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Abstract: Bit-level and pixel-level methods are two classifications for image encryption,
which describe the smallest processing elements manipulated in diffusion and permutation
respectively. Most pixel-level permutation methods merely alter the positions of pixels, resulting in
similar histograms for the original and permuted images. Bit-level permutation methods, however,
have the ability to change the histogram of the image, but are usually not preferred due to their
time-consuming nature, which is owed to bit-level computation, unlike that of other permutation
techniques. In this paper, we introduce a new image encryption algorithm which uses binary
bit-plane scrambling and an SPD diffusion technique for the bit-planes of a plain image, based on
a card game trick. Integer values of the hexadecimal key SHA-512 are also used, along with the
adaptive block-based modular addition of pixels to encrypt the images. To prove the first-rate
encryption performance of our proposed algorithm, security analyses are provided in this paper.
Simulations and other results confirmed the robustness of the proposed image encryption algorithm
against many well-known attacks; in particular, brute-force attacks, known/chosen plain text attacks,
occlusion attacks, differential attacks, and gray value difference attacks, among others.

Keywords: image encryption; modular addition; scrambling plus diffusion (SPD); SHA-512;
security; entropy

1. Introduction

1.1. Background

Recent technological advancements in networks and communication technologies have
significantly improved communications. As a result, multimedia security (with respect to the
communication of multimedia content) became of widespread concern, especially when the spread of
multimedia content became out of control due to almost global internet access. Thus, the public is at a
serious risk of confidential information leakage and has become more concerned about the security of
multimedia communication in the modern, globalized world [1].

Internet technology has progressed greatly and digital image processing techniques have
improved along with it, resulting in the availability of various applications for digital images.
Such applications are expected to increase in leaps and bounds in the near future. Recently,
image security has attracted considerable attention, as trillions of images are transmitted over the
internet every day—shared through mobile phones and other digital devices, and outsourced to
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cloud storage. This has led to the rise of encryption as the most popular technique for protecting the
privacy of users and their digital images. Various image encryption algorithms have been developed,
which have utilized different kinds of techniques for this purpose [2–8].

Over the last decade, a variety of chaotic systems have been developed [9,10] for the construction
of image cryptosystems, including and not limited to the 3D baker map [11], the 2D logistic map [12],
the 3D cat map [13], the 2D standard map [14], the 3D LCA map [15], and the 2D henon map [16].
Moreover, some chaotic systems have been combined with other approaches for this purpose, such as
DNA computing [17,18], one-time keys [19], cellular automata [20], and the perceptron model [21],
which have been used for the specific objective of enhancing image cryptosystem security.

There are two main stages in chaos-based image encryption systems, with respect to their
composition: permutation and diffusion. The repetition of these two stages multiple times can
attain a desirable security level. The first stage (called the permutation stage) tends to decrease strong
relationships between pixels that are adjacently located. Permutation methods can be classified into
two further categories: bit-level and pixel-level, corresponding to the smallest processing entity in
each case.

In the first category, a pixel is considered the smallest scrambling element in permutation;
for example, a new block image encryption algorithm that was proposed by Wang et al. [22] used
a random grouping technique to scramble the image pixels with the help of the Arnold cat map.
This particular method generally eliminated the drawback of periodicity of the Arnold cat map.
Another method, proposed by Hua et al. [23] known as the high-speed image scrambling method,
changes the positions of rows and columns of pixels at the same time, thereby efficiently reducing
strongly correlated neighboring pixels.

Parvin et al. [24] came up with and implemented a new strategy for scrambling images by shifting
the pixels in rows and columns through a chaotic sequence. Their strategy is very easy to implement,
along with being very efficient. Usually, pixel-based permutation uses the strategy of shuffling the
image by changing pixel positions without having to modify the pixel values; thus, the histograms
of the permuted images and the original images tend to be identical, in most cases, making these
pixel-level based permutations susceptible to histogram attacks and known or chosen plain text attacks,
if these images do not go through diffusion or have bad diffusions [25,26].

A bit is regarded as the building block and basic operating element in the second category of
permutation. For this purpose, the plain image’s pixel matrix is usually transformed into a binary
matrix. For example, a discriminatory image encryption system based on bit-level permutation was
proposed by Tao et al. [27], as each bit tends to contribute different information to an image under
consideration of encrypting the first four most significant bits of each of pixel and leaving the remaining
(i.e., least significant) four bits unaffected. Some other researchers [28,29] have proposed other
improved schemes, in which they applied two distinct methods for permuting the most significant
four bits and least significant four bits.

Liu and Wang [9] pointed out some weaknesses in these improved schemes [30], such as the
schemes requiring a square original image for encryption and that they are able to permute these bits
merely inside each bit-plane. High dimensional chaotic maps and bit-level permutation has also been
proposed by Liu et al. for encrypting color images, but these methods tend to take more computational
time than pixel-based scrambling techniques.

The fundamental characteristics of bit distribution have been analyzed by Zhang et al. [31],
who proposed a multiplication and shrink scheme in the permutation phase to reduce the high
correlation and dependency among significant bits and to make the distribution for each bit-plane
smooth. However, such basic image characteristics at bit-level, as proposed by Zhang, have been
regarded to be inapplicable to medical-related images by Chen et al. [32]. Uniform bit distribution,
along with certain different image diffusion performance, could also be achieved at the same time in
the permutation stage by use of a non-linear inter-pixel computing and substitution methodology.
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Apart from chaos theory, various other techniques have been used to design image ciphers [33–35].
Some examples of such techniques include an image encryption scheme developed by the authors
that utilizes Latin sequences for pixel permutation and substitution [36], and an innovative image
encryption technique that uses a gray code for pixel permutation and a plain pixel diffusion structure
for achieving the diffusion property [37].

A new hybrid encryption scheme based on FSM and cellular automata, which accompanied
a DNA sequence, has also been introduced by Sajid et al. [38]. Their particular scheme provided
good results, along with the concept of creating and using a local rule regarding algorithm efficiency;
however, their particular technique had limitations, as its usage was confined to gray-scale images.

1.2. Contributions

After analysis of the above-mentioned research, we found that the complexity of the particular
encryption technique and number of confusion–diffusion rounds are the main reasons for the high
encryption times of some of the earlier image encryption algorithms. Thus, to address the problems of
high complexity and encryption time in the above-mentioned algorithms, we propose a new simple,
fast, and efficient image encryption algorithm, based on segmentation of the image into m× n blocks,
modular addition between the pixels, and a novel method for pixel diffusion. Together, these steps
increase the security level of the ciphered images against well-known cryptanalysis attacks. We have
made three major contributions with this model:

First, adaptive block-based modular pixel addition is performed. In every 4× 4 block, the pixels
are diffused by modular addition in such a way that, for every forthcoming block (n), the pixels of
the former block (n−1) are added with integer values of a hexadecimal key entity to form a direct
relationship between the previous block and the upcoming block.

