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Abstract: We present one of the first applications of Permutation Entropy (PE) and
Statistical Complexity (SC) (measured as the product of PE and Jensen-Shanon Divergence) on
Magnetoencephalography (MEG) recordings of 46 subjects suffering from Mild Cognitive Impairment
(MCI), 17 individuals diagnosed with Alzheimer’s Disease (AD) and 48 healthy controls. We studied
the differences in PE and SC in broadband signals and their decomposition into frequency bands (δ, θ,
α and β), considering two modalities: (i) raw time series obtained from the magnetometers and (ii) a
reconstruction into cortical sources or regions of interest (ROIs). We conducted our analyses at three
levels: (i) at the group level we compared SC in each frequency band and modality between groups;
(ii) at the individual level we compared how the [PE, SC] plane differs in each modality; and (iii) at
the local level we explored differences in scalp and cortical space. We recovered classical results that
considered only broadband signals and found a nontrivial pattern of alterations in each frequency
band, showing that SC does not necessarily decrease in AD or MCI.

Keywords: statistical complexity; permutation entropy; Alzheimer’s disease; mild cognitive
impairment; regions of interest; frequency bands

1. Introduction

Alzheimer’s disease (AD) is one of the most common diseases in Western societies and by far
the most prevalent form of dementia, with ∼60% to 80% of all registered cases being AD type [1].
It entails an enormous outlay for the patient’s familiar unit, as well as for healthcare systems and
governments. As a neurodegenerative disease, the condition progresses slowly in a continuum,
with physiological changes starting decades before the appearance of cognitive symptoms [2]. Early
manifestations of AD are related with an increasing difficulty in remembering conversations, proper
names or events and are often accompanied with apathy and depression. Later symptoms include
temporospatial disorientation, poor decision-making, behaviour and personality changes. In final
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stages, speaking, walking and even swallowing are almost impeded [1]. Physiologically, the two
hallmarks of AD are a progressive accumulation of amyloid-β (Aβ) in neuropil [3,4] in the form of
neuritic or diffusive plaques [5] and formation of neurofibrilary tangles of phosphorylated-tau (p-tau),
a protein involved in microtubules stability [3,6]. Aβ deposition usually starts in frontal and temporal
lobes (especially entorhinal and ventral frontal cortices), while p-tau is more prone to be accumulated
in the hippocampal formation, limbic system and entorhinal cortex [3]. The progression of the disease
courses with expansion of these processes across the entire cortex, leading to neuronal death and
volume loss, with the subsequent disconnection due to synapse destruction [7]. This fact led some
authors to refer to AD as a disconnection syndrome [8], where the massive loss of synapses would
be the main reason behind memory deficits. Nonetheless, the first stages of AD are characterized
by neuronal hyperactivity and hypersynchrony, due to the fact that Aβ plaques act selectively on
pyramidal cells [5]. Pyramidal cells are the most common type of cortical neuron and different axonal
systems innervate them in different regions. Generally speaking, axon terminals in contact with the
perisomatic region of pyramidal cells are GABAergic, with an inhibitory function. This is precisely
where Aβ plaques contact neurons. The net effect of this accumulation selectively acting on inhibitory
synapses is hyperactivity, because inhibition ceases, which derives in a global disruption of the
excitatory/inhibitory balance [9]. This imbalance seems to be reflected in an impairment of ultra slow
frequencies (<1 Hz), associated with non-REM sleep and memory consolidation and systematically
associated to memory decline in mice models [9] and humans [5]. In more advanced stages of the
disease, synchronization and activity decreases [10] and symptomatology worsens.

Given that AD spans for decades, many efforts have been made on detection and treatment of
early stages. The one that has received more attention is amnestic mild cognitive impairment (MCI),
as it is a clinical condition between normal aging and AD, in which individuals suffer memory loss
(greater than expected due to age) but the cognitive function is preserved and the criteria for probable
AD is not met [4]. People in this condition are at higher risk of developing AD in comparison to
age-matched population [11,12], with a conversion ratio of ∼10%–15% per year and more than 80%
after six years [4]. Nevertheless, the underlying mechanisms by which only a portion of them progress
to AD (progressive MCI) while others stay in it (stable MCI) are still poorly understood.

Biospecimen studies have focused on p-tau and Aβ concentrations in cerebrospinal fluid (CSF)
to predict onset and discern between early-stage AD and non-demented aging [13,14]. Positron
emission tomography (PET) analyses have consolidated the idea that Aβ deposition begins decades
before dementia, preceding cognitive decline and brain atrophy, which can be used to predict the
evolution of the symptoms and the conversion from MCI to AD [2]. Also, many efforts have been
devoted to understand how measurable properties and observables of biomedical signals change
between groups of demented and non demented elders. For example, in electroencephalography
(EEG) and magnetoencephalography (MEG) data, it has been found that frequencies are altered, either
peaks [15–19], means within a frequency range [20,21], or medians (were the power spectrum can
be divided into two sections of equal total power) [22,23] tend to decrease in AD when compared to
controls. The signal’s power is also altered: absolute power within frequency ranges (bands) tends to
increase in low frequencies and decrease in high ones [15], especially in delta and theta bands [24–27].
The same tendency is observed in relative power, in proportion to total power [18,21,28–30].

Entropy and information theoretic measures have received some attention too, dealing
especially with EEG and MEG data. Many studies pointed to the same direction: entropy
and complexity tend to be decreased in AD patients and their signals become more predictable.
For example, Gómez et al. [31,32] and Hornero and his collaborators [33] found that AD
patients had, in group-average, a diminished auto mutual information (AMI) decreasing rate,
with local differences found in many channels. The AMI decreasing rate is an indicator of
how predictable future values of a time series are, based on past ones. Also, sample entropy
(SamEn) [33–35], approximate entropy (ApEn) [33,36], spectral entropy (SpecEn) [19,21–23,37,38],
Lempel-Ziv complexity (LZC) [23,33,35,39–41] and Lopez Ruiz-Mancini-Calbet (LMC) complexity [37]
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have been found to be decreased in AD patients. All these studies took into account broadband
MEG/EEG signals at the scalp level (sensors), finding heterogeneous, local differences, in a few
channels or areas. Only in References [36,41,42] were frequency bands taken into account, finding
statistical differences in delta, theta and low beta bands, respectively.

In the present paper, we propose the use of statistical complexity (SC), a measure that combines
permutation entropy (PE) with the Jensen divergence as a disequilibrium metric, to study how MEG
signals differ when comparing AD, MCI and age-matched controls, paying attention not only to
broadband time series but to its decomposition in frequency bands, namely delta, theta, alpha and
beta and its estimation both at the sensor and the source levels, the latter by inferring the dynamics
of the so-called regions of interest (ROIs). All details concerning the calculations of SC, PE and signal
manipulations can be found in Sections 4.2 and 4.3. Regarding the use of PE to study dementia, Labate
and his colleagues [43] applied it to EEG broadband signals, finding a tendency towards a loss in
complexity (AD < MCI < CG). Deng and her colleagues [42] used a weighted version of permutation
entropy on 16-channels EEG data from AD and controls, finding the dynamics recorded from the
AD group less complex in the theta band. A multivariate multi-scale version of it was proposed in
Reference [44], where the authors took into account various channels to get the corresponding ordinal
patterns distributions. They concluded that it might be useful to detect “slowing” effects (in terms
of frequencies) related to the disease. PE has also been used on fMRI data [45], where the authors
explored how the brain entropy maps [46] changed among groups (controls, early MCI, late MCI and
AD). It has also been used to properly measure the time reversibility aspects of epilepsy EEG data [47].
Statistical comparisons revealed that AD patients tend to have lower values of PE than MCI and
controls. Apparently, these differences are clustered in occipital, frontal and temporal lobes, indicating
that the alteration in complexity is not homogeneous and depends on the region under study. On the
other hand, the Jensen divergence was used in Reference [48] as a proxy for time series irregularity
or disorder. In this work, authors applied the Jensen divergence on a set of MEG recordings from
controls, MCI and AD subjects, concluding that AD had higher values of disorder but the alteration
was spatially heterogeneous.

To the best of our knowledge, our proposal, along with the one recently proposed in Reference [41],
is a novel and more complete approach to understand AD and MCI, given that previous efforts have
focused only on broadband signals instead of frequency bands and comparing usually two groups
(typically, AD vs. controls or MCI vs. controls). In turn, we compare the results obtained at the sensor
and source level, showing the differences (and similarities) between both methodologies.

2. Results

Our database is composed of MEG recordings from 17 Alzheimer’s disease patients, 46 Mild
Cognitive Impairment subjects and 48 age-matched healthy controls (CG). Each time series is
decomposed in four frequency bands (δ: 1–4 Hz; θ: 4–8 Hz; α: 8–13 Hz and β: 13–31 Hz) and
its permutation entropy and statistical complexity are calculated. Both metrics (PE and SC) have
proven to be robust and fast methods to quantify the organizational properties and temporal structure
of dynamical systems [49]. As detailed in Section 4.3, we obtained one value of SC for each area
(sensor or ROI) in each subject and performed our analyses at three levels. First, we observed how
the parameter under study behaved at the global level, taking into account all values and subjects,
and comparing it between frequency bands. Second, we averaged across subjects and compared
complexity between groups at each frequency band. And lastly, we observed how differences were
locally distributed in the brain.

Figure 1 shows the spectrograms from a channel (randomly selected) and a sample in the control
group, for sensors (left) and ROIs (right). Although there are some unavoidable differences due to
the source estimation procedure, most of the frequency components are preserved and kept in time.
This example shows how the α rhythm (that peaks at 10 Hz) dominates over any other, something
present in all recordings (although we only show one here to provide the reader with some evidence).



Entropy 2020, 22, 116 4 of 20

This fact has important implications in further analyses, as the α rhythm will be the band better
characterized, due to its stronger signal-to-noise ratio.

(a) sensors (b) ROIs
Figure 1. Example of a spectrogram from a signal in sensors (a) and regions of interest (ROIs) (b).
Selected from a randomly chosen channel/ROI of a healthy subject.

In Figure 2, we can observe the entropy-complexity [PE,SC] plane for the broadband signal and
each frequency band in each group. Left hand side plot corresponds to sensors, while right hand side
is for ROIs. Each color and shape in the figure corresponds to one group (CG; MCI; AD). We can clearly
observe a stable pattern across modalities and groups: bands exhibit different levels of complexity, α

being the most complex band and β the least complex. Also, the fact that the pattern is qualitatively
the same disregarding the modality (sensors or ROIs) points to the conclusion that the method is
robust and the signal is reasonably well preserved. Interestingly, when the whole signal is taken into
account (broadband), the values of complexity are notably decreased. This fact might indicate that
analyzing the time courses without previous decomposition into its frequency components could hide
the variability contained in the frequency bands.
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Figure 2. Entropy-complexity [PE,SC] planes for sensors (a) and ROIs (b), for the three groups (control
group, CG; mild cognitive impairment, MCI; and Alzheimer’s disease, AD). Both modalities show the
same qualitative results. There are clear differences between bands, especially in the case of α, δ and θ.
Each band seems homogeneous across groups and modalities.
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In Figure 3 we show the result of a non parametric one-way ANOVA (Kruskal-Wallis test) for
each band. Statistical differences are marked with one asterisk (p < 0.05), two (p < 0.01) or three
(p < 0.001). As we can observe, the pattern of differences is, again, very similar between modalities.
In sensors, major differences are found in broadband, θ, α and β. Note how each band follows a
different pattern in groups’ averages. In broadband and θ, we find a decreasing pattern (the more
advanced the disease, the lesser the complexity). Surprisingly, this pattern is almost inverted in α,
where the AD group shows higher values of complexity in comparison with the other two. The case of
β is also different: MCI shows higher complexity, with CG and AD being indistinguishable from one
another. Some of these differences are not present in ROIs: θ and β do not exhibit clear differences;
broadband behaves qualitatively equal to sensors and an upwards tendency is observed in α, with AD
showing higher complexity than MCI and CG and MCI higher than CG.
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Figure 3. Average complexity (SC) for broadband, δ, θ, α and β bands, for sensors (a) and ROIs (b).
One asterisk: p < 0.05, two asterisks: p < 0.01, three asterisks: p < 0.001. We find differences between
the three groups in broadband, in both modalities. Also, θ and α bands show clear differences between
CG and AD and MCI and AD, a pattern only preserved in α band in ROIs.

Interestingly, broadband shows clear statistical differences, in the same direction as established
previously in the literature: complexity (no matter the method) decreases as the disease steadily draws
on. Surprisingly, this is not necessarily the case when each frequency band is observed individually.
All these results are summarized in Tables 1 and 2.

Table 1. Summary of groups average complexity (SC) for broadband, δ, θ, α and β bands for sensors.
One asterisk: p < 0.05, two asterisks: p < 0.01, three asterisks: p < 0.001. We find differences between
the three groups in broadband and between CG vs. AD and MCI vs. AD in θ and α bands.

Broadband δ θ α β

CG
0.0046

(*** CG vs. AD)
(** CG vs. MCI)

0.0389
(** CG vs. AD)

0.0128
(** CG vs. AD)

0.0687
(*** CG vs. AD)

0.0040
(*** CG vs. MCI)

MCI
0.0043

(** MCI vs. AD) 0.0396
0.0128

(** MCI vs. AD)
0.0683

(*** MCI vs. AD)
0.0046

(*** MCI vs. AD)

AD 0.0034 0.0400 0.0123 0.0743 0.0040
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Table 2. Summary of groups average complexity (SC) for broadband, δ, θ, α and β bands for ROIs. One
asterisk: p < 0.05, two asterisks: p < 0.01, three asterisks: p < 0.001. We find differences between the
three groups in broadband and α band.

Broadband δ θ α β

CG
0.0043

(*** CG vs. AD)
(** CG vs. MCI)

0.0380
(* CG vs. AD) 0.0113

0.0648
(*** CG vs. AD)
(** CG vs. MCI)

0.0032

MCI
0.0040

(*** MCI vs. AD) 0.0378 0.0114
0.0670

(** MCI vs. AD) 0.0033

AD 0.0032 0.0372 0.0117 0.0687 0.0032

Figures 4 and 5 show local differences at the scalp level (sensors) and in cortical areas (ROIs),
respectively. We can only obtain one value of complexity per site (sensor or ROI) and subject (see
Section 4.3 for more details). Hypothesis testing with such fewer data is not recommended and we
prefer to safely explore differences qualitatively. A visual inspection is interesting to understand spatial
tendencies of the complexity parameter. Both figures reflect the percentage of change at each region,
normalized with the control group. Each site (sensor or ROI) is the difference in complexity between
the groups to be compared, normalized by the control group and rescaled to be between 0 and 100 (as
a percentage of variation). First row (a) depicts the differences between MCI and controls ((MCI −
CG)/CG× 100), second row (b) shows differences between AD and controls ((AD− CG)/CG× 100)
and third row (c) differences between AD and MCI ((AD−MCI)/CG× 100). Each column shows the
differences at each band or signal considered: broadband, δ, θ, α and β.

broadband δ θ α β

Figure 4. Topographic map of complexity over the scalp for each band and group. Each dot represents
a sensor. First row (a): values in complexity as the difference between MCI and Controls divided
by controls ((MCI − CG)/CG). Second row (b): difference between AD and Controls divided by
controls ((AD − CG)/CG). Third row (c): difference between AD and MCI divided by controls
((AD−MCI)/CG).
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broadband δ θ α β

Figure 5. Distribution of complexity over the cortical surface for each band and group (estimated
sources). First row (a): values in complexity as the difference between MCI and Controls divided
by controls ((MCI − CG)/CG). Second row (b): difference between AD and Controls divided by
controls ((AD − CG)/CG). Third row (c): difference between AD and MCI divided by controls
((AD−MCI)/CG).

Figure 4 shows the topographic distribution of complexity over the scalp. Note how each column
has its own unique pattern of differences, not necessarily homogeneous across groups. In broadband,
the AD group has smaller values than controls and MCI, especially in frontal and parietal sensors,
around the sensoriomotor ones (see broadband, rows b and c), with variations up to 40%. On the
contrary, most rostral section of frontal and left temporal sensors show higher values of complexity
in AD than in controls or MCI (especially comparing with the latter). It is interesting to note how
these differences are not present between MCI and controls (a), indicating that both groups are more
homogeneous in broadband. δ band also presents more homogeneity between MCI and controls,
while AD has higher values of complexity in comparison to the other two groups in left temporal and
occipital sensors. Also, in the most anterior area of the frontal sensors, AD shows higher values of
complexity than MCI. θ band also shows a left temporal pattern of higher complexity in AD against
both controls and MCI, while frontal sensors seem to be more complex when considering MCI and AD
against controls but not AD against MCI. Surprisingly α seems to show a more homogeneous pattern,
all over the scalp, with differences around 10% of variation but with no clear spatial differences. Lastly,
β band seems to show more complexity in MCI stages than in AD. In the first row, the MCI group
shows clearly more complexity than controls, especially in parietal and right temporal sensors. AD
presents more complexity in left frontal sensors in comparison to controls and MCI but in general is
less complex than MCI in parietal ones. Main findings regarding these comparisons can be found in
Table 3.
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Table 3. Summary of results in topographic map comparisons over the scalp (sensors). First column:
values in complexity as the difference between MCI and Controls divided by controls ((MCI −
CG)/CG). Second column: difference between AD and Controls divided by controls ((AD−CG)/CG).
Third column: difference between AD and MCI divided by controls ((AD−MCI)/CG).

(MCI − CG) / CG (AD − CG) / CG (AD − MCI) / CG

broadband MCI ≈ CG
AD < CG (frontal; parietal)
AD > CG (frontal; left temporal)

AD < MCI (frontal; parietal)
AD > MCI (frontal; left temporal)

δ MCI ≈ CG AD > CG (left temporal; occipital) AD > MCI (frontal; left temporal; occipital)

θ MCI > CG (frontal) AD > CG (frontal; left temporal) AD > MCI (left temporal)

α MCI ≈ CG AD ≈ CG AD ≈MCI

β MCI < CG (parietal; right temporal) AD > CG (left frontal)
AD < MCI (parietal)
AD > CG (left frontal)

In Figure 5 we show the spatial distribution of complexity in the source reconstruction,
corresponding to the time series estimated in ROIs. At first sight, differences are somewhat smoother,
although preserved with respect to Figure 4. In general, MCI is less complex than controls (around 10%)
in broadband, except at the right premotor area. Also, controls have more complexity in comparison to
AD (b), especially in prefrontal and occipital areas: visual (I, II and III) and association cortex (temporo-
and parieto-cingular pathways). This tendency is also observable between AD and MCI (third row)
but reverted in the other bands: δ appears to be more complex in MCI, especially in occipito-parietal
cortex. On the other hand, prefrontal, premotor and occipital areas show more complexity in AD in
comparison to the other two groups. In θ we can observe a tendency in the premotor area and the
frontal inferior gyrus. The latter is present when comparing MCI and CG but especially prominent
between AD and CG, indicating that the complexity in that area increases with as the disease advances.
It is also notable how the ventral anterior cingular cortex (subgenual section) is more complex in
AD than in CG and also slightly more complex in AD than in MCI. On the contrary, the secondary
somatosensory cortex and the occipito-parietal gyrus are less complex in AD, disregarding the group
to be compared with. Again, α band shows a much more homogeneous patterns, where MCI and AD
are more complex than controls and AD slightly more than MCI (between 5% and 10% more). On the
other hand, β band shows a completely different pattern, with MCI being more complex than AD and
CG. As shown in the first row, prefrontal and occipital areas, along with the frontal inferior gyrus show
more complexity (MCI vs. CG). AD presents more complexity in prefrontal and anterior cingulate
areas, whilst occipital cortex is more complex in CG. In the third row we can observe how occipital
areas are less complex in AD than in MCI, while again in the premotor area (especially in the left
hemisphere) and in the frontal inferior gyrus this pattern is inverted. All these results are summarized
in Table 4.

Table 4. Summary of results in estimated sources comparisons (ROIs). First column: values in
complexity as the difference between MCI and Controls divided by controls ((MCI − CG)/CG).
Second column: difference between AD and Controls divided by controls ((AD− CG)/CG). Third
column: difference between AD and MCI divided by controls ((AD−MCI)/CG).

(MCI − CG) / CG (AD − CG) / CG (AD − MCI) / CG

broadband
MCI < CG
MCI > CG (right premotor)

AD < CG (prefrontal; occipital;
association cortex)

AD < MCI (prefrontal; occipital;
association cortex)

δ MCI ≈ CG AD > CG (occipital; premotor; prefrontal) AD > MCI (occipital; premotor; prefrontal)

θ
MCI > CG (premotor;
frontal inf. gyrus)

AD > CG (premotor; frontal inf. gyrus;
ventral ant. cing. cortex)
AD < CG (somatosensory ctx.;
occipito-parietal gyrus)

AD > MCI (ventral ant. cing. cortex)
AD < MCI (somatosensory ctx.;
occipito-parietal gyrus)

α MCI > CG AD > CG

β
MCI > CG (prefrontal;
occipital; front. inf. gyrus)

AD > CG (prefrontal; anterior cingulate)
AD < CG (occipital)

AD < MCI (occipital)
AD > MCI (left premotor; frontal inf. gyrus)
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3. Discussion

In this work, we presented an application of a statistical complexity measure to MEG registers
from AD and MCI patients, compared to control subjects. First, we showed how each frequency band
depicts its own entropy-complexity profile, which is robust against modalities and it is qualitatively
the same in the three groups. This fact might indicate that each rhythm has its own dynamical patterns,
inherent to the rhythm itself and not necessarily to the modality of the data and the stage of the disease.
Nevertheless, it should be noted that the power and spatial distribution of each band will depend upon
other physical conditions, such as wakefulness state and the specific task being conducted. Hence,
our conclusions must be taken with caution and secluded to resting state. The idea that frequency
bands may have different inherent values of complexity that, nonetheless, depend upon the task being
carried out is in line with previous studies analyzing task-dependent EEG recordings [50,51]. Indeed,
in Reference [51], the authors found that the whole signal, β2 and α behave in the same qualitative
order as they do in our causal planes, even though they analyze task-related data from EEG, using a
different metric for the disequilibrium.

The finding that broadband signals show differences between groups is not surprising, as previous
studies focused on whole signal analyses agree reporting that complexity tends to decrease as the
disease progresses, regardless of the modality of the data (EEG/MEG) and the measure of complexity.
For a comprehensive review, see References [52,53]. Also, the fact that ROIs and sensors show the
same differences points out the homogeneity of the data and the robustness of the method.

In spite of it, the decomposition in frequency bands does indeed introduce some important
changes, especially in θ, α and β. As shown in Figure 3, θ band appears to be different between groups
only in sensors, while these differences are lost in ROIs. Interestingly, in this band we cannot see
differences between MCI and CG, while MCI versus AD and CG versus AD seem to be different
(having AD less complexity). θ oscillations (together with γ rhythms) have been associated to encoding
and retrieval of episodic memories, allowing cortical-hippocampal top-down control [54]. Along with
the α rhythm, θ has been found to be involved in long range fronto-parietal connections during
working memory and mental imagery (again, top-down processing), especially in medial prefrontal
regions [55], where Aβ and p-tau tend to deposit first and more abundantly [6]. Although globally
(in average) we can state that AD is less complex in this band in comparison to MCI and controls
(Figure 3), when observed locally (Figures 4 and 5), we can appreciate that precisely in those areas
the pattern is the opposite. We would need more data to conduct a proper statistical analysis at this
level, but nevertheless it is worth noting this alteration. Areas consistently reported as the first to
be populated with neurofibrillary tangles and neuritic plaques tend to be more complex in the θ

band, which has been associated to memory load, maintenance and recovery. Whether or not this is a
compensatory mechanism or a direct product of Aβ and p-tau deposition and volume loss is a matter
of debate. To the best of our knowledge, this is the first time such a result is reported and definitively
needs further analysis.

The case of α is especially hard to interpret, as it seems to be different in each modality, although in
both appears to be significantly different between groups. It is clear that in both cases, the AD group
shows higher complexity, with MCI being indistinguishable from controls in sensors and significantly
higher in ROIs (that is, in-between controls and AD). This could be because the source estimation
procedure is introducing some bias, or because it “cleans” information in sensors, unveiling a real
pattern. Comparing different source estimation procedures could give us some insights on this
question, although it is out of the scope of the present work. In any case, it is worth noting how, in spite
of giving such differences, the topology across the cortex is by far the smoothest of all bands considered,
with only central and occipito-parietal regions standing slightly out. Tentatively, this could be due
to its functional role and anatomical distribution. α oscillations are present in all cortical structures,
as well as in hippocampus and thalamus and have been associated to inhibition and attention processes
comprising all the cortex in long-range synchronization patterns [56]. That is, in comparison to more
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local oscillations, such as γ or cortico-hippocampal θ rhythms, α band is usually defined as a more
global, long-range phenomenon.

β band, on the other hand, seems to be different between groups only in sensors, but not in
ROIs. Again, more source estimation methods could give us a better idea of the extent to which
such differences come from real different dynamics, or simply due to the procedure. In this case,
local differences tend to be in frontal areas, near sensoriomotor cortex. Results in this band are not
aligned with those presented in Reference [41] using the Lempel-Ziv entropy. With similar groups
(controls (CN), MCI and subjective cognitive decline (SCD)) recruited in the same facilities, a similar
preprocessing pipeline, source reconstruction technique and anatomical atlas (Harvard-Oxford), they
found that complexity was decreased in the low beta band (12–20 Hz) in two comparisons: CN vs.
MCI, especially in cingulate, precuneus and superior parietal lobe; and SCD vs. MCI, with differences
in precuneus and posterior cingulate. On the contrary, we only found differences in sensors (ROIs were
not significant), with MCI showing more complexity than the other two groups. However, a direct
comparison between both results is not recommended, due to the fact that sensors are distributed
over the scalp and do not correspond unlikely to cortical sources. Furthermore, it is worth noting that
the sources estimated in Reference [41] are not exactly the same, the measure to quantify complexity
is different (they use LZC), groups are not the same either and the subdivision of beta is something
we did not apply. Therefore, the differences found might be a consequence of the methodological
procedure. While there could be real differences in low beta, it is likely that we could not find them,
as we analyzed a broader band altogether.

Finally, we must mention that the results (see, for example, Figure 2) might be affected by the
quality of the signal. Clearer differences were found in the α band, which probably has to do with the
fact that it is the most predominant frequency component. This results in a higher SNR, which in turn
affects our ability to find differences between groups. The opposite also holds true: a lack in power in
other frequency bands might hinder our capability of finding differences. On the other hand, having
only 17 subjects in the AD groups prevents us from conducting robust statistical analyses at the local
level, which definitely limits our ability to get new insights into the matter. Also, having only one
group of MCI (instead of two or more follow-up sessions) alters the robustness of our conclusions and
does not allow us to quantify how complexity changes over time. For such conclusions, longitudinal
datasets should be analyzed in further studies.

4. Materials and Methods

4.1. Recruitment

A total of 111 volunteer elder adults enrolled this study. All of them were recruited from three
different centers, the Center for Prevention of Cognitive Impairment, the Seniors Center of Chamartín
District and Hospital Clínico San Carlos Neurology Department in Madrid (Spain). After a complete
explanation of the details, aims and protocols that would be followed during the project, all the
participants signed an informed consent. All the procedures employed in this research were performed
in accordance with approved guidelines and regulations and the Hospital Universitario San Carlos
Ethic Committee approved the study.

Participants were divided into three different groups accordingly to their cognitive status; 48 of
them were classified as healthy controls (control group, CG) without any sign of cognitive impairment,
46 met criteria to be classified as having amnestic mild cognitive impairment (MCI) while the remaining
17 received a diagnosis of dementia due to Alzheimer’s Disease (AD).

Overall health status was assessed according to a set of tests including the Mini Mental
State Examination (MMSE), the short form of the Geriatric Depression Scale (GDS), the Functional
Assessment Questionnaire (FAQ) and the Hachinski Ischemic Score. All participants underwent a
thorough neuropsychological assessment to evaluate their performance in the different cognitive
domains. As a result of this assessment, MCI patients were classified according to the criteria proposed
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by Petersen [57] and Grundman [58] and all of them presented a significant impairment in the memory
domain, thus being considered as amnestic MCI, a subtype known to be at higher risk of AD [59]. All
patients classified as AD fulfilled NINCDS-ADRDA criteria of probable AD.

Clinicians ensured that none of the participants met any of the exclusion criteria listed to rule out
possible confounders of cognitive decline other than dementia due to AD or other common conditions
that could lead to synaptic disruption. More concretely, the exclusion criteria were: (1) history of
psychiatric or neurological conditions, or drug consumption that could interfere with normal MEG
activity; (2) a modified Hachinski Ischemic Score equal or higher to 5; (3) presence of infection,
focal lesions or infarction as evidenced by a neurologist in the individual T2-weighted MR image
and (4) history of alcoholism, chronic use of neuroleptics, narcotics, anticonvulsants, anxiolytics or
sedative hypnotics.

4.2. Data Acquisition and Preprocessing

Each subject underwent a recording of four minutes of resting state brain activity while sitting
comfortably with their eyes closed. Magnetic brain signals were acquired using 306 channel Vectorview
MEG System with 102 magnetometers and 204 gradiometers (Elekta AB, Stockholm, Sweden) at the
Laboratory of Cognitive and Computational Neuroscience in Madrid. The MEG system is placed
inside a VacummSchnelze GmbH two layer shielded-room so that external sources of magnetic noise
are minimized reducing their contribution to the acquired signals.

Before MEG recording, a brief setup for each subject included the placement of two
electrooculogram electrodes (EOG) above and below the eye to capture blinks and eye movements.
Additionally, four head position indication (HPI) coils were located on the head surface to estimate
head position during the recording. With this aim, the head shape of each participant and the position
of three reference points (nasion, left preauricular and right preauricular) together with the exact
location of the four HPI coils was localized using a three-dimensional Fastrak digitizer (Polhemus,
Colchester, Vermont).

Sampling rate during MEG signal recording was set to 1000 Hz using an online anti-alias filter
between 0.1 and 330 Hz. After MEG recording, an offline filtering was applied (tempo-spatial filtering
algorithm; tSSS, correlation window 0.9, time window 10 s) [60,61] to subtract the sources of noise
placed outside the head. Head movements were corrected using the same algorithm.

Due to tSSS filtering procedure signals recorded by magnetometers and gradiometers are highly
correlated and redundant [62], thus only data coming from the 102 magnetometers were employed
for further analyses. An automatic algorithm from the Fieldtrip package was used to detect noisy
samples containing ocular, muscular or jump artifacts [63] which were visually confirmed by a MEG
expert in a second step. Furthermore, an ICA-based procedure was employed to remove ocular and
electrocardiographic contributions to the MEG signal. Finally, clean data were segmented into 4 s
epochs. To ensure that the number of trials did not affect the results, only subjects with at least 30
clean epochs were included in the analysis. For those subjects with more data available, 30 trials
were randomly selected to match the number of epochs used for each group. Hence, trials are not
necessarily consecutive in time. Further analyses revealed that in three subjects, one trial was too noisy
to be considered, so one random trial was excluded from the analyses in all subjects. Thus, the final
number of trials for all subjects was 29.

A T1-weighted MRI was acquired for each participant in a General Electric 1.5 Tesla magnetic
resonance scanner. This system uses a high-resolution antenna and a homogenization PURE filter (Fast
Spoiled Gradient Echo sequence, TR/TE/TI = 11.2/4.2/450 ms; flip angle 12◦; 1 mm slice thickness,
256 × 256 matrix and FOV 25 cm).

Clean epochs for each subject were band-pass filtered between 1 and 45 Hz so that low frequency
and power line artifact contributions were discarded. Each segment included 4000 samples of real
signal (4 s) at each side to prevent edge artifact inside the data due to band-pass filtering.
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A realistic model using single-shell was employed to generate the forward model of a 1-cm
spacing grid with 2459 sources inside the brain. Magnetic activity at the brain level was reconstructed
in each of the nodes by using Linearly Constrained Minimum Variance (LCMV) beamformer [64].
Once time series for all of the 2459 sources were calculated, a representative time-course for each
cortical region of a reduced version of the Harvard-Oxford atlas [65] was chosen by selecting the
centroid source of each region. As a result, 62 time series (i.e., the number of cortical ROIs included in
the analyses) at each trial were used for further analyses in the source space.

For all subjects in both modalities, we conducted a frequency decomposition of all signals, to get
an estimate of each time series into four classical frequency bands: δ: 1–4 Hz; θ: 4–8 Hz; α: 8–13 Hz and
β: 13–31 Hz. In order to estimate the signal for each frequency band we simply computed the Fourier
transform of the signal and reconstructed it via inverse Fourier transform in the range of frequencies
specified above. γ band was disregarded for all subjects due to lack of power in that frequency range
(31–50 Hz).

To sum up, for each of the 111 subjects (48 CG, 46 MCI and 17 AD), we had 29 trials with time
series of 4 s long each (4000 points at a sampling frequency of 1000 Hz) in two modalities: (1) 102
sensors, at the scalp level or its reconstructed signal, (2) 62 Regions of Interest (ROIs). Each signal
was decomposed into four frequency bands (δ; θ; α and β) and analyzed separately. A schematic
representation of the process can be found in Figure 6.

2 data
curation  

(filtering, artefact 
removal…)

a) sensors

Oz

POz
Pz

Cz CPzFCz
Fz

FPz
AFz

data acquisition

Oz

POz
Pz

Cz CPzFCz
Fz

FPz
AFz

source reconstruction
3

b) ROIs

1 4

Frequency (Hz)

PS
D (

dB
/Hz

)

Frequency (Hz)

dB
/H

z

δ θ βα

freq. decomposition

ord. patt. PDF5

6

Q
PE

SC = PE*Q 

⇡
<latexit sha1_base64="mQT5447K3v5Pk7ejrKYjvZdPgkE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI9BLx4jmgckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD91E9MoVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs2zqndevby/qNRu8jiKcATHcAoeXEEN7qAODWAwgGd4hTdHOi/Ou/Mxby04+cwh/IHz+QNSAY3U</latexit>

p
(⇡

)
<latexit sha1_base64="MVIxt5y0gddKIwhJKLDpdAj/dRk=">AAAB7XicbVDLSgMxFL1TX7W+qi7dBItQN2XGB7osunFZwT6gLSWTZtrYTBKSjFCG/oMbF4q49X/c+Tem7Sy09cCFwzn3cu89oeLMWN//9nIrq2vrG/nNwtb2zu5ecf+gYWSiCa0TyaVuhdhQzgStW2Y5bSlNcRxy2gxHt1O/+US1YVI82LGi3RgPBIsYwdZJDVXuKHbaK5b8ij8DWiZBRkqQodYrfnX6kiQxFZZwbEw78JXtplhbRjidFDqJoQqTER7QtqMCx9R009m1E3TilD6KpHYlLJqpvydSHBszjkPXGWM7NIveVPzPayc2uu6mTKjEUkHmi6KEIyvR9HXUZ5oSy8eOYKKZuxWRIdaYWBdQwYUQLL68TBpnleC8cnl/UareZHHk4QiOoQwBXEEV7qAGdSDwCM/wCm+e9F68d+9j3przsplD+APv8wfpV46z</latexit>

SC = PE[⇧] · Q[⇧,⇧e]
<latexit sha1_base64="1k2L35JgYN4legiHpaHU8Mzg4lE=">AAACIXicbVDJSgNBEO1xjXGLevTSGAQPEmZc0IsQDILHBE0UZobQ06loY89Cd40YhvkVL/6KFw+K5Cb+jD1JDm4PCh7vVVFVL0ik0GjbH9bU9Mzs3Hxpoby4tLyyWllb7+g4VRzaPJaxug6YBikiaKNACdeJAhYGEq6Cu0bhX92D0iKOLnGQgB+ym0j0BWdopG7l2EN4wOyikdMTOubNs9z1msL3eC9G6oUMbzmTWWuk7prqZpD73UrVrtkj0L/EmZAqmaDZrQy9XszTECLkkmntOnaCfsYUCi4hL3uphoTxO3YDrqERC0H72ejDnG4bpUf7sTIVIR2p3ycyFmo9CAPTWdyrf3uF+J/nptg/9jMRJSlCxMeL+qmkGNMiLtoTCjjKgSGMK2FupfyWKcbRhFo2ITi/X/5LOns1Z7922Dqo1k8ncZTIJtkiO8QhR6ROzkmTtAknj+SZvJI368l6sd6t4bh1yprMbJAfsD6/AN/qo/g=</latexit>

Figure 6. Schematic representation of the pipeline followed to conduct this research. (1) Data acquisition
from MEG recordings (sensors). (2) Data curation. (3) Estimated signals in Regions of Interest.
(4) Frequency decomposition into four different frequency bands: δ, θ, α and β. (5) Ordinal patterns
extraction and probability density estimation. (6) Entropy, disequilibrium and complexity calculation.

