjects or type 2 diabetic elderly
subjects with satisfactory blood sugar control could have lower PEI computation time for shorter
shift numbers.

The rest of the paper is organized as follows: Section 2 describes the study population; experimental
procedure; study protocol; details on data acquisition, including the RRI sequence and fingertip PPG
amplitude sequence (i.e., RRI and Amp) and processes of percussion entropy indices (i.e., PElyriginal
and PEINgw); and the computation times for the comparison and statistical analysis. In Section 3, the
choice of the optimal shift number for PEI computation is justified, followed by a comparison of the
three relative parameters for autonomic function assessment. Sections 4 and 5 respectively contain the
discussion and conclusions related to the findings, as well as suggestions for future work.

2. Materials and Methods
2.1. Study Population and Experimental Procedure

2.1.1. Study Population and Grouping

Seventy-eight type 2 diabetic patients were recruited from the diabetic outpatient clinic of Hualien
Hospital (Hualien City, Taiwan) from July 2009 to March 2012. They were all diagnosed by either
a glycosylated hemoglobin (HbAlc) concentration greater than 6.5% or a fasting glucose concentration
higher than 126 mg/dL [27]. They had also received regular treatment in the clinic for more than two
years. Of the 78 patients, five were excluded due to unstable waveform data acquisition. In addition,
42 age-controlled healthy subjects were recruited from a health examination program during the same
period and from the same hospitals. The remaining 115 volunteers were then divided into three
groups: Healthy subjects (Group 1, age range: 41-78 years, number = 42), 38 subjects diagnosed as
having diabetes mellitus type 2 with satisfactory blood sugar control (Group 2, age range: 41-82 years,
6.5% < HbAlc < 8%), and 35 type 2 diabetic patients with poor blood sugar control (Group 3, age
range: 44-77 years, HbAlc 2 8% [28]) (Table 1). The study was approved by the Institutional Review
Board (IRB) of Hualien Hospital and Ningxia Medical University (Yinchuan City, Ningxia Province,
PRC)—Hospitals. All subjects gave written informed consent.

Table 1. Summary of anthropometric, demographic, hemodynamic, and serum biochemical information
of the study subjects.

Group 1 Group 2 Group 3
Parameters Number: 42 Number: 38 Number: 35
Female/Male Female/Male Female/Male
(24/18) (17/21) (12/23)
Age, years 56.73 + 3.80 60.05 + 8.29 58.08 = 11.33
Body height, cm 163.50 + 8.33 163.59 + 7.98 162.41 +5.18
Body weight, kg 65.00 +13.80 71.60 +11.82 79.60 + 16.22
WC, cm 81.75 + 11.80 94.35+9.75 101.01 + 13.49 1t

BMI, kg/m? 24.16 + 4.07 26.53 +2.82" 29.81 + 6.15
SBP, mmHg 116.46 + 15.59 125.66 + 18.02 125.69 + 10.19
DBP, mmHg 73.69 +£9.73 75.06 + 12.36 76.35 + 4.26
PP, mmHg 42.40 = 10.70 51.55 +11.88 50.30 + 12.08
HDL, mg/dL 53.21 + 20.80 44.04 +9.89 40.50 + 9.62
LDL, mg/dL 122.35 + 29.50 94.36 + 21.90 118.10 = 28.91
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Table 1. Cont.

Group 1 Group 2 Group 3
Parameters Number: 42 Number: 38 Number: 35
Female/Male Female/Male Female/Male
(24/18) (17/21) (12/23)
Cholesterol, mg/dL 192.45 + 40.00 170.81 + 31.05 199.10 + 34.62
Triglyceride, mg/dL 98.06 + 85.36 112.92 + 39.92 185.89 + 74.90
HbA1lc, % 5.69 + 0.37 6.93 +0.39 ™ 9.25 +1.60 ™
FBS, mg/dL 93.99 + 10.65 127.45 +25.70 176.91 + 68.51 '

Group 1: Healthy subjects; Group 2: Diabetic subjects with good blood sugar control; Group 3: Diabetic subjects
with poor blood sugar control. All values are presented as mean + SD. WC: Waist circumference; BMI: Body
mass index; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; PP: Pulse pressure; HDL: High-density
lipoprotein cholesterol; LDL: Low-density lipoprotein cholesterol; HbAlc: Glycosylated hemoglobin; FBS: Fasting
blood sugar. “p < 0.017 Group 1 vs. Group 2, p < 0.001 Group 1 vs. Group 2, ¥ p < 0.001 Group 2 vs. Group 3.
A p-value < 0.017 was classified as statistically significant.

2.1.2. Experimental Procedure

In this study, all subjects rested in a supine position in a quiet, temperature-controlled room
at 25 + 1 °C for 4 min prior to the 30 min measurements. Before the measurements were taken,
a questionnaire was given to each subject to obtain detailed information on their general health condition
and medical history. Age, gender and demographic data, including body height, body weight and waist
circumference, were also recorded. Blood samples were obtained from all subjects after 8 h of fasting to
determine the levels of serum triglyceride, high-density lipoproteins, fasting blood glucose and HbAlc.
Systolic and diastolic blood pressure were measured over the left arm of the supine subjects with
an automated oscillometric device (BP3AGI, Microlife, Taipei, Taiwan). Subsequently, a self-developed,
six-channel electrocardiography-pulse wave velocity (ECG-PWV)-based system, which was previously
described, was used to acquire 1000 successive recordings of photo-plethysmo-graphy (PPG) and ECG
waveforms within 30 min [29]. Briefly, the six-channel ECG-PWV system consists of synchronized
PPG and ECG measurements. Digital volume pulses of PPG were acquired by an infrared sensor and
attached to the left index finger. The PPG signals were amplified with an INA128 (Texas Instruments,
Dallas, TX, USA), and then transmitted to a second-order band-pass filter and another low-pass filter.
The pulse signals were then transmitted to a second-order band-pass filter at frequencies of 0.48-10 Hz
and a low-pass filter at frequencies below 10 Hz. Subsequently, the ECG signals were acquired in lead
IT and transmitted to a notch filter set at 59-61 Hz and a band-pass filter at frequencies of 0.98-19.4 Hz.
In order to store and analyze the sampled waveforms of the PPG and ECG signals, a USB-6009 DAQ
(National Instruments, Austin, TX, USA) converted these two signals to digital signals and transmitted
them to a personal computer with a sampling frequency of 500 Hz. After this, we used the LabVIEW
8.6 package (National Instruments, Austin, TX, USA) for data saving and analysis.

2.2. Study Protocol

ECG and PPG signals were simultaneously acquired from all subjects. Two previous parameters,
percussion entropy index (PElyrgina) and multiscale cross-approximate entropy (MCAE), with average
values from scales 1 to 10, were then calculated from the Amp and RRI time series for each subject.
A speedy modified percussion entropy index (PEInpw) was developed for autonomic function
assessment after choosing the optimal delay prolongation between the above two time series.
The associations of the computational parameters (i.e., MCAE, PElyiginal and PEINgw) with the
demographic (i.e., age), anthropometric (i.e., body height, body weight, waist circumference and
body mass index), hemodynamic (i.e., systolic and diastolic blood pressures), and serum biochemical
(i.e., fasting blood glucose and glycated hemoglobin, high- and low-density lipoprotein cholesterol,
triglycerides and total cholesterol) parameters of the three groups of subjects were then calculated
and analyzed.
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2.3. A Speedy Modified Entropy Method for Assessing the Complexity of Baroreflex Sensitivity

2.3.1. Percussion Entropy Index, PEloriginal

Time series of the DVP waveform amplitude (Amp = {Amp(1), Amp(2), ... , Amp(1001)}) and
RRI (RRI = {RRI(1), RRI(2), ..., RRI(1006)}) were simultaneously captured from 1,006 successive and
stable cardiac cycles with PPG and ECG, respectively, for each subject:

Amp = {Amp(1), Amp(2), Amp(3), ... , Amp(1001)}, 1
RRI = {RRI(1), RRI(2), RRI(3), ... , RRI(1006)}. (2)

(1) Taking BRS regulation into account, the binary sequence transformations for Amp and RRI
were computed:

Bamp = {a1 a2 a3 agool, 3)
[0, Amp(i+1) < Amp(i)
where, a; _{ 1, Amp(i+1) > Amp(i) @
Brri = {r1 12 13 11005}, ®)
~ [0, RRI(i+1) <RRI(i)
where, r; = { 1, RRI(i+1) > RRI(i) ©)

(2) Then —m + 1 vectors of patterns for BAmp and BRRI, each of size m, were defined, and these
were composed as follows:

Bamp() = {ai, @i+1, -+, jgm1}, 1 Si<n—-m+l (7)

For s = 1-5 (i.e., shift numbers), the series Bggy,
Brri(i+s) = {Ti+s, Tivs +1, -+ s Lixsam-1L, 1 Si<n—-m+1,s=1to5. (8)

(3) The percussion rate (i.e., the similarity in the pattern of fluctuation) for BAmp(i) and BRRI(i+s)
was counted with the given m. Then, the total match number of Bomp(i) and Bggi(i+s) was
counted with the same pattern (i.e., the percussion number) and divided by the total number of
vectors of patterns (n —m —s + 1) to obtain the percussion rate, which was expressed as

n-m-s+1
1

PISn = m L Count(i). (9)

(4) The logarithm of the sum of percussion rates (Pms) from shift numbers 1-5 (i.e, s =1, 2, 3,4,
5) gave

5
™M (n) = lrl(Z:S:1 P;“), In : natural logarithmic operation. (10)
(5) The embedded dimension was increased to (m + 1), and (9) and (10) changed to

1 n-m-—s—+2
S atmsrn L o) )

5
™ (n) = ln[z P;“H]. (12)
s=1
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(6) According to a previous study [16], the percussion entropy index was defined as

PEI original (m, n) = ¢™(n) — ™ (n), (13)
5 m
P &
= m[ﬁ]. (14)
s=1 I)S

As in [16], where the possibility of using PElyiginal to assess autonomic function by counting the
percussion numbers between the two fluctuating time series of Amp and RRI with a fixed shift number
of 1 to 5 for every group, the parameters in this study were set at m = 2 and n = 1000 (Figure 1).

Data input
(Amp,RRI)
Initialization
(n = 1000)
Binary coding for
Amp & RRI
v

Setting impact points (m =2, 3)

& shift numbers (s=1, 2, 3, ***, sn)
! .
PELigna = In(Y” P7) - In(3 PP
S=1 S=1
!

S; S;
PEDew (S0 =In() P&)-In(} P&
S=1 S=1

S;: Group1, S;: Group2, S3: Group3, 1< S;< S, S35

Figure 1. Flow chart of two percussion entropy index computations. Two synchronized

photo-plethysmo-graphy (PPG) pulse amplitude series (Amp) and RR interval (RRI) series were
acquired. The computational length of the data was 1000. Taking baroreflex sensitivity (BRS) regulation
into account, binary sequence transformations were carried out for Amp and RRI. After the impact
point and three optimal shift numbers had been set, the percussion entropy index (PElyiginal) and the
new PEI (PEINgw) were computed.

In the next section, we describe the derivation of a new modified percussion entropy index (i.e.,
PEINgw) with a smaller shift number in percussion rate computation for healthy humans compared
with diabetics [24-26,30,31].

2.3.2. A Speedy Modified Percussion Entropy Index, PEIngpw

e  Signal processing and calculation of PEINgw

We hypothesized that the BRS delay between the amplitude series and RRI series could be more
seriously delayed for patients with diabetes and poor blood sugar control. Therefore, PElyiginal in (14)
was modified to '

Lo, Py ]

Lol P
In addition, the parameters in this study were also set to m = 2 and n = 1000 for comparison
(Figure 1). Thus, (15) was changed to (16) to make it easy to understand:

PEIngw (m, 1, Si) = ln[ (15)
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Si p2
] e
Z:s:l S

Based on the findings in [24-26,30,31], the BRS regulation capability differs among groups.
The optimal prolongation in (16) between amplitude series and RRI series could be delayed for patients
with diabetes (i.e., Group 2) and poor blood sugar control (i.e., Group 3). Hence, we assumed the
following: the optimal shift number was expressed as S; for Group 1, S, for Group 2, and Ss for

Group 3, where

PEINEw(Si) = ln[

125 £5,£53 5. (17)
e  Criteria for selecting the optimal shift number

The Pearson correlation and Bland—-Altman plot were then adopted to determine the optimal
values of S1, Sy, and S5 in (17).
A. For S; selection for Group 1, the following process is required:

1.  Assuming S; = 1, calculate the Pearson correlation coefficients (r) of PEINgw (1) and PEIngw (2);
PEINEW (1) and PEINEW (3), PEINEW (1) and PEINEW (4), and PEINEW (1) and PEINEW (5)

2. If{r> 0.8, and is statistically significant, (p < 0.05)} and {PEINgw (1) and PEINgw (2) show good
agreement}, then stop (S; = 1). Subsequently, go to S, selection; otherwise, go to the next step.

3.  Assuming S; = 2, calculate the Pearson correlation coefficients (r) of PEINgw (2) and PEINgw (3);
PEINEW (2) and PEINEW (4) ; and PEINEW (2) and PEINEW (5)

4. If {r > 0.8 and is statistically significant, (p < 0.05)} and {PEIngw (2) and PEIngw (3) show good
agreement}, then stop (S; = 2). Subsequently, go to S, selection; otherwise, go to the next step.

5. Assuming S; = 3, calculate the Pearson correlation coefficients (r) of PEINgw (3) and PEIngw (4)
and PEINEW (3) and PEINEW (5)

6. If {r > 0.8 and is statistically significant, (p < 0.05)} and {PEIngw (3) and PEIngw (4) show good
agreement}, then stop (S; = 3). Subsequently, go to S, selection; otherwise go to the next step.

. Assuming S; =4, calculate the Pearson correlation coefficient (r) of PEINgw (4) and PEIngw (5).

8. If {r > 0.8 and is statistically significant, (p < 0.05)} and {PEIngw (4) and PEIngw (5) show good

agreement}, then stop (S; = 4). Subsequently, go to S, selection; otherwise, stop.

B. For S, selection for Group 2, start from S, = 1 and follow the steps for S; selection;
C. For S3 selection for Group 3: start from Sz = 1 and follow the steps for S; selection.

2.4. Computation Times for Comparison

The computation times of MCAE, PElyiginal, and PEINgw for all test subjects were obtained and
compared. For this purpose, a workstation was used with the following specifications: ASUSPRO
Notebook with Intel (R) Core (TM) i5-4210U CPU@1.70 GHz 2.40 GHz, Windows 10 Home. In terms
of signal analysis software, the computation package MATLAB 2016a (MathWorks Inc., Natick,
Massachusetts, USA) was adopted. Two functional instructions, “tic” and “toc”, from MATLAB were
utilized to determine the CPU computation times.

2.5. Statistical Analysis

All values in the tables are denoted as the mean + SD. The Statistical Package for the Social Sciences
(SPSS, version 14.0 for Windows, SPSS Inc. Chicago, IL, USA) was utilized for all statistical analyses.
The one-sample Kolmogorov—-Smirnov test was adopted to test the normality of the distribution, and
then the homoscedasticity of the variables was verified.

To identify significant prolongations between amplitude series and RRI series for the three groups,
the study adopted the Pearson correlation test with Bonferroni correction to determine the optimal
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shift number of each group, and then a Bland—-Altman plot was utilized for further verification of the
agreement and assessment of statistical significance. The significance of differences in anthropometric,
hemodynamic and determined parameters (i.e., MCAE, PElyigina, and PEINgw) among different
groups were determined using independent sample ¢-tests with Bonferroni correction. The correlations
between risk factors and compared parameters for different groups were computed using the Pearson
correlation test. A p-value < 0.017 was regarded as statistically significant.

3. Results

Results from the two old indices, PElyginal and MCAE, were first computed using the same
datasets for comparison. Subsequently, the optimal BRS delay between amplitude series and the RRI
series was identified for each group. Finally, the performance and high-speed characteristics of PEINgw
were verified.

3.1. Optimal Prolongation between the Amplitude Series and RRI Series for the Three Groups

3.1.1. A Simple Way to Estimate the Delay between Amp and RRI

1. Sq Selection for Group 1. As shown in Table 2, two PEINgw sequences in (16) were computed from
cases A-D for Group 1, followed by the Pearson correlation calculation for the two sequences.
For example, we obtained two time series, PEINpw(1) and PEINgw(2), in case A for Group 1
subjects, which were very highly correlated (r = 0.91) and statistically significant (p = 0.01). Then,
the optimal shift number for Group 1 was expressed as 1 (i.e., S; = 1).

2. S Selection for Group 2. For Group 2 subjects, as in Step 1, we obtained two time series, PEINgw (3)
and PEINgw(4), in case H for Group 2 subjects, which were very highly correlated (r = 0.84 > 0.8)
and statistically significant (p < 0.00) (Table 2). After checking the Bland-Altman plot (Figure 2b),
the optimal shift number for Group 2 was expressed as 3 (i.e., S, = 3).

3. S3Selection for Group 3. For Group 3 subjects, as in Step 1, we obtained two time series, PEINpw (4)
and PEINgw (D), in case J for Group 3 subjects, which were very highly correlated (r = 0.87 > 0.8)
and statistically significant (p < 0.00) (Table 2). After checking the Bland-Altman plot (Figure 2c),
the optimal shift number for Group 3 was expressed as 4 (i.e., S3 = 4).

Table 2. Univariate analysis of the correlation of two PEINgw sequences in (16) for subjects from

Groups 1-3.
Case Group 1 Group 2 Group 3
r r r 4 r y
A 0.91 0.01 0.13 0.45 0.47 0.01
B 0.10 0.55 0.06 0.73 0.22 0.25
C —-0.36 0.02 0.21 0.23 0.05 0.81
D -0.14 0.39 -0.03 0.88 0.13 0.47
E - - 0.78 0.00 0.76 0.00
F - - 0.36 0.03 0.34 0.06
G - - 0.45 0.01 0.37 0.04
H - - 0.84 0.00 0.50 0.01
I - - - - 0.41 0.02
] - - - - 0.87 0.00

Group 1: Healthy subjects; Group 2: Diabetic subjects with satisfactory blood sugar control; Group 3: Diabetic
subjects with poor blood sugar control. A: PEINgw (1) and PEINgw (2); B: PEINgw (1) and PEINngw (3); C: PEINgw (1) and
PEINEw(4); D: PEINEw(l) and PEINEw(S); E: PEINEw(Z) and PEINEw(3); F: PEINEw(Z) and PEINgw(4); G: PEINEw(Z)
and PEINEW (5), H: PEINEW (3) and PEINEW(4)/ I: PEINEW (3) and PEINEV\/(S), J PEINEW (4) and PEINEW (5), 0 é |I'| é 0.3:
Correlation of low significance; 0.3 < |r| £ 0.7: Correlation of moderate significance; 0.7 £ |r| £ 1: Highly significant
correlation. The significance of these correlations was determined with the Pearson correlation.

3.1.2. Reproducibility Analysis for PEINgw and PElqrgina for All Subjects

We tested the reproducibility [28] of the PPG and RRI signals by calculating the coefficients of
variation for PEINgw and PElqrginal, which were 2.74% and 14.90%, respectively.
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3.1.3. Correlation between PEINgw and PElygina) for the Three Groups

Figure 3 shows the regression of PEINgw and PElygina) for the three groups with a 95% confidence
interval and the correlation coefficient (r). Figure 3 was added to verify the hypothesis S; £S5, £ Ss.
The correlation study tested three groups of subjects. The values of PEINgw (i-e., S1 = 1in (16)) were
significantly correlated with PElorginal (i-e., shift numbers 1-5 in (14)) for Group 1 subjects (r = 0.86,
p<0.00, Figure 3a). The values of PEINgw (i.e., Sz = 3 in (16)) were significantly correlated with PEI,ginal
(i.e., S =1-5in (14)) for Group 2 patients (r = 0.76, p = 0.01, Figure 3b). As shown in Figure 3c, the
values of PEINgw (i-e., S3 = 4 in (16)) were significantly highly correlated with PElgina (i-e., S = 1-5in
(14)) for Group 3 patients (r = 0.93, p < 0.00).
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Figure 2. Bland-Altman plots showing good agreement between two PEINgw sequences in (16) for (a)
case A, (b) case H, and (c) case J. The mean difference and the limits of agreement are also indicated.
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Figure 3. (a) Positive correlation between PEINgw (i-e., S; = 1) and PElygina for Group 1 subjects
(r=0.86, p < 0.00); (b) positive correlation between PEINgw (i-e., Sp = 3) and PElyginal for Group 2
subjects (r = 0.76, p = 0.01); (c) positive correlation between PEINgw (i-e., S3 = 4) and PElygina) for
Group 3 subjects (r = 0.93, p < 0.00). Group 1: Healthy subjects; Group 2: Diabetic subjects with good
blood sugar control; Group 3: Diabetic subjects with poor blood sugar control. The regression line
depicts the 95% confidence interval.

3.2. Comparison among MCAE, PElyyigina, and PEINgw for Autonomic Function Assessment in All
Testing Subjects

The results of comparing the two previous computational parameters (i.e., MCAE and PElyyiginal)
with PEINgw for autonomic function assessment among the three groups of subjects are shown in
Table 3. Although the value of MCAE was significantly higher in Group 1 compared with Group 2
subjects (p < 0.017), there was no notable difference between Groups 2 and 3. On the other hand,
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PElLyriginal, and especially PEINgw, showed highly significant differences among the three groups
(p < 0.001) (Table 3).

Table 3. Comparison of computational parameters for autonomic function assessment in three groups
of testing subjects.

Parameters Group 1 (N =42) Group 2 (N = 38) Group 3 (N =35)
MCAE 0.83 + 0.08 0.74 +0.09 * 0.75 + 0.05

PElLyriginal 0.73 £ 0.04 0.63 £ 0.07 ** 0.56 +0.09
PEINEW 0.82 +0.04 0.65 + 0.01 ** 0.58 +0.01 '

Group 1: healthy subjects; Group 2: diabetic subjects with satisfactory blood sugar control; Group 3: diabetic
subjects with poor blood sugar control. Values are expressed as mean + SD. MCAE: Multiscale Cross-Approximate
Entropy; PEloriginal: percussion entropy index in (14); PEINgw: speedy percussion entropy index in (16). * p < 0.017:

Group 1 vs. Group 2; ** p < 0.001: Group 1 vs. Group 2; T p < 0.017 Group 2 vs. Group 3; ¥ p < 0.001 Group 2 vs.
Group 3.

3.3. Correlations of Demographic, Anthropometric, Hemodynamic, and Serum Biochemical Data with MCAE,
PEIoriginulr and PEINEw

Table 4 illustrates the correlations between parameters associated with metabolic syndrome,
including demographic, anthropometric, hemodynamic and serum biochemical data, with MCAE,
PEloriginal and PEINgw . Significant associations were noted between MCAE and the serum triglyceride
concentration, as well as between MCAE and fasting blood sugar (both p < 0.017). Significant
associations were noted between PEligina and waist circumference, serum triglyceride concentration,
glycated hemoglobin and fasting blood sugar, as well as between PEINgw and waist circumference,
serum triglyceride concentration, glycated hemoglobin and fasting blood sugar in all subjects, regardless
of diabetic status (Table 4).

Table 4. Associations of demographic, anthropometric, hemodynamic and serum biochemical data
with computational parameters for autonomic function assessment in all subjects.

PEINEw PELyriginal MCAE

r p r p r p
Age (years) 0.32 0.24 0.07 0.49 0.08 0.46
BH (cm) 0.01 0.90 0.16 0.09 0.19 0.08
BW (kg) -0.18 0.06 -0.33 0.02 0.18 0.11
WCl(cm) -0.25 0.01 -0.42 0.00 0.00 0.98
BMI (kg/m?) -0.20 0.04 -0.25 0.01 0.08 0.49
SBP (mmHg) -0.04 0.67 -0.01 0.89 0.16 0.16
DBP (mmHg) -0.03 0.76 -0.04 0.69 0.19 0.91
PP (mmHg) -0.04 0.72 0.01 0.90 0.09 0.45
HDL (mg/dL) 0.09 0.35 0.13 0.20 0.02 0.84
LDL (mg/dL) -0.15 0.14 -0.20 0.04 -0.16 0.18
Cholesterol (mg/dL) 0.10 0.33 -0.09 0.37 0.17 0.08
Triglyceride (mg/dL) -0.27 0.01 -0.31 0.00 -0.21 0.00
HbA1c (%) -0.45 0.00 -0.57 0.00 -0.16 0.18
FBS (mg/dL) -0.29 0.00 -0.53 0.00 -0.73 0.00

BH: Body height; BW: Body weight; WC: Waist circumference; BMI: Body mass index, SBP: Systolic blood
pressure; DBP: Diastolic blood pressure; PP: Pulse pressure; HDL: High-density lipoprotein cholesterol; LDL:
Low-density lipoprotein cholesterol; HbAlc: Glycated hemoglobin; FBS: Fasting blood sugar; MCAE: Multiscale
cross-approximate entropy; PElyiginal: Percussion entropy index in (14); PEINgw: Speedy percussion entropy index
in (16). |r] £ 0.3: Correlation of low significance; 0.3 £ |r| £ 0.7: Correlation of moderate significance; 0.7 < |r| £ 1:
Highly significant correlation. The significance of these correlations was determined with the Pearson correlation.

3.4. Computation Time for MCAE, PElyiging1, and PEINgw in All Testing Subjects

Computation times for MCAE, PElyigina1 and PEINgw from all the subjects were computed and
compared (Table 5). Significantly shorter computation times were noted for PEINgw compared with
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those for MCAE and PEliginal for each group (Table 5). The computation times for PElyiginal could
not be distinguished among the three groups, while the computation times of PEIngw for Group 1
were all highly significantly reduced compared with those for the other two groups (Tables 5 and 6).

Table 5. Comparison of CPU times for MCAE, PEl yigina and PEINgw for all testing subjects.

Group 1 (N =42) Group 2 (N =38) Group 3 (N =35)
CPU time for MCAE (ms) 23.61 + 0.87 2093 £ 0.63 * 21.62 £0.77
CPU time for PElyiginal (ms) 14.17 £ 0.53 13.95 +0.78 13.65 + 0.66
CPU time for PEINgw (ms) 3.80 +0.29 7.87 +0.33 ** 8.11 +0.39

Group 1: healthy subjects; Group 2: diabetic subjects with satisfactory blood sugar control; Group 3: diabetic
subjects with poor blood sugar control. Values are expressed as mean + SD. * p < 0.017: Group 1 vs. Group 2;
**p <0.001: Group 1 vs. Group 2. MCAE: Multiscale Cross-Approximate Entropy; PElorigina: percussion entropy
index in (14); PEINgw: speedy percussion entropy index in (16).

Table 6. Comparison of CPU times for MCAE, PELoriginal and PEINgw under different subject combinations.

MCAE PElysiginal PEINEwW
Group 1 23.61 + 0.87 14.17 £ 0.53 ** 3.80 + 0.29 1
Group 2 20.93 + 0.63 13.95+0.78 * 7.87 £0.33 F
Group 3 21.62 +0.77 13.65 + 0.66 * 811+039°F
Group 2&Group 3 21.31 £ 0.69 13.81+0.75* 7.95+0.38
Group 1&Group 2&Group 3 22.03 +0.81 14.00 £ 0.65 ** 5.88 +0.34 ™

MCAE: Multiscale Cross-Approximate Entropy; PElyriginal: percussion entropy index in (14); PEINgw: speedy
percussion entropy index in (16). Group 1: healthy subjects; Group 2: diabetic subjects with satisfactory blood
sugar control; Group 3: diabetic subjects with poor blood sugar control. Values are expressed as mean + SD (ms).
*p < 0.017: MCAE vs. PElyriginat; ** p < 0.001: MCAE vs. PElyriginal- tp<0017: PEloriginal vs- PEINEw; H p <0.001:
PEIoriginal vs. PEINEw.

4. Discussion

In recent decades, several studies [2-4] have used frequency domain parameters for noninvasive
autonomic nervous function assessment in clinical patients. Considering that baroreflex sensitivity is an
indicator of autonomic function [5-9], as well as previous findings showing a good correlation between
real-time changes in blood pressure and DVP signals amplitudes [12-14], this study investigated
the possibility of assessing autonomic sensitivity by quantifying the increase or decrease fluctuation
matches between the two time series of DVP and RRI with shift numbers of 1 to s, (e.g., sn < 5).
This hypothesis was based on the findings of previous reports, which showed a delay of BRS of between
one to five heartbeats [16,17,26].

Previously, in [16], the impact of diabetes and blood sugar control on autonomic nervous function
was assessed by comparing the percussion rate of two synchronized physiological time series to
fluctuations (i.e., synchronized PPG pulse amplitude series and RRI series) in subjects with or without
diabetes. In contrast to one-dimensional frequency (i.e., LHR) and time (i.e., SSR) domain analyses
of HRYV, the percussion entropy index (i.e., PElyigina) was able to discriminate among subjects with
and without diabetes, as well as those with or without satisfactory blood sugar control. Second,
PEloriginal was shown to be the only index with significant correlations between acute and chronic blood
sugar control parameters. The results highlight the conspicuous sensitivity of this index in detecting
diabetes-associated autonomic dysfunction. However, a fixed BRS delay of the RRI (i.e., 1-5) was used
for PEI computation in all age-controlled subjects. Despite its creative applicability, the computation
load of PElyriginal could be large for real-time applications (Table 5).

It is well known that diabetes is associated with blunted baroreflex regulation and suppressed
autonomic activity [17,32]. The evaluation of baroreflex sensitivity is a nonlinear approach to the
assessment of autonomic nervous activity [33]. The complexity of baroreflex regulations in healthy
and diabetic subjects is considered a ubiquitous phenomenon in physiology that allows subjects to
adapt to external perturbations by preserving homeostasis. This originates from specific features of
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the system, such as its nonlinearity, through physiological networks [34]. Previous studies [18-20]
demonstrated the time delay between the RRI and blood pressure series in the computation of the BRS
under various blood pressure perturbation techniques. The most relevant fluctuations in the heart rate
period occur at around six seconds or faster [30]. It has also been shown that the baroreflex values
change more dramatically in young healthy subjects than in elderly hypertensive subjects and the
increased efficiency of the baroreflex control at night might explain the nocturnal BP reduction.

These results are consistent with the known loss of high-frequency modulation of the baroreflex
with age and disease (i.e., hypertension) [31]. Unfortunately, most of the above studies and
corresponding references did not focus on the optimal delay between RRI and blood pressure
values for the diabetes.

The BRS regulation capability of different groups (e.g., subjects without diabetes as well as those
with or without satisfactory blood sugar control) is quite different [21-23]. Young type 1 diabetics
showed decreases in parasympathetic and sympathetic activities (i.e., BRS reduced), and an overall
variability of the autonomic nervous system in [24]. In [25], young type 1 diabetics were shown to have
autonomic nervous system behavior that tends to be random (i.e., with low compliance between blood
pressure and heart rate fluctuations), compared with healthy young subjects using different time and
frequency domain methods. Another previous study [26] demonstrated that young type 1 diabetics
had a larger BRS delay and similarity between blood pressure and heart rate fluctuations. Thus, the
aim of this study was to determine the optimal BRS delay between RRI and blood pressure values
(“Amp series” in this study) for different subjects (e.g., diabetic and elderly individuals). The optimal
BRS delay between the amplitude and RRI series could be delayed one to three heartbeat cycles for
diabetic subjects with well-controlled blood sugar (i.e., 1-3) and by one to four heartbeat cycles for
those with poor blood sugar control (i.e., 1-4). Group 1 subjects, who were age-matched non-diabetics,
had an optimal BRS delay of one heartbeat cycle (Table 2 and Figure 2). For indirect verification
of the hypothesis (i.e., Sy £ Sy £ S3), the current study not only showed that the values of PEINgw
significantly correlated with PElyyigina (Figure 3), but also demonstrated the good reproducibility
for PEINgw. Accordingly, the computation times for PEINgw were all highly significantly reduced
for Group 1 compared with those for the other two groups (Group 1 vs. Group 2 vs. Group 3:
3.80 +0.29 vs. 7.87 + 0.33 vs. 8.11 + 0.39 ms) (Table 5). In conclusion, this study demonstrated that
elderly type 2 diabetics and patients with poor blood sugar control have a larger BRS delay and
complex fluctuations between the PPG amplitude series and RRI (Table 2, Figures 2 and 3). Moreover,
although diabetic neuropathy was found to be a more important determining factor of spontaneous
baroreflex sensitivity assessment than carotid elasticity in type 2 diabetics in [35], blood sugar control
was not considered. It is worth mentioning that PElyrigina, and especially PEINgw, were successfully
differentiated among the three groups with highly significant differences in our study (p < 0.001)
(Table 3). In addition, the difference between MCAE and PEIs (i.e., PElyiginal and PEINgw) is that
the former assesses the degree of probability of two parameters within the same defined region after
data detrending, normalization and continuous shifting [15,36], whereas the latter is a simple way to
evaluate the similarity in the fluctuation patterns (i.e., increase or decrease) of two synchronized PPG
pulse amplitude series and RRI series to assess the adaptive capacity of a living system [16]. This could
be another reason for the CPU time reduction (Table 6).

The current study has its limitations. Firstly, the number of subjects recruited was relatively
small. Nevertheless, highly significant associations between percussion entropy indices and CPU
time parameters were still significant. Secondly, we only focused on three parameters (i.e., MCAE,
PELyriginal, and PEINgw) using synchronized PPG pulse amplitude series and RRI series, and direct
assessment of BRS with either invasive or noninvasive means was not adopted for comparison with
the results of the present study. Finally, the values of MCAE, PElyyiginal, and PEINgw could be used as
features in a group classification task by using simple machine learning algorithms (such as random
forest and logistic classifiers) in the future.
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5. Conclusions

This study represents the first attempt to investigate the satisfactory application of a speedy
modified entropy parameter (i.e., PEINgw) for the assessment of baroreflex sensitivity complexity
in healthy elderly and diabetic subjects related to type 2 diabetes-associated autonomic function
changes. Our findings suggest that both PEINgw and PElyrigina could serve as novel, noninvasive
biomarkers for discriminating diabetes-related changes in BRS regulation, which is of importance for
preventive care. Taking into account the shorter percussion computation time, PEInpw demonstrated
the feasibility and enhanced sensitivity of autonomic nervous function applications in real-time data
analysis, characteristics which are of vital importance for the development of noninvasive instruments
to compute the complexity of synchronized physiological signals in the human body:.
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