Second, a card trick-based scrambling plus diffusion (SPD) method is proposed. For every channel,
the key bit-plane can be the same or different, which can be chosen. The SPD method efficiently diffuses
the pixels and reduces the correlation among the pixels, thereby enhancing the security of the key.

Third, the SHA-512 hexadecimal key (K) value is used for both modular addition and generating
a seed value for the random matrix. Depending on the image size, the integer values of hexadecimal
key pairs can be used in repetition or only once by taking a huge hexadecimal key (i.e., the key can
be “K ≥ M× N” the size of an image). This also provides us a choice of whether to enlarge the key
length. The rest of the paper is organized as follows: in Section 2, the preliminary work is presented.
In Section 3, the proposed image encryption scheme is detailed. Our simulations and discussion are
presented in Section 4, and our security analysis is in Section 5. Finally, our conclusions are given in
Section 6.

2. Preliminary Work

Every decimal number can be denoted by a binary number. As an image matrix is in decimal
matrix form, a binary sequence { bin(0) + bin(1)+, . . . ,+bin(l−2) + bin(l−1)} can be used to represent a
particular image in the following way:

DN =
l−1

∑
p=0

bin(p)2
p = bin(0)2

0 + bin(1)2
1 + . . . + bin(l−1)2

l−1. (1)

As an RGB image is comprised of three channels, each having decimal values between 0–255, its
pixels can also be denoted by a binary sequence. By doing so, the RGB image encompasses 8 bit-planes
for each channel, for a total of 24 bit-planes for the image [39]. In bit-plane representation form, the ith
bit-plane contains all the ith binary values of every pixel in the particular image.
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2.1. Scrambling Plus Diffusion (SPD)

An effective practice to diminish the correlation between neighboring pixels is scrambling.
In this paper, we introduce a novel method for bit-plane scrambling plus diffusion (SPD). In the
proposed method, bit-planes are scrambled, but at the same time, the pixels values are diffused
by altering the binary sequence of every pixel; hence, the technique is called SPD. The proposed
novel method of SPD is based on a card trick. A video of this trick can be seen in the following link:
(https://www.youtube.com/watch?v=2E-FNqICDgg). The scrambling is comprised of two phases.

First, before performing the SPD and modular addition, simple scrambling is performed over the
plain image to shuffle the plain pixel values. The code for ordinary scrambling can be found in the
Supplementary Materials. Second, the proposed SPD method is basically designed for 8 bit-planes,
but, because in a color image there are three channels and each channel has 8 bit-planes for a total of 24
bit-planes, we have a choice to either use the same key bit-plane for all three channels or different keys
to enlarge the key size and make it stronger. In the procedure below, instead of elaborating a lengthy
sequence combination for all 24 bit-planes, we explain the process for just one channel. First of all, we
map the 8 bit-planes of a particular channel of the image with the eight variables given below:

If the key bit-plane is KL, the arrangement will be as follows.

If the key bit-plane is KH, the arrangement will be as follows.

If the key bit-plane is KP, the arrangement will be as follows.

If the key bit-plane is KD, the arrangement will be as follows.

https://www.youtube.com/watch?v=2E-FNqICDgg
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If the key bit-plane is QL, the arrangement will be as follows.

If the key bit-plane is QH, the arrangement will be as follows.

If the key bit-plane is QP, the arrangement will be as follows.

If the key bit-plane is QD, the arrangement will be as follows.

3. Image Encryption

The general structural diagram of our proposed algorithm is given in Figure 1. The proposed
image encryption is comprised of two stages: the first is modular addition and the second is SPD over
the binary bit-planes for each of the RGB channels. The detailed encryption steps are discussed below.

Step 1: Obtain an image of size H ×W and take the SHA-512 to get its 128 bit hexadecimal key;
arrange the hexadecimal key, and get the decimal value of each key entity.

Step 2: Take the seed value from the hash key value to generate a random matrix equal in size to
the input image (H ×W). Perform the scrambling operation.

Step 3: Divide the scrambled image into RGB channels, as shown below:
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ImageRGB ↔


RedChannel.

GreenChannel.

BlueChannel.

Step 4: Subdivide each channel, and the random matrix, into 4× 4 blocks as follows:

Red = Br1, Br2, Br3, . . . , Br(n−1), Brn (2)

Green = Bg1, Bg2, Bg3, . . . , Bg(n−1), Bgn (3)

Blue = Bb1, Bb2, Bb3, . . . , Bb(n−1), Bbn (4)

Randommatrix = BRM1, BRM2, BRM3, . . . , BRM(n−1), BRMn, (5)

where Bi = (1, 2, 3, . . . , n) represents the particular block; r, g, and b represent the red, green, and blue
channels, respectively; BRM(i) = (1, 2, 3, . . . , n) represents the particular random matrix block; and n is
the total number of blocks in the particular image.

Step 5: Take the red channel and perform modular addition over the pixels in every block to
encrypt the blocks, as described below:

Red =



Er1 = [BRM1 + Br1 + INk1]mod256

Er2 = [BRM2 + Br2 + Er1 + INk2]mod256

Er3 = [BRM3 + Br3 + Er2 + INk3]mod256

.

.

.

Er(n−1) = [BRM(n−1) + Br(n−1) + Er(n−2) + INk(n−1)]mod256

Ern = [BRM(n) + Brn + Er(n−1) + INkn]mod256,

(6)

where Ern represents an encrypted pixel of the red channel block, INkn represents the integer value
of a particular hexadecimal key entity, and mod is the modular function, which returns a pixel value
between 0 and 255.

Step 6: For the green channel, repeat Step 5 over all blocks to encrypt the green blocks, as
described below:

Green =



Eg1 = [BRM1 + Bg1 + INk1]mod256

Eg2 = [BRM2 + Bg2 + Eg1 + INk2]mod256

Eg3 = [BRM3 + Bg3 + Eg2 + INk3]mod256

.

.

Eg(n−1) = [RM(n−1) + Br(n−1) + Eg(n−2) + INk(n−1)]mod256

Egn = [BRM(n) + Brn + Eg(n−1) + INkn]mod256.

(7)

Perform the modular addition on the blue channel to encrypt its pixels, as described in Step 5.
In Equations (6) and (7) in each step, sum the original block, random block, key, and previous encrypted
block resemble the cipher block chaining mode [40].
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Step 7: Join all the encrypted sub-blocks to obtain an image matrix and divide each channel into
binary bit-planes, as given below:

ImageRGB =


Redi,j = Binr1, Binr2, Binr3, . . . , Binr8

Greeni,j = Bing1, Bing2, Bing3, . . . , Bing8

Bluei,j = Binb1, Binb2, Binb3, . . . , Binb8,

(8)

where Binij represents the ith bit window of particular channel.
Step 8: Select the key bit-planes (i.e., KL, QL, KP, and so on) for each of the RGB channels and

perform bit-plane scrambling, as described in Section 2.1.
Step 9: Join all the bit-planes to the respective sequences to obtain the cipher image:

Cipher(M,N,3) = Cred
(i,j); Cgreen

(i,j) ; Cblue
(i,j) , (9)

where M and N represent the height and width of the cipher image.

Figure 1. General block diagram.

4. Simulation Results and Discussion

Simulation was carried out using the JetBrains PyCharm Edu 2019.1.1 × 64 software installed on
a PC with 4 GB memory, an Intel Core I5 Processor, and the Windows 10 Enterprise operating system.
For the histograms, Matlab R2017a was used.

The main test image (fruits), along with its cipher and decrypted image, are displayed in Figure 2,
while all the test images that we used are shown in Figure 3. The key and other experimental
parameters are given in Table 1.

Before performing decryption, the secret key needs to be transferred to the receiver through a
secure channel, and the three key bit-planes for the red, green, and blue channels. In decryption,
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all steps are performed in the reverse direction, while the modular addition phase equation in the
decryption process is as follows:

ChannelR,G,B =



PIc(1) = [Ec(1) − BRM1 − INk1]mod256

PIc(2) = [Ec(2) − BRM2 − PIc(1) − INk2]mod256

PIc(3) = [Ec(3) − BRM3 − PIc(2) − INk3]mod256

.

.

.

PIc(n−1) = [Ec(n−1) − BRM(n−1) − PIc(n−2) − INk(n−1)]mod256

PIc(n) = [Ec(n) − BRM(n) − PIc(n−1) − INkn]mod256,

(10)

where PIc(i) represents the plain image blocks of the channel c ∈ R, G, B and Ec(i) represents an
encrypted block of the particular channel.

Table 1. Key and experimental parameters.

Terms Key Parameters & Values

512-bit Hexa- E9BAD688008A995B22723D5565411F91769E9E72F6407B148D84B2DEDF1DF3996BFA27
decimal key 5EBE13B9B9CA27D82C6440764A817BDA1A1A54DE542FD427AB39ADC292

Seed int(K, 16) = 1224142479849059493616438967241173867216550529300133027919602126895
Value 5249538595902639015802274554590625310127458155867404943493171251136512933387

374143849106

Integer values int(K[0 : 1], 16) = 14, int(K[1 : 2], 16) = 9,. . . , int(K[(n-1) : n], 16) = 2

Key bit-planes RedQD ; GreenKH ; BlueQL

(a) Plain Image (b) Ciphered Image (c) Decrypted image

Figure 2. Encryption and decryption results. (a) Plain image of fruits; (b) cipher image of fruits;
(c) decrypted image of fruits.
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(a) Lena (b) Baby (c) Apricot (d) Fruits

(e) Tiffany (f) Nike (g) Panda (h) Vegetables

(i) Pepper (j) House

Figure 3. All test images.

5. Security Analysis and Tests

5.1. Key Space and Key Sensitivity

First, the key space of an encryption algorithm should be appropriate. In the proposed algorithm,
we use SHA-512, which gives an output of 512 bits in hexadecimal form. In SPD, three key bit-planes
and their resultant possible combinations, and the long seed value of the hexadecimal key for the
random matrix, can be included in the key space. Together, these form the key space of the proposed
algorithm; 2512 means 1.340 × 10154. Thus, it has apt size and great capacity for protecting from
brute-force attacks [41]. Secondly, the key must be tremendously sensitive to bit changes. If the key is
not subtle enough, then a similar key may also be able to decrypt the cipher image [42,43].

Thus, to test the key sensitivity, we checked the number of bit change rate (NBCR) [44]. The
NBCRs of the two images B1 and B2 are defined as

NBCR(B1, B2) =
ham(B1, B2)

Tb
, (11)

where ham (B1, B2) indicates the Hamming distance between B1 and B2, whereas Tb is the overall
number of bits from B1 or B2. If the acquired NBCR is near to 50%, then B1 and B2 are entirely
dissimilar images, with no relationship.

K1 = E9BAD688008A995B2.. . . . ...B39ADC292.

For the key sensitivity of the proposed algorithm, our experiments were designed as follows:
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1st: Alter one bit of K1 to obtain K2.
2nd: Using K1 and K2, encrypt the plain-image P and generate two cipher-images C1 and C2.

Then, compute their NBCR.
3rd: Decrypt the particular cipher-image C1 by using K1 and K2 to get two decrypted images D1

and D2. Then, compute the NBCR.
Figure 4 demonstrates the key sensitivity exploration result of the secret key for the fruit test

image. We can observe from the graph that any change in the secret key will result in obtaining two
cipher-images in the encryption phase and the two decrypted results in the decryption phase in entirely
different forms. This shows that our proposed algorithm is extremely sensitive to deviation of the
cipher key.

(a) (b)

Figure 4. Key sensitivity analysis. (a) Number of bit change rate (NBCR) between C1 and C2; (b) NBCR
between D1 and D2.

Furthermore, if the encryption algorithm has a less sensitive key, then any insignificant change
in the real secret key will also lead to proper decryption of the actual image. Thus, a secret key of
algorithm may seem corrupted, and as a result, the real key space will be smaller than the theoretical
one [45,46] .

Therefore, in order to further analyze the key sensitivity of our algorithm, we performed another
experiment over the fruit image, in the encryption and decryption steps, by altering only one bit in the
actual key, as shown below:

Keyo = “E 9B AD 68 80 08 A9 95 B2 27 23 D5 56 54 11 F9 17 69 E9 E7 2F 64 07 B1 48 D8 4B 2D ED
F1 DF 39 96 BF A2 75 EB E1 3B 9B 9C A2 7D 82 C6 44 07 64 A8 17 BD A1 A1 A5 4D E5 42 FD 42 7A B3
9A DC 29 2.”

Key1 = “F 9B AD 68 80 08 A9 95 B2 27 23 D5 56 54 11 F9 17 69 E9 E7 2F 64 07 B1 48 D8 4B 2D ED
F1 DF 39 96 BF A2 75 EB E1 3B 9B 9C A2 7D 82 C6 44 07 64 A8 17 BD A1 A1 A5 4D E5 42 FD 42 7A B3
9A DC 29 2.”

Key2 = “E 9B AD 68 80 08 A9 95 B2 27 23 D5 56 54 11 F9 17 69 E9 E7 2F 64 07 B1 48 D8 4B 2D ED
F1 DF 39 96 BF A2 75 EB E1 3B 9B 9C A2 7D 82 C6 44 07 64 A8 17 BD A1 A1 A5 4D E5 42 FD 42 7A B3
9A DC 29 3.”

Keyo is the actual key, while Key1 and Key2 have only a one-bit key difference from the left-most
side and the right-most side of the bit, respectively.

We performed experiments for both the encryption and decryption steps. In both cases, we
selected keys with only a one-bit difference from the real key. K1 is the key having a one-bit difference
from the left side, while K2 has a one-bit difference from the right side. Figure 5a,b shows the encrypted
images with K1 and K2, respectively. Figure 5c is the subtraction result of (a) and (b). Figure 5d–f are
the histograms of Figure 5a–c, respectively. Similarly, on the decryption side, we attempted to decrypt
the actual cipher image with a key having one bit difference from the original key; the results are
listed in Figure 5g,h. Figure 5i is the subtracted image of (g) and (h), and the respective histograms are
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shown in in Figure 5j–l. The results show that our proposed algorithm is highly sensitive to the key,
and even a bit difference in the key will result in a totally noise-like image.

(a) Encrypted with K1 (b) Encrypted with K2 (c) Subtraction of two images

(d) Histogram of (a) (e)Histogram of (b) (f) Histogram of (c)

(g) Decrypted with K1 (h) Decrypted with K2 (i) Subtraction of two images

(j) Histogram of (g) (k)Histogram of (h) (l) Histogram of (i)

Figure 5. Key sensitivity test: (a) encrypted with K1; (b) encrypted with K2; (c) subtraction of (a,b);
(d) histogram of (a); (e) histogram of (b); (f) histogram of (c); (g) decrypted with K1; (h) decrypted with
K2; (i) subtraction of (g,h); (j) histogram of (g); (k) histogram of (h); (l) histogram of (i).
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5.2. Histogram Analysis

The histograms of the images reveal the dissemination of the pixel values. Generally, an interloper
can recuperate important information about the cipher image from its (inconsistent) histogram.
Therefore, to thwart an impostor from recuperating useful information, it is essential that the
histograms of images generated by the cipher show no numerical resemblance with the plain image;
in addition, it must have an unvarying distribution of pixels. Figure 6a–j shows the histograms of all
the test images that we used, and Figure 7 shows the histograms of corresponding cipher-generated
images in the sequence of all test images. The histogram of main test image (fruit) is given in Figure 8.
Figure 8a–c shows the histograms of the plain channels of the fruit image, and Figure 8d–f shows the
histograms of the blue, green, and red channels, respectively, of the image encrypted by the proposed
algorithm. It can be observed that the histograms of the cipher-generated images are nearly flat
and uniform.

(a) Lena (b) Baby (c) Apricot (d) Fruits

(e) Tiffany (f) Nike (g) Panda (h) Vegetables

(i) Pepper (j) House

Figure 6. Histograms of plain test images.
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(a) Lena (b) Baby (c) Apricot (d) Fruits

(e) Tiffany (f) Nike (g) Panda (h) Vegetables

(i) Pepper (j) House

Figure 7. Histograms of cipher images.

(a) Plain red channel (b) Plain green channel (c) Plain blue channel

Figure 8. Cont.
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(d) Cipher red channel (e) Cipher green channel (f) Cipher Blue Channel

Figure 8. Histograms of RGB channels of fruits. (a) Plain red channel; (b) plain green channel; (c) plain
blue channel; (d) ciphered red channel; (e) ciphered green channel; (f) ciphered blue channel.

Likewise, by calculating the variances of the histograms, we assessed the consistency of the
encrypted images. If the variance of an encrypted images is smaller, then the uniformity (and the
security level) of the particular image encryption algorithm is greater [45,46].

Hvariance(W) =
1
n2

n

∑
r=1

n

∑
c=1

1
2
(wr − wc)

2, (12)

where W = w1, w2, . . . , w256 represent the vectors of the histogram values, and wr and wc are pixels
with gray values equal to r and c, correspondingly.

Table 2 lists the variances of some test images. From the table values, it can be concluded that
the variances of the plain images were too high, but for the ciphered images, they were very low.
For example, the average variance of the cipher image of Lena (256× 256) was 229, but it was 81,231
for the plain Lena image. The given comparison also shows that for the majority of test images, the
histogram variances of images encrypted by the proposed algorithm were lower than those in [41,43].
On the basis of this comparison, we can say that our proposed algorithm has the ability to make the
encryption algorithm more secure.

Table 2. Histogram variance comparison.

Images Plain Proposed [42] Cipher [44] Cipher

Red Green Blue Red Green Blue Red Green Blue Red Green Blue

Lena 123,072.500 87,100.835 33,522.734 219.513 231.052 221.119 247.78 279.62 265.71 527.32 504.75 501.68
Female 620,306.750 860,899.312 790,776.56 262.265 233.211 255.813 280.64 280.46 230.42 - - -
Couple 289,630.656 337,863.062 210,359.812 275.095 243.858 238.196 284.35 247.37 260.76 - - -
House 99,2034.125 1,330,180.125 768,126.75 1136.569 1119.742 1060.540 1070.2 1231.2 941.65 - - -
Tree 129,825.531 57,011.605 81,373.710 250.877 215.093 258.754 282.81 254.87 225.79 - - -
Bean 129,765.984 349,251.718 537,500.062 214.782 259.715 238.384 232.98 279.61 245.61 - - -

5.3. Pixel Correlation Analysis

To check the relationships amongst neighboring pixels in the encrypted and plain images, a pixel
correlation analysis test was performed. For an encryption algorithm, it is essential to diminish the
correlation amongst neighboring pixels, in order to prevent the leakage of authentic information.