4.3. Permutation Entropy and Statistical Complexity

The goal in the present work is to compare the dynamics of three groups of individuals: controls,
mild cognitive impairment and Alzheimer’s disease. From the wide spectrum of options at disposal,
we selected the permutation entropy (PE) and statistical complexity (SC), given their simplicity,
robustness and feasibility in computation [49]. They have been widely used in diverse fields as
econophysics [66–68] and biomedical signals [50,51] and have proven to be a very useful tool to
unveil subtle differences between stochastic and chaotic dynamics [69]. The first version of the SC
was proposed by López-Ruiz, Mancini and Calbet [70]. The authors designed a function to quantify
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the classical sense of complexity in a statistical fashion, that peaks only when the system is halfway
between a perfectly ordered state (i.e., a perfect crystal) and an absolutely random one (as in a perfect
gas). In both extremes (perfectly ordered or completely random) the function must be zero. Their
contribution was to conceptualize this notion in terms of information and distance to the equiprobable
distribution. A perfectly ordered system will contain minimal uncertainty, as very little information
is needed to characterize it completely; also, there will only be one preferred state over any other,
thus the system will remain in it. On the other hand, a completely disordered system in which every
state is equally probable will require maximal information to be described (hence the uncertainty is
maximal). The authors’ choice to calculate complexity, based on these two notions are the classical
Shannon entropy and a quasi-metric of disequilibrium, a quadratic distance between the systems’
distribution and a corresponding equiprobable distribution of the same size.

The original proposal uses Shannon entropy as a measure of uncertainty, inversely related to
the amount of information needed to predict the system’s behaviour. This magnitude is obtained
from the probability distribution function (PDF) of any observable in the system, usually notated as
S[P] = −∑M

i=1 piln(pi), where M refers to the degrees of freedom of the system. This magnitude has
been used in many contexts, and it is still of great utility. Yet, it has three drawbacks [49]: (i) it does
not account for any temporal structure present in the data, although important information might be
codified in the temporal dynamics; (ii) the PDF must be completely specified beforehand; and (iii) it
has proven to work fine only with linear systems, failing to describe chaotic regimes.

These reasons led Bandt and Pompe [71] to develop the permutation entropy (PE) measure. It is
simple, robust, codifies temporal relationships in the time series and requires no prior knowledge
of the underlying distribution. To obtain it, neighbouring values in the time series are compared,
generating a symbolic sequence that codifies these cardinal relations. The PDF is calculated over
these symbolic sequences, incorporating temporal patterns in it (encoded in the vicinity comparisons).
More specifically, at each time s of any time series X = xt : t = 1, . . . , N, a vector containing the D-th
adjacent values is obtained:

s 7→ (xs, xs+1, . . . , xs+(D−2), xs+D−1) (1)

D is the embedding dimension, related to the amount of information contained in each vector. It
is possible to take non-subsequent values, introducing a time delay τ, related to the autocorrelation
function and the intrinsic time delay of the system [72]. For the purposes of our research, we will focus
on τ = 1 (that is, with no delay, taking into account only subsequent values from the time series).

Each vector is converted into an ordinal pattern, a permutation of the order of D − 1, π =

(r0r1. . .rD−1), that corresponds to the original values sorted in ascending order:

xs+r0 ≤ xs+r1 ≤ . . . ≤ xs+rD−2 ≤ xs+rD−1 (2)

As an example, take the time series X = {4, 5, 1, 6, 5, 1, 9}. For D = 3, at s = 1 we will have
the vector (4, 5, 1), that in ascending order would be (1, 4, 5). The ordinal pattern corresponding to
it would be the permutation π = (1, 2, 0). When two values are equal, they are sorted in order of
appearance. We will work only with non overlapping vectors (consecutive, not sliding windows).
Thus, our next vector would be at s = 2 + (D− 1) = 4, reading (6, 5, 1), ordered as (1, 5, 6), whose
ordinal pattern corresponds to the permutation π = (2, 1, 0). We repeat this procedure until we have
converted the whole time series into its symbolic sequences. The number of patterns, as we take only
consecutive windows, will be M/D.

There might be forbidden patterns (sequences not present), due to the intrinsic dynamics of the
system or given by the procedure [49], ruled by the interplay of D, τ, intrinsic frequency of the signal,
its length and the choice of consecutive or sliding window. The former is interesting, as the study of the
presence or absence of each pattern can unveil relevant information about the underlying dynamics of
the system. The latter, on the contrary, is a bias in the density estimation and must be avoided, as it
will not reflect the real dynamic variability. In general, we can calculate a probability distribution Π
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encoding the frequency πi of each ordinal pattern i extracted from the observed time series and study
its Permutation Entropy (PE):

PE = −
D!

∑
i=1

πilnπi (3)

that can be normalized as:

PEnorm = − 1
log2D!

D!

∑
i=1

πilog2πi (4)

changing the units to bits and given that PE ∈ [0, log2D!]. As stated previously, the number of patterns,
when only consecutive windows are considered, will be M/D. The number of patterns will have great
impact on the calculation of the PDF and its permutation entropy, and a minimum number of them
must be ensured to have robust statistics. As a rule of thumb, Bandt and Pompe [71] propose that
D! << M to estimate entropy reliably.

The other element in the recipe to get the statistical complexity is the disequilibrium (usually
denoted as Q), that measures the difference D between the empirical distribution’s entropy and its
equiprobable counterpart. Again, there is a panoply of options at disposal to measure this distance.
We selected the Jensen-Shannon divergence J [Π, Πe] [49,73,74] for two reasons. The first one is that the
original proposal [70], which calculated D as a simple quadratic distance, has many drawbacks [75,76].
Among others, it does not take into account that the distance is given in terms of statistical space, it is
not extensive (it does not grow with the size of the system, thus it does not tend to a constant value in
the thermodynamic limit), it cannot distinguish between diverging periodic configurations and more
generally, it is insensible to the statistical structure of any regular Markov chain (and any system under
this class). These drawbacks led us to the second reason for selecting the Jensen-Shannon divergence:
As its square root, it satisfies the triangle inequality [73,77] and, given that it is defined in terms of
entropies, it is an extensive quantity in the thermodynamical sense. The Jensen-Shannon divergence is
a symmetric version of the Kullback-Leibler entropy and can be written as:

DJ [Π, Πe] = JS[Π, Πe] = {K[Π|Πe] + K[Πe|Π]}/2

= S

[
Π + Πe

2

]
− S[Π]/2− S[Πe]/2

(5)

In our case, we will consider the probabilities of the ordinal patterns extracted from the time
series under study Π, and its equiprobable counterpart Πe, where each permutation πi has the same
probability of occurrence 1/D!.

Finally, the statistical complexity (SC) measure that we are using is simply the product of these
two quantities:

SC[Π] = PE[Π] · QJ [Π, Πe] (6)

Given the noisy nature of our data (even after being curated, the signal-to-noise-ratio is always
less than ideal and it depends on the power of the frequency component under study), obtaining
the ordinal patterns directly from the time series is not an option. D = 3 or D = 4, which are the
maximal embedding dimensions considered that still meets the criteria of D! << M, always induces
bimodal probability distributions, with patterns (0,1,2) and (2,1,0) being extremely likely to occur and
any other pattern extremely unlikely. Those two patterns correspond to perfectly ordered upward
and downward vectors, respectively. This is due to the fact that at that scale (D = 3 or 4), the vectors
are driven by the inner fluctuations of the signal, present only at local levels (while the envelope of
the series is preserved). Such distributions are artificial by construction and do not reflect the natural
variability of empirical systems. The later estimation of entropy and disequilibrium will be biased,
and any conclusion derived from it, untrustworthy.

To correct this issue, we obtained the ordinal patterns not directly from the time series, but from
their local maxima. The number of maxima will depend on the frequency, with slower frequencies
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having less peaks than faster ones. This procedure ensures a reliable extraction of the ordinal patterns,
but reduces the number of points considered notably: From 4000 points in the original time series to
111.74(±9.12) and 121.46(±5.98) in broadband (sensors and ROIs, respectively), 13.58(±0.97) and
13.53(±0.97) in δ band (sensors and ROIs), 26.89(±1.56) and 26.58(±1.55) in θ band, 40.54(±1.58) and
40.68(±1.57) in α band and 88.23(±3.96) and 90.54(±3.5) in β band. This means that in the worst
case scenario (∼13 peaks in δ, we can obtain only 4 vectors). To overcome this issue, we gathered the
ordinal patterns from all epochs to build the distribution (bear in mind that we have 29 clean epochs
for each subject). Thus, again in the worst case scenario, we had 4× 29 = 116 vectors of length D = 3
with 3! = 6 possible permutations. Building the distributions from all epochs solved the problem of
the estimation, but posed another one. We only had one value of complexity per site (sensor/ROI) and
subject, losing in the estimation the option of having multiple values of complexity for each channel
and subject. Hence, statistical comparisons at this level (site level) were not possible.

4.4. Pipeline

As depicted in Figure 6, the pipeline to analyze our data was the following: (i) we acquired
the data from the magnetometers, at the scalp level (sensors) and (ii) curated it, which implied
spatio-temporal filtering to correct for external noise and head movement, artefact removal, epoching
into clean segments of 4 s and band-pass filtering between 1 and 45 Hz. Then, time series (at the
sensors level) were (iii) projected into a source space, grouped to fit the Harvard-Oxford atlas and
averaged to reconstruct the data at the source level (Regions of Interest). All data, either coming from
sensors or ROIs was then (iv) decomposed into four frequency components, namely δ (1–4 Hz), θ

(4–8 Hz), α (8–13 Hz) and β (13–31 Hz). From each signal we (v) extracted its ordinal patterns and
obtained the corresponding distribution at the epoch-level (constructing the PDF from the ordinal
patterns obtained in all trials), thus having one distribution of ordinal patterns per site (sensor or
ROIs) and subject at each frequency band. Finally, we (vi) estimated the permutation entropy and
disequilibrium associated to the distribution and obtained the statistical complexity measure.

5. Conclusions

Complexity in Alzheimer-type dementia and its preclinical stages yielded non-trivial differences,
that were heterogeneous over cortical (scalp) areas and estimated sources (ROIs) and strongly
depended on the phase of the disease and on the band considered. Here we recovered the same
differences reported in other studies for broadband (whole) signals, where complexity decreases
with the stage of the condition. Nevertheless, this pattern changed at each frequency band and even
when group averages might point in this direction, local differences indicated that complexity can
even be higher in AD, especially in areas where deposition of Aβ and p-tau are more prominent.
These results, novel in the literature, still need a physiology-based explanation under the light of the
physical alterations undergoing the symptoms.

Further studies should focus on collecting more data, especially with longitudinal, follow-up
sessions, that enable to carry out robust statistics at the local level and quantify changes in entropy and
complexity as a function of time. It would also be of great interest to correlate the observed changes
with Aβ levels in CSF samples or hippocampal volume from MRI scans. To give plausible explanations
of the increase in complexity in AD, more analyses about entropy and complexity from intra-cortical
electrodes in impaired brains should be carried out. More local registers (at meso or even micro-scale)
would be a great tool to asses how dynamics change in the presence of Alzheimer’s disease. In view of
all, more research is needed to fully understand how the progression of Alzheimer’s disease alters
brain dynamics, both spatially and at different frequency bands.
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