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Abstract: Differential geometry offers a powerful framework for optimising and characterising
finite-time thermodynamic processes, both classical and quantum. Here, we start by a pedagogical
introduction to the notion of thermodynamic length. We review and connect different frameworks
where it emerges in the quantum regime: adiabatically driven closed systems, time-dependent
Lindblad master equations, and discrete processes. A geometric lower bound on entropy production
in finite-time is then presented, which represents a quantum generalisation of the original
classical bound. Following this, we review and develop some general principles for the optimisation
of thermodynamic processes in the linear-response regime. These include constant speed of control
variation according to the thermodynamic metric, absence of quantum coherence, and optimality
of small cycles around the point of maximal ratio between heat capacity and relaxation time for
Carnot engines.

Keywords: quantum thermodynamics; finite-time thermodynamics; thermodynamic length;
heat engines; cooling

1. Introduction

Quasistatic processes can be successfully characterised by a few simple and universal results:
work is given by the equilibrium free energy difference between the endpoints of a transformation,
the efficiency of a Carnot engine depends only on the temperatures of the thermal baths, and in
general all quantities of interest become state functions [1]. These results are extremely strong, but their
applicability to real life situations is hindered by the necessity of performing all protocols in infinite
time in order to ensure that the system remains in thermal equilibrium along the process. On the
other hand, finite-time thermodynamic processes can become incredibly complex and strongly depend
on the particular protocol and system. For this reason, universal results or simple characterisations
are rare. A remarkable exception are fluctuation theorems, which are universal results that apply
to arbitrary out-of-equilibrium processes under very mild assumptions [2]; however, they provide
a few constraints on the statistics, which are far from sufficient for a full characterisation of the
out-of-equilibrium process.

Noticeably, the middle ground between the two situations above, i.e., the case in which the
protocol is performed in long but finite time, can be characterised by few geometrical quantities.
The main ideas were introduced for classical systems in a series of seminal papers in the 80 s
by Weinhold and Andresen, Berry and Salamon, among others [3–14]. More recently, the field
saw a revival following a series of papers initiated by Crooks in 2007 [15–17], leading to several
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applications in, e.g., molecular motors [18], small-scale information processing [19], nonequilibrium
steady states [20,21], and many-body systems [22,23]. The same ideas have been generalised
to the quantum regime for unitary dynamics using linear response [24–28], and to open system
dynamics for Lindbladian systems [29,30]. Recent applications of thermodynamic geometry in
quantum systems can be found in quantum heat engines [31–34], equilibration processes [35,36],
phase transitions [37], quantum work and heat fluctuations [38–40], thermodynamic uncertainty
relations [41,42], and shortcuts to adiabaticity [43]; see also Ref. [44] for a recent perspective on
the subject.

The goal of this paper is two-fold: First, we aim to provide a pedagogic introduction to the
notion of (quantum) thermodynamic length. This is done in Section 2, where we explicitly connect
different frameworks where this concept can be derived: adiabatic linear response theory in closed
quantum systems [26–28], adiabatic Lindblad master equations [29,30], and discrete processes [7].
Additionally, in Section 3, we use the concept of thermodynamic length to lower bound the
dissipation in a finite-time process, generalising to quantum systems the so-called Horse–Carrot
theorem [6,7]. Notably, the bound is process-independent, being a function of the endpoints and
the (smallest) relaxation timescale. Thus, it can be seen as a geometric refinement of the second law of
thermodynamics. Second, in Section 4, we apply these ideas to the optimisation of thermodynamic
processes, with emphasis on heat engines in the low-dissipation regime [6,45–53]. Building upon
previous works, we show how general conclusions can be drawn with analytical tools for a class of
thermal machines, and a few principles of common application can be stated for optimal processes,
with some examples. Finally, these results are illustrated in detail for the paradigmatic case of a
finite-time Carnot engine with a driven two-level system as a working substance in Section 5.