The correlation coefficient Corr.(i,j) between the adjacent pixels of an image can be computed by
the following equations:

C(h̄) =
1
L

L

∑
i=1

h̄i (13)

D(h̄) =
1
L

L

∑
i=1

(h̄i − E(h̄))2 (14)
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Cvar.(h̄, w) =
1
L

L

∑
i=1

(h̄i − E(h̄))(wi − E(w)) (15)

Cr(h̄,w) =
Cvar.(h̄, w)√
D(h̄)× D(w)

, (16)

where (h̄, w) is the gray value of neighboring pixels, L is the entire number of pixels that have been
selected from an image, Cvar.(h̄, w) is the covariance, D(w) is the variance, and E(h̄) and E(w) denote
the expectation of the variables h̄ and w, respectively. Table 3 lists the correlations of 1000 pixels in
the Lena image. The average value of the pixel correlation in the horizontal, vertical, and diagonal
directions is −0.0092375. Comparison with earlier algorithms indicates that the correlation between
neighboring pixels in our ciphered image is less than those in [47–49], while it was comparable to those
of [50,51]. In Table 4, the pixel correlation values of the images of USC-SIPI database, as well as other
test images, are given. From the table values, we can see that the correlation in the plain image is too
high (almost equal to “1” for each channel), but in the images encrypted by our proposed algorithm, it
is very low. This confirms the satisfactory security level of our algorithm. Figure 9a–f shows plots of
the correlation of two neighboring pixels in the plain image “tree” and its cipher-generated image. The
plot shows the red channel horizontally, the green channel vertically, and the blue channel diagonally
distributed. These results also show that the correlation is highly reduced in the cipher image, and
thus, we can say that attackers cannot obtain any information from the cipher image in this way.

(a) Plain red horizontal (b) Plain green vertical (c) Plain blue diagonal

(d) Cipher red horizontal (e) Cipher green vertical (f) Cipher blue diagonal

Figure 9. Pixel correlation of test image tree. (a) Plain red channel pixels, horizontal; (b) plain green
channel pixels, vertical; (c) plain blue channel, diagonal; (d) ciphered red channel pixels, horizontal;
(e) ciphered green channel pixels, vertical; (f) ciphered blue channel pixels, diagonal.
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Table 3. Pixel correlation between 1000 random pixels of Lena.

Algorithm Horizontal Vertical Diagonal

[47] −0.0098 −0.0050 −0.0013
[50] −0.0023 0.0019 −0.0034
[51] 0.0020 −0.0007 −0.0014
[48] −0.0237 −0.0178 −0.0284
[49] 0.0080 0.0098 −0.0058
Proposed −0.0042707 −0.0032498 −0.020192

Table 4. Pixel correlation of USC−SIPI.

Images Channel Plain Ciphered

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

4.1.01
Red 0.97318 0.96395 0.94653 −0.0053517 0.010961 −0.0049967
Green 0.9692 0.96409 0.94567 −0.0047375 −0.0012887 0.0059078
Blue 0.95666 0.94848 0.93846 0.0021301 0.0023748 −0.00036386

4.1.02
Red 0.94829 0.95259 0.91853 −0.00331 −0.0041589 0.016235
Green 0.9237 0.95515 0.89936 −0.012505 −0.00032095 0.0032421
Blue 0.91566 0.94324 0.88315 0.018044 −0.00053454 0.019847

4.1.03
Red 0.98061 0.92609 0.90982 −0.01801 −0.012732 −0.01593
Green 0.97722 0.91153 0.88157 0.0009692 0.0024241 0.0076471
Blue 0.97383 0.90929 0.89348 −0.0072574 0.0084441 0.0036835

4.1.04
Red 0.97653 0.98664 0.97151 −0.0063601 0.021812 −0.020985
Green 0.96491 0.98351 0.95113 −0.0085227 −0.01142 −0.0089817
Blue 0.95215 0.97005 0.93335 0.0018656 0.0041814 −0.011218

4.1.05
Red 0.96786 0.93611 0.91023 0.0025253 −0.0070104 −0.001377
Green 0.98024 0.95152 0.92792 0.0015667 −0.013295 0.0082844
Blue 0.98215 0.97459 0.96133 −0.0077072 −0.0074648 −0.0048926

4.1.06
Red 0.95813 0.93145 0.91129 −0.0092083 −0.01433 0.0011584
Green 0.96761 0.94832 0.92968 −0.0020563 0.0052499 0.0073594
Blue 0.96175 0.94106 0.92656 0.00096206 −0.0032515 0.013931

4.1.07
Red 0.97582 0.97547 0.94929 0.0032059 −0.0079411 −0.0082824
Green 0.9777 0.98171 0.95789 −0.0037171 −0.0054693 0.0013666
Blue 0.98938 0.98803 0.97825 −0.010115 0.00021278 −0.00074795

4.1.08
Red 0.97278 0.97356 0.95062 −0.0035631 −0.0040268 0.004974
Green 0.97332 0.97477 0.94604 −0.002521 −0.0092897 −0.0079288
Blue 0.97943 0.98097 0.95977 0.0090987 −0.0020318 −0.0036913

Apricot
Red 0.98386 0.9863 0.96945 −0.013663 −0.0018757 −0.0054083
Green 0.97884 0.98512 0.96538 −0.010663 0.0015055 0.0023429
Blue 0.98725 0.99154 0.98349 0.0048932 −0.0057104 −0.011769

Vegetables
Red 0.97887 0.98013 0.96109 0.001243 −0.0032611 0.00075363
Green 0.9775 0.97953 0.95948 −0.00075568 −0.0024519 0.0044758
Blue 0.97225 0.97092 0.9473 −0.0010255 −0.0049976 0.0015237

Fruits
Red 0.9868 0.98516 0.97407 −0.0044958 −0.0014318 0.0047764
Green 0.98084 0.98078 0.96405 −0.0057875 −0.00091906 −0.0066637
Blue 0.95394 0.9494 0.90847 −0.0040615 0.0012303 −0.005508

baby
Red 0.97834 0.97816 0.96278 −0.006159 0.0021686 0.0025641
Green 0.99107 0.99428 0.97854 −0.0021032 0.0011388 0.0099095
Blue 0.99371 0.99472 0.98814 −0.0036711 −0.012494 0.0046702

Panda
Red 0.95176 0.96553 0.93162 0.005131 −0.00076785 −0.0049536
Green 0.95216 0.96437 0.93067 0.0078787 −0.00079504 0.00027378
Blue 0.95543 0.97087 0.94266 7.0511× 10−5 −0.010969 0.01059

Nike
Red 0.98682 0.9922 0.97288 −0.0043816 −0.016514 0.0066848
Green 0.98852 0.99104 0.97353 0.0023924 0.0017956 −0.0034512
Blue 0.98676 0.9905 0.9719 0.0087522 0.0057947 −0.0030273

Tiffany
Red 0.9584 0.95431 0.91675 −0.0014434 −0.0019299 0.0075856
Green 0.89597 0.95016 0.87161 −0.012698 0.0075576 −0.001533
Blue 0.91305 0.93013 0.86384 −0.0014111 0.0010208 −0.0038235
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5.4. Differential Attack

Usually, a cracker performs a little amendment to the pixels of the plain image and then uses
the same encryption approach to encrypt similar images. With this approach, they try to find the
association between a plain image and an encrypted image. To check the robustness of our proposed
method against differential attacks, we employed the number of pixels change rate (NPCR) and unified
average changing intensity (UACI). The NPCR and UACI can be computed by the following equations:

NPCRC1,C2 = [
∑i,j Ĩ(i, j)

H ×W
]× 100 (17)

UACIC1,C2 =
1

H ×W
[∑

i,j

|C1(i, j)− C2(i, j)|
28 − 1

]× 100, (18)

where C1 and C2 represent two dissimilar ciphered images, before and after one pixel in the plain
image is altered, respectively; H and W are the height and width of the image; and Ĩ(i, j) can be defined
as follows:

Ĩ(i, j) =

{
0 C1(i, j) 6= C2(i, j)

1 otherwise
(19)

The NPCR and UACI values for two images (Lena, pepper) are given in Table 5, from which we
can see that NPCR ≥ 99.6 and UACI ≥ 33.4. From these values, it can be seen that the NPCR values
of the proposed encryption algorithm were better than those of [52–55], while the UACI value was
comparable to the others.

Table 5. Number of pixels change rate (NPCR) and unified average changing intensity (UACI) comparison.

Algorithm Lena Pepper

NPCRR,G,B UACIR,G,B NPCRR,G,B UACIR,G,B

Proposed 0.9968 0.3346 0.9967 0.3348
[52] 0.9966 0.3344 0.9963 0.3347
[53] 0.9959 0.3346 - -
[56] 0.9962 0.3365 - -
[57] 0.9960 0.3348 - -
[54] 0.9960 0.3344 - -
[55] 0.9961 0.3346 0.9960 0.3349

5.5. Known and Chosen Plain Text Analysis

Generally, there are four types of cryptanalysis attacks which can be performed to break an image
encryption algorithm: chosen-plain text attack, chosen-cipher text attack, known-plain text attack,
and cipher text-only attack [58–60]. The cryptanalysis method where the attacker picks certain plain
text to obtain the related cipher text is called chosen-plain text attack. By probing the plain text and
the related cipher text, they can attempt to deduce some valuable encrypted information. Finally,
by means of that information, they can try to convalesce the actual images [61,62].

Of the above-mentioned attacks, the chosen-plain text attack is the most influential, so if an
encryption algorithm can successfully withstand this attack, it is believed to have a satisfactory security
level against the other three attacks as well. We performed this attack by using all-white and full-black
images. We also created special white (SW) and special black (SB) images, having all pixels 255 in
the white image and 0 in the black image, except for one pixel at the location 200× 200, which was
different. We created the cipher images and the results are given in Figure 10. In Figure 10a,d, the full
white and full black images are shown; Figure 10b,e are the corresponding cipher images, respectively.
Additionally, Figure 10c,f shows the histograms of Figure 10b,e; Figure 10g is the cipher image of
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the special image; and Figure 10h is the subtraction result of the cipher of the all-white image and
the cipher of the SW image. Figure 10i shows the histogram of the subtracted image. We can see
that the histograms of the cipher-generated images of both the all-white and full-black images are
almost uniform and flat, and that the subtracted image is also a noise-like image showing no useful
information. In Table 6, the entropy, NPCR, UACI, and correlation values of the all-white, SW, and
full-black images are also given. From the results, it is clear that the ciphered image of our proposed
algorithm had higher entropy values, better correlation results (in comparison to [63]), and ideal NPCR
and UACI values. On the basis of these results, we can conclude that our proposed algorithm has high
security against known/chosen plain text attacks, and hence, it can keep images more secure.

Table 6. Known/chosen plain-text attack result.

Algorithms Images Entropy Correlation NPCR UACI

Horizontal Vertical Diagonal SW,SB SW,SB

Ours

All white 0 - - - - -
Cipher white 7.9988 −0.01140 −0.00706 0.00631 0.9962 0.3349
Full black 0 - - - - -
Cipher black 7.9989 0.00965 −0.00307 −0.00172 0.9959 0.3343

[63]

All white 0 - - - - -
Cipher white 7.9971 0.0071 0.0144 −0.0068 - -
Full black 0 - - - - -
Cipher black 7.9970 −0.0101 0.0135 −0.0010 - -

(a) All white (b) cipher of (a) (c) Histogram of (b)

(d) Full black (e) cipher of (d) (f) Histogram of (e)

(g) Cipher of SW (h) subtraction (i) Histogram of (h)

Figure 10. Encryption result of all white and full black images. (a) All white image; (b) full black image;
(c) cipher image of (a); (d) cipher image of (b); (e) histogram of (c); (f) histogram of (d); (g) cipher of
one pixel change of (a); (h) subtraction of (b,g); (i) histogram of (g).
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5.6. Encryption Quality

The image encryption quality can be determined by the below equation, where E(r,c) and I(r,c)
can be taken as the gray values of the image pixels in a grid G(r,c) in the cipher and the plain images,
respectively, each having H ×W pixels with n gray levels; I(r,c) and E(r,c) ∈ (0, 1, . . . , n− 1); Hn(E)
and Hn(I) are the occurrences of the gray level n in the cipher and plain images, respectively; and EQ

depicts the average change rate for each gray level n. The higher the EQ value, the more secure the
image is. EQ can be computed by the following formula:

EQ =
255

∑
n=0

(Hn(E)− Hn(I))2

256
. (20)

Table 7 lists the EQ values of USC-SIPI database images, along with their comparison to [64].
The table values show that the EQ values of the proposed algorithm are higher that those of [64]
in the majority of images. Thus, we can say that the proposed algorithm provides a more secure
encryption algorithm.

Table 7. EQ comparison of USC-SIPI database.

USC-SIPI Proposed [64]

Red Green Blue Red Green Blue

4.1.01 358 385 292 312 317 326
4.1.02 229 289 272 336 347 346
4.1.03 393 370 403 308 346 339
4.1.04 272 210 284 203 199 282
4.1.05 219 278 231 290 273 312
4.1.06 210 252 260 189 181 246
4.1.07 285 289 244 372 358 291
4.1.08 242 264 261 331 309 259
House 284 317 276 183 219 155

5.7. Robustness Against Occlusion Attack

In image processing, the extensively used parameters to check the encryption quality are peak
signal to noise ratio (PSNR) and mean square error (MSE). The PSNR and MSE values between the
plain (P), decrypted (D), and ciphered images can be computed as follows:

PSNR = 10× log10(
(2L − 1)2

MSE
(dB), (21)

where L is the bit-depth of the particular image. The MSE can be defined as

MSE =
1

HW

H

∑
r=1

W

∑
c=1

[P(r,c) − D(r,c)]
2. (22)
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A higher PSNR value indicates a smaller difference between the plain and decrypted images.
If P and D are the same, their PSNR will be infinity. Table 8 lists the PSNR values between the
plain and ciphered images and plain and decrypted images for the different test images, along with
comparisons to other methods. The infinity value of PSNR for plain to decrypted shows that the
proposed algorithm can efficiently decrypt the actual image, while the method of [65] resulted in loss of
some information. Similarly, lower values of PSNR between the plain and cipher images indicate more
secure image encryption, as lower values indicate greater differences. The lower PSNR values of plain
to ciphered images in Table 8 indicate that the proposed algorithm encrypts better than those of [65–67].
An alternative means of quality checking is at the receiver side, where a ciphered image may lose some
data or get blurred. Thus, a reliable encryption algorithm or method should be able to get back the
actual image without dropping too much substantial information. Figure 11a–d shows the test image
Panda with different cropped portions (i.e., 1/16, 1/8, 1/4, and 1/2, respectively), while Figure 11g–j
shows the images retrieved from the respective cropped image. Similarly, Figure 11e,f shows the Lena
image cropped by 1/4 and 1/2, respectively, with the corresponding retrieved images in Figure 11k,l,
respectively. We can see that retrieved image still has visual information, even after half of the ciphered
image is destroyed. Table 9 lists a comparison of the PSNR and MSE of the Lena image with different
cropped portions. The higher PSNR values and lower MSE values, as compared to [64,68], prove that
proposed algorithm can retrieve images without losing substantial information.

Table 8. Peak signal to noise ratio (PSNR) (dB) between plain (P) 7→ cipher (C) image and plain 7→
decrypted (D) image.

Algorithm PSNR type Lena Baboon Panda Vegetables

Proposed P to D ∞ ∞ ∞ ∞
P to C 8.1102 8.7776 8.1648 6.8760

[66] P to C 8.1300 7.8569 7.7410 7.4395

[65] P to D 96.295 - - -
P to C 9.0348 - - -

[67] P to C 8.3655 8.8532 - -
[69] P to C 8.2522 8.8223 - -

Table 9. PSNR (dB) and mean square error (MSE) comparison with different cropped size.

Cropped Size Image Proposed [68] [64]

PSNR MSE PSNR MSE PSNR MSE

1/2 Lena 17.4286 1.1755× 103 12.88 3121.1 11.58 4578.34
Panda 13.9065 2.6450× 103 - - - -

1/4 Lena 20.2816 609.4230 14.722 2192.2 14.59 2289.9
Panda 16.7175 1.3846× 103 - - - -

1/8 Lena 23.0749 320.3273 16.75 1375.9 17.57 1155.3
Panda 19.4912 731.0670 - - - -

1/16 Lena 25.6379 177.5376 19.25 772.65 20.57 579.9
Panda 21.9180 418.0993 - - - -
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(a) Panda 1/16 cropped (b) Panda 1/8 Cropped (c) Panda 1/4 Cropped

(d) Panda 1/2 Cropped (e) Lena 1/4 Cropped (f) Lena 1/2 Cropped

(g) Retrieved of (a) (h) Retrieved of (b) (i) Retrieved of (c)

(j) Retrieved of (d) (k) Retrieved of (e) (l) Retrieved of (f)

Figure 11. Occlusion attack test. (a) Cropped image of Lena; (b) cropped image of a panda; (c) cropped
image of a house; (d) cropped image of baboon; (e) cropped image of a panda; (f) cropped image of
Lena; (g) retrieved image of (a); (h) retrieved image of (b); (i) retrieved image of (c); (j) retrieved image
of (d); (k) retrieved image of (e); (l) retrieved image of (f).
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5.8. Local and Shannon Information Entropy

Entropy (E) values indicate the degree of chaos in an encryption system by calculating its gray
value probability. Information entropy (IE) or entropy can be defined in the following way:

Suppose an information source is h̄. Then, E can be calculated with the following formula:

E(h̄) =
2l−1

∑
i=0

ρ(h̄i)log2
1

ρ(h̄i)
. (23)

In the above equation, l depicts the gray intensity level and ρ(h̄i) represents the probability of
the symbol h̄i. For an image with an intensity level of 28, the ideal value of E is 8 [61]. Therefore,
the closer the entropy is to this value, the better the randomness of the image pixels. A higher value
ensures that less information will be discovered from the particular encrypted image. Table 10 shows
the entropy value of our test images, along with a comparison to some existing image encryption
algorithms. The values in the table show that E ≥ 7.996, which is higher than those of [10,58,62,70,71].

In [72], a new uncertainty test was proposed for native image blocks by means of the Shannon
entropy. The Shannon entropy for native image pixel blocks (τ,~ak) can be computed in following way:

(1): Randomly choose (non-overlapping) blocks in an image (i.e., N1, N2, N3, . . . , Nk) with
~ak pixels within the image I having intensity Ln. (2): Calculate the Shannon entropy for all
i ∈ ((k− 1), (k− 2), . . . , 3, 2, 1) using Equation (23). (3): Compute the Shannon entropy by sample
mean over all k image pixel blocks N1, N2, N3, . . . , Nk with the following formula:

h̄(τ,~ak)
(N) =

k

∑
i=1

H(Ni)

k
. (24)

We calculated the Shannon entropy values for the ciphered images with k = 32 and~ak = 1940
pixels. Table 11 lists the global and Shannon entropy values for the USC-SIPI image database, and some
well-known test images. The values were E ≥ 7.998, which is equivalent to the ideal value; furthermore,
the Shannon entropy values were between 7.9018 and 7.9034. These results are comparable with those
of [73].

Table 10. Information entropy comparison.

Algorithm Test Ciphered

Image R G B

Our

Lena 7.9974 7.9974 7.9971
Pepper 7.9993 7.9994 7.9992
Baboon 7.9993 7.9992 7.9993
Panda 7.9972 7.9971 7.9966
Vegetable 7.9992 7.9994 7.9994

[58]

Lena 7.989 7.989 7.989
Pepper 7.989 7.988 7.989
Baboon 7.989 7.989 7.988
Panda 7.988 7.989 7.989
Vegetable 7.989 7.989 7.989

[62] Lena 7.987 7.987 7.986
[70] Lena 7.927 7.974 7.970
[71] Lena 7.973 7.975 7.971
[10] Lena 7.987 7.988 7.987
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Table 11. Global entropy and Shannon entropy.

Images Our GlobalR,G,B [73]

ShannonC Plain Cipher ShannonC

Vegetables 7.9032 7.5060 7.9997 -
Baby 7.9029 6.3988 7.9997 -
Fruits 7.9023 7.5322 7.9991 -
Panda 7.9026 7.8679 7.9990 -
Pepper 7.9030 7.6698 7.9998 7.9024
Apricot 7.9029 5.7492 7.9997 -
Nike 7.9022 1.1969 7.9997
Tiffany 7.9023 6.4288 7.9998 -
House 7.9032 7.4858 7.9997 7.9021
Baboon 7.9027 7.2428 7.9998 7.9023
Lena 7.9032 7.4517 7.9991 7.9024
4.1.01 7.9023 6.8981 7.9991 -
4.1.02 7.9032 6.2945 7.9990 -
4.1.03 7.9019 5.9709 7.9991
4.1.04 7.9021 7.4270 7.9992 -
4.1.05 7.9033 7.0686 7.9990 -
4.1.06 7.9031 7.5371 7.9991 -
4.1.07 7.9020 6.5835 7.9989 -
4.1.08 7.9027 6.8527 7.9991 -

5.9. Gray Value Degree (GVD) Analysis

GVD analysis is a well-known statistical test to check the randomness of an image. It can be
calculated by comparing the cipher-generated image of a particular algorithm with the corresponding
plain image. The ideal value is 1, and the higher the value, the better the haphazardness and security.
The GVD can be calculated using the following Equation:

GVD(i, j) = ∑[Γ(i, i)− Γ(í, j́)], (25)

where Γ(i, j) symbolizes the gray score at position (i, j), and (í, j́) is as given below:

(í, j́) =


(i, j + 1)

(i, j− 1)

(i + 1, j)

(i− 1, j).

(26)

The average neighborhood gray difference of an image can be calculated as follows:

[GVD(i, j)]avg. =
∑M−1

i=2 ∑N−1
j=2 GVD(i, j)

(M− 2)(N − 2)
(27)

GVDavg. =
χ́[GD(r, c)]− χ[GD(r, c)]
χ́[GD(r, c)] + χ[GD(r, c)]

. (28)

In the above equations, M and N represent the rows and columns of the image, respectively, and
χ́ and χ symbolize the average score of the neighborhood gray value, where χ́ denotes after encrypting
the image and χ denotes before encrypting the image. The final value is termed the GVD, which is
1 for completely dissimilar images but 0 for identical images. The GVD scores for the plain images
of the USC-SIPI database and their cipher-generated images by the proposed algorithm are given in
Table 12, along with comparisons to existing methods. In our case, the GVD scores indirectly varied
with the key bit-planes (i.e., the GVD scores were higher when we selected the least significant bit
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plane as a key, and lower when we selected the most significant bit-planes as a secret key). The listed
comparison shows that the GVD scores of the proposed algorithm were comparable those of [8,64].

Table 12. Gray value difference comparison.

USC-SIPI
Proposed [64] [74] [8]

GVD GVD GVD GVD

Red Green Blue Red Green Blue Red Green Blue Red Green Blue

4.1.01 0.995 0.943 0.996 0.977 0.979 0.975 - - - - - -
4.1.02 0.970 0.999 0.999 0.978 0.979 0.979 - - - - -
4.1.03 0.672 0.407 0.408 0.978 0.976 0.977 - - - - - -
4.1.04 0.383 0.348 0.532 0.979 0.975 0.980 - - - - - -
4.1.05 0.673 0.918 0.719 0.982 0.966 0.969 - - - - - -
4.1.06 0.988 0.995 0.989 0.943 0.912 0.934 - - - - - -
4.1.07 0.245 0.382 0.794 - - - - - - - - -
4.1.08 0.564 0.355 0.291 0.985 0.973 0.983 - - - - - -
4.2.01 0.782 0.804 0.905 - - - - - - - - -
4.2.03 0.998 0.985 0.986 - - - - - - 0.9801 0.989 0.9865
4.2.05 0.934 0.460 0.565 - - - - - - - - -
4.2.06 0.453 0.261 0.879 - - - - - - - - -
4.2.07 0.511 0.329 0.571 - - - - - - - - -
Lena 0.979 0.997 0.995 - - - 0.980 0.981 0.987 0.970 0.970 0.969

5.10. Performance Comparison

Efficiency and time are key characteristics of an encryption algorithm. In chaotic, map-based
image encryption schemes, the number of rounds for diffusion and permutation impact the encryption
time. More rounds means a longer time taken by the algorithm to encrypt an image. As our proposed
algorithm was based on modular addition, it took less time compared to many of the other algorithms
listed in Table 13. Additionally, the encryption and decryption times (in seconds) for different-sized
test images are shown in Figure 12.

Table 13. Encryption time (in seconds) comparison.

Image Size Proposed [75] [76] [77]

256× 256 2.09 4.7795 3.617 4.221
512× 512 3.77 8.670 14.811 21.178

Figure 12. Encryption time in seconds.
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6. Conclusions

To tackle the problems of complexity and encryption time, we have proposed a simple, fast,
and secure image encryption algorithm which can ensure better security in less time, in comparison to
some older algorithms. Our novel scrambling plus diffusion (SPD) technique is effective in two ways:
it diffuses the pixels and scrambles the bit-planes in an efficient manner. The proposed algorithm can
withstand many well-known attacks to ensure the security of the ciphered images. The use of modular
addition between the pixels of image blocks and bit-plane scrambling provides an advantage in the
sense of fast processing compared to binary addition between the pixels and pixel-based scrambling.
Experimental results verified that our proposed algorithm can withstand some well-known attacks,
such as key sensitivity tests, occlusion attacks, and known/chosen plain text attacks, and obtain
satisfactory results from the GVD test. Therefore, we can conclude that the proposed encryption
algorithm has demonstrated satisfactory security and efficiency. In further research, we will investigate
its prospective applications in image communication.
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