2. Overview of Thermodynamic Length in Quantum Systems

Let us consider a system whose Hamiltonian Ht can be externally driven and which is weakly
coupled to a thermal bath. Without loss of generality, we will decompose the system Hamiltonian
as Ht = ∑i λi

tXi, where
{

λi
t
}

is a family of time dependent external parameters, and {Xi} are the
corresponding observables. Moreover, in the following we will assume summation over repeated
indexes. In this context the average work performed on the system is given by:

w =
∫

γ
dt Tr

[
Ḣtρt

]
=
∫

γ
dt λ̇i

t Tr [Xiρt] , (1)

where γ is the path in the parameters space, and ρt is the evolved system density matrix at time
t ∈ (0, τ). We know from equilibrium thermodynamics that if the process is infinitely slow the system
is always at equilibrium. Consequently, the work is given by the difference of free energy at the
endpoints of the transformation. Indeed, in this formalism we regain this result:

weq =
∫

γ
dt Tr

[
Ḣtπt

]
=
∫

γ
dt

d
dt

(
−β−1 logZt

)
= ∆F, (2)

where we used the notation Zt = Tr
[
e−βHt

]
for the partition function, we denote the thermal state

by πt := e−βHt /Zt, and we used the definition of the free energy Ft := −β−1 logZt, as well as
∆F = Fτ − F0. Given this result, it is then natural to define the dissipated work as wdiss := (w−weq) =

(w− ∆F), in order to isolate the role of the dissipation arising from finite time effects.
A consequence of the second law is that wdiss ≥ 0 with equality only in the infinite time limit.

Moreover, if the dynamics is divisible (e.g., Markovian) the rate of dissipation is also positive definite,
and zero only in the infinite time limit [54]. This suggests that we can expand ẇdiss in terms of {λ̇i

t}
around the quasistatic limit (λ̇i

t ≡ 0), and obtain:

ẇdiss = λ̇i
t������∂i ẇdiss

∣∣
λ̇t≡0 + λ̇i

t

(
∂i∂j ẇdiss

∣∣
λ̇t≡0

)
λ̇

j
t +O

(
||λ̇||3

)
, (3)
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where the first derivative cancels since we are expanding around a minimum. For the same reason,
we know that the Hessian gi,j = β∂i∂j ẇ

diss
∣∣

˙̆t≡0

is positive definite. From these considerations we see

that the dissipated work can be written as:

wdiss =
1
β

∫
γ

dt λ̇i
t (gi,j)tλ̇

j
t, (4)

up to higher order corrections. Linear response theory tells us that the matrix gt depends smoothly on
the thermal state πt. Moreover, we can deduce that it is positive definite and symmetric, being the
Hessian of a function around its minimum. These are the defining properties of a metric. In fact,
we can interpret Equation (4) as the energy functional or the action of the curve γ with respect to the
metric g. This name comes from the formal analogy between Equation (4) and the action of a system of
free particles with mass tensor given by g.

This interpretation is particularly useful thanks to the following fact. If one defines the length of
γ as:

lγ =
∫

γ
dt
√

λ̇i
t (gi,j)tλ̇

j
t, (5)

we have the Cauchy–Schwarz like expression

βwdiss ≥ l2
γ/τ, (6)

which takes the name of “thermodynamic length inequality” [6]. Among the curves connecting
two endpoints,

{
λi

0
}

and
{

λi
τ

}
, we call γ geodesic if it minimises the distance between the two points

as measured by Equation (5). A geodesic is also characterised by the property that it keeps the product
λ̇i

t (gi,j)tλ̇
j
t constant along its path, implying that the Cauchy–Schwarz inequality in Equation (6)

is saturated if γ is a geodesic. Physically, this means that in order to design minimal dissipating
protocols in the slow driving regime, it is sufficient to solve a system of differential equations,
i.e., the geodesic equations:

λ̈i
t + Γi

j,k
∣∣
λt

λ̇
j
t λ̇k

t = 0, (7)

where Γ denotes the Christoffel symbols, which are given by:

Γi
j,k|λt =

1
2

gi,l
(

∂jgl,k + ∂kgj,l − ∂l gj,k

)
|λt . (8)

Here, gi,l is the inverse of the metric, and we use the shorthand notation ∂igj,k|λt ≡ (∂gj,k/∂λi)|λ=λt .
Moreover, the dissipative properties of a driven system can be directly inferred from the spectral
properties of gt alone. In particular, starting from very general considerations on the nature of the
metric tensor, this will allow us to give lower bounds on the rate of dissipation (Section 3) and to
conclude that the creation of coherence is always detrimental to the efficiency (Section 3).

Another strength of the formalism presented is that g can be explicitly computed in many
frameworks. For example, comparing Equations (1) and (2) it can be seen that the metric tensor can
be computed from the slow driving approximation of the expectation value of the observables {Xi}s.
This was explicitly carried out in the context of linear response of an adiabatically driven unitary
dynamics in [28] (see also [26,27]), leading to the expansion:

Tr [Xiρt] = Tr [Xiπt] + χad
t [Xi, Xj]λ̇

j
t +O

(
||λ̇||2

)
, (9)
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where χad
t is the adiabatic response function given by:

χad
t [A, B] = −i

∫ ∞

0
dν (ν Tr [[A(ν), B]πt]) . (10)

Here, we set h̄ = 1, and the Heisenberg picture A(s) is defined with respect to the frozen Hamiltonian
at time t, i.e., A(s) = eiHts Ae−iHts. Notice that the upper bound of the integral can be extended to
∞ thanks to the exponential decay of the correlation function Tr [[A(ν), B]πt]. Now, if we plug the
expansion just obtained in Equation (1) and we recall that the definition of the dissipated work is
wdiss := (w− weq), we have the expression:

wdiss =
1
β

∫
γ

dt λ̇i
t (β χad

t [Xi, Xj])λ̇
j
t, (11)

up to higher order in {λ̇i}. Comparing this equation with Equation (4), we see that in the context of
adiabatic linear response the metric tensor is given by gu

i,j =
β
2 (χ

ad
t [Xi, Xj] + χad

t [Xj, Xi]) (notice that

even if χad
t is not in general symmetric in its arguments it can always be symmetrised without affecting

the result, since the velocities {λ̇i
t} enter the integral in a symmetric way). This formalism was recently

used to geometrically characterise thermal machines close to Carnot efficiency [33].
Another relevant framework where a thermodynamic length can be derived is open quantum

systems [30] (see also [29]). In particular, consider the Lindbladian dynamics:

ρ̇t = Lt[ρt], (12)

with the property that each Lt has the real part of all the eigenvalues negative and that there exist a
unique instantaneous steady state πt. These two conditions ensure that the dynamics asymptotically
equilibrates irrespective of the initial conditions:

lim
ν→∞

eνLt ρ = πt. (13)

In this case, it is possible to expand the state in the slow driving limit as ρt ≈ πt + δρt [55], where δρt

can be expressed up to higher order corrections as [30]:

ρt = πt +L +
t [π̇t] +O(||λ̇||2), (14)

where L +
t is the Drazin inverse of the Lindbladian given by:

L +
t [A] =

∫ ∞

0
dν eνLt (πtTr [A]− A) . (15)

As it will be shown explicitly in the following, the eigenvalues of L +
t encode the information about the

thermalisation timescales. Moreover, we introduce the shorthand notation to indicate the derivative of
the state:

π̇t = −β λ̇i
t

∫ 1

0
dx π1−x

t X̄iπ
x
t = −β λ̇i

tJt[X̄i], (16)

where we denote by X̄i := Xi − Tr [Xiπt]. Hence, if we plug in this expansion into the expression of
the work, we obtain that the dissipation takes the form:

wdiss = −
1
β

∫
γ

dt λ̇i
t (β2 Tr

[
X̄iL

+
t Jt[X̄j]

]
)λ̇

j
t. (17)

Again, it should be noticed that the quadratic form qi,j = −β2 Tr
[
X̄iL

+
t Jt[X̄j]

]
is in general not

symmetric, so that in the definition of the metric we need to explicitly symmetrise the expression:
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gd
i,j := 1

2 (qi,j + qj,i). The matrix gd so defined can be then interpreted as the metric tensor for open
quantum systems [30].

It is interesting to notice that the metric gu obtained in the unitary setting can be cast in a form
resembling the dissipative one gd. In fact, explicitly carrying out the integral in the definition of the
adiabatic response function χad

t , we see that the metric can be recast in the form:

χad
t [Xi , Xj] = −i

∫ ∞

0
dν
(
ν Tr

[
[Xi(ν), Xj]πt

])
= − i

Zt

∫ ∞

0
dν
(

ν ei(εm−εn)ν
)
(e−βεm − e−βεn )(Xi)m,n(Xj)n,m (18)

= − 1
Zt

(e−βεm − e−βεn )

(εm − εn)2 (Xi)m,n(Xj)n,m = −iβ
∫ ∞

0
dν
∫ 1

0
dx Tr

[
π1−x

t eiHtνXi e−iHtνπx
t Xj

]
(19)

= −β Tr
[
Xi U+

t [Jt[Xj]]
]

, (20)

where we denoted by {εi} the eigenvalues of Ht, and we defined the operator:

U+
t [A] := −i

∫ ∞

0
dν TrB[e−iHtν AeiHtν]. (21)

We see that the role of L +
t is taken in this case by the map U+

t , so that the dissipation in the unitary
case is given in complete analogy to Equation (17).

One last example that one can consider is the case in which the Hamiltonian is changed in a
sequence of quenches, followed by a perfect thermalisation of the system [7]. The total duration of the
protocol is given by τ = Nτeq, where N is the number of quenches in which the protocol is realised
and τeq is a fixed equilibration time. When the number of steps is large the state at each time t = mτeq

(m = 0, . . . , N − 1) is approximately given by: ρm ' πm − ∆mπ, where ∆mπ is the difference between
the thermal states at two subsequent steps ∆mπ := πm+1 − πm. This term in the limit N � 1 is well
approximated by τeqπ̇t. We can interpret this contribution as an indication of how much the system
lags behind the thermal state. Proceeding as before, the dissipation can be rewritten up to first order in
1/N = τeq/τ as:

wdiss =
1

2β

∫
γ

dt λ̇i
t (τeqβ2 Tr

[
X̄iJt[X̄j]

]
)λ̇

j
t. (22)

The metric tensor gq
i,j can be directly identified with the trace inside the integral, since Jt is self-adjoint,

making the whole expression symmetric in (i, j). The metric so obtained can be rewritten as:
gq

i,j = τeq gBKM
i,j , where we implicitly defined gBKM

i,j = ∂2 lnZ/∂λi∂λj. This last quantity is known as
the Bogoliubov–Kubo–Mori (BKM) statistical distance, which encodes the geometry of the manifold of
Gibbs states and has been thoroughly studied in the literature [56–60]. Due to the formal similarity
between (22) and (17), it is insightful to study the relation between both metrics. In [30], it was shown
that in the particular case in which the observables of interest {Yα} are the left eigenoperators of the
Lindbladian, meaning that they evolve according to the equation:

d
dt

Tr [Yαρt] = τ−1
α (Tr [Yαπt]− Tr [Yαρt]) , (23)

where {τα} are the different timescales of the system, the expression of the metric for the Lindbladian
dynamics takes the simple form:

gd
α,β =

τα + τβ

2
gBKM

α,β , (24)
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in analogy with the classical result [17]. Since, at least for Lindbladians satisfying detailed balance, {Yα}
is a complete basis of operators, it is possible to rewrite in this case any observable Xi as Xi = ui,αYα.
That is, the Lindbladian metric for a general family of observables {Xi} is given by:

gd
i,j = ui,αuj,β

τα + τβ

2
gBKM

α,β . (25)

This shows that the role of L +
t is to encode the thermalisation timescales of the system, while the

main geometrical properties are contained in gBKM. Finally, it should be noticed that in the case of a
uniformly thermalising dynamics, i.e., τα = τeq ∀α, the thermodynamic metric is proportional to the
BKM one.

3. Bounding Dissipation with Thermodynamic Length

In a wider context, the BKM metric plays a role within quantum information geometry [61],
and can be interpreted as a form of quantum Fisher information [62]. Moreover, it belongs to the
family of contractive Riemann metrics over the manifold of normalised density operators $t = $t({λi

t}).
A theorem by Petz gives a general characterisation of length between neighbouring quantum states [63]:

d`2 = g f
ijdλidλj =⇒ g f

ij = Tr
[

∂$t

∂λi c f (R$t , L$t)
∂$t

∂λj

]
, (26)

where c f (x, y) = (y f (x/y))−1 and f (t) is a so-called Morozova–Cencov function which is operator
monotone, normalised such that f (1) = 1 and fulfils f (t) = t f (1/t). Furthermore L$, R$ represent
the left and right multiplication operators defined according to L$[A] = $A and R$[A] = A$

respectively [63]. For each different metric we have a different notion of distance between density
matrices over a path γ:

` f (γ) :=
∫

γ
d` =

∫
γ

dt
√

g f
ijλ̇

iλ̇j. (27)

For the particular choice f (x) = (x− 1)/ log x one obtains the BKM metric g f
ij = gBKM

ij , namely

gBKM
ij =

∫ 1

0
dx Tr

[(
∂ log $t

∂λi

)
$x

t

(
∂ log $t

∂λj

)
$1−x

t

]
. (28)

Restricting to the manifold of thermal states $t = πt we indeed recover the thermodynamic metric
in (22). In general, any length of the form (27) is lower bounded by a geodesic path. Notably, analytical
expressions for the shortest curves on the density operator manifold for each choice of metric are not
known, aside from a couple of examples [64,65] excluding the BKM metric. However, for the BKM
statistical length a lower bound is known (Corollary 5.1 of [66]) which depends only on the boundary
conditions {λi

0} → {λi
τ}:

`BKM(γ) ≥ L($0, $τ), (29)

where

L(ρ, σ) = 2 arccos(Tr
[√

ρ
√

σ
]
), (30)

is the quantum Hellinger angle. We stress that while this bound can always be saturated when
the initial and final states commute, transitions between non-commuting states cannot typically
saturate (29). Note that in the classical commutative regime, all monotone metrics (26) reduce to the
classical Fisher–Rao metric, and a unique geodesic length is singled out by the Hellinger angle between
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the initial and final probability distribution [65]. For a pair of discrete classical probability distributions
pn and qn, the Hellinger angle is given by

L(p, q) := 2 arccos
(
∑
n

√
pn qn

)
. (31)

The geodesic bound (29) has an immediate consequence for thermodynamics.
For step-equilibration processes, the work dissipation (22) is subsequently lower bounded
via the Cauchy–Schwartz inequality (6) combined with (29):

wdiss ≥
kBT
2N
L2(π0, πτ). (32)

One may interpret this as a geometric refinement to the second law of thermodynamics.
Clearly, the bound depends only on the angle between the initial and final equilibrium state rather than
the full path γ. For open systems undergoing Markovian dynamics, the corresponding dissipation (17)
can be bounded in a similar fashion. Consider first the eigendecomposition of the Lindbladian (23)
with associated relaxation timescales {τα}, which can be achieved for open systems satisfying
detailed balance. Denoting τmin as the shortest timescale along the curve γ and τ the total duration,
work dissipation is bounded by

wdiss ≥ kBT
(

τmin

τ

)
L2(π0, πτ). (33)

Note that, while (32) can always be saturated by following a geodesic, in general (33) is not tight
whenever more than one relaxation timescale is present. The bounds (32) and (33) represent quantum
generalisations of the so-called Horse–Carrot theorem in finite-time thermodynamics [6,7].

Considerations on Coherence Creation

Now we want to investigate the role of coherence in a a thermodynamic transformation whose
dissipation can be described by Equation (17), see also Refs. [39,67]. We start by rewriting the expression
for the dissipated work assuming full control on the system Hamiltonian

ẇdiss = −β Tr
[
ḢtL

+
t Jπt Ḣt

]
≡ 〈Ḣt, Ḣt〉t . (34)

For notation simplicity we omit the explicit time dependence in this section. We split Ḣ in its diagonal
and coherence parts, with respect the Hamiltonian basis of π ∝ e−βH , |i〉

Ḣ = Ḣ(d) + Ḣ(c) Ḣ(d) = ∑
i
|i〉 〈i| Ḣ |i〉 〈i| . (35)

Given that for any operator A we have Tr
[

A(d)A(c)
]
= 0, if we are able to prove that Jπ and L + do

not mix the diagonal and coherent subspaces, then we would have

〈Ḣ, Ḣ〉 = 〈Ḣ(d), Ḣ(d)〉+ 〈Ḣ(c), Ḣ(c)〉 . (36)

Now, this is always true for Jπ as

Jπ [|i〉 〈j|] =
∫ 1

0
dxπx |i〉 〈j|π1−x ∝ |i〉 〈j| (37)

meaning that if |i〉 〈j| is diagonal (i.e., i = j), it will stay diagonal, and vice versa (i.e., if i 6= j).
Is the same true for L +? This question can be answered affirmatively, by noting that L + can be

written as an exponentiation of L (cf. (17)), and that any L satisfying detailed balance does not mix
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the diagonal and coherent subspaces [68]. More explicitly, standard Markovian thermal Lindbladians
(satisfying detailed balance [68,69]) take the form L [ρ] = −i[HLS, ρ] + ∑α γα AαρA†

α − 1
2{A†

α Aα, ρ},
the Aα being jump operators Aα = |iα〉 〈jα|, and HLS a general Lamb-Shift Hamiltonian [HLS, H] = 0.
This commutation property guarantees that the Hamiltonian term does not mix populations
with coherences, while for the dissipative part we note

Aα |i〉 〈j| A†
α −

1
2
{A†

α Aα, |i〉 〈j|} = |iα〉 〈iα| δjαiδjα j −
1
2
|i〉 〈j| (δjαi + δjα j) . (38)

From the expression above, it is easy to see that if i = j the result will be diagonal as well, while if i 6= j
the result will be only made of coherences. Equation (36) is thus valid for standard Markovian master
equations and

wdiss = w(d)
diss + w(c)

diss (39)

where w(d)
diss is the term due to the modification of the spectrum of H, while w(c)

diss is due only to the

rotation of the basis. Given that both w(d)
diss and w(c)

diss are positive, this property immediately implies

that wdiss ≥ w(d)
diss, and hence we conclude that the creation of coherence is always detrimental when

operating a thermal machine in the low-dissipation regime, as we explain more in detail in Section 4.2,
and in agreement with recent results [42,67,70]. A similar separation of losses generated by diagonal
and coherent parts of the Hamiltonian variation is presented in [32].

4. Optimisation of Thermodynamic Processes in the Slow Driving Regime

In this section, we derive and review generic considerations on the optimisation of finite-time
thermal machines in the low-dissipation regime [6,14,31,46]. That is, when the irreversible entropy
production is proportional to the inverse time duration. This assumption can be taken as empiric if no
information on the system–bath interaction is given, or it can be justified and derived dynamically
using the tools examined in Section 2. Part of the results are in agreement with previous literature and
we aim here to collect them in a unified exposition that shows the generality and simplicity hidden in
earlier works.

More precisely, we consider a thermal machine made up of a working substance (or machine)
and several thermal baths at different temperatures. The level of control consists of n experimental
parameters of the machine that can be driven (typically Hamiltonian parameters), together with the
possibility to put the machine in contact with one of the thermal baths. The n control parameters are
parametrised as~λ(s) ≡ ~λsτ with s ∈ (0, 1)—note that this notation decouples the duration τ of each
process from its shape~λ(s). We assume in very general terms that the low-dissipation condition holds
and it is described by an underlying thermodynamic metric, as presented in Section 2. That is, for an
isothermal transformation at temperature T = β−1, we rewrite Equation (4) as

∆Q = T
(

∆S− σ

τ

)
(40)

σ =
∫ 1

0
ds ~λ′T(s)g~λ

~λ′(s) (41)

which follows from identifying wdiss = w− ∆F = T∆S− ∆Q = Tσ/τ and by recalling ~λ(s) ≡ ~λsτ ,
which has derivative~λ′ ≡ ∂

∂s
~λ = τ~̇λ. Notice that in most of what follows, the exact form of g~λ does

not significantly change the results. In this sense, most of the derivations are common to any system
that has first-order losses described by some quadratic form, as in linear response theory.
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We consider a machine performing M transformations close to equilibrium (in general with
different baths), each described by some heat exchange and some dissipation in the low-dissipation
regime, with an output

∆Wout =
M

∑
i

∆Qi =
M

∑
i=1

Ti∆Si −
Tiσi
τi

. (42)

The output being a sum of heat exchanges is guaranteed when considering cycling machines, or when
the output of interest is the heat extraction from a subset of the sources. This framework thus includes
a variety of tasks: cooling, work extraction, Landauer erasure, Carnot cycles, and generalised Carnot
engines with multiple baths or finite size baths (see examples below). In any such a process, three
main features can be optimised, corresponding to different levels of control over the machine:

1. The speed of the trajectory: that is, the duration τ, which characterises the average speed of
the process, plus any rescaling of the instantaneous velocity along the trajectory. This can be
formalised as a change of coordinates ~λ(s) → ~λ(s(s)) with s smooth monotonous and s(0) =
0, s(1) = 1.

2. The path of the trajectory: i.e., the (ordered) set of points swept by ~λ, for fixed ~λ(0) and ~λ(1).
This identifies a curve γ in Rn.

3. The extremal points of γ, or the “location” of the process in the control space.

In the following, we elaborate on the above features and show how to optimise them, which
can be done independently or sequentially. In particular, following the above order in Section 4.1
we optimize the time duration of each transformation τi and show a principle of constant dissipation
rate optimality; in Section 4.2 we discuss consequences of the considerations presented in Section 3
when the experimental control is such to allow variations of the curve γ defined by ~λ(s); and in
Section 4.3 we discuss the cases in which a full optimisation can be carried out, so that all the degrees
of freedom listed above can be optimised.

4.1. Tuning the Speed: Optimality of Constant Dissipation Rate

Here, we suppose initially that the only control available on the machine (42) is the time tuning of
each step τi. We wish to maximise the power output P = ∆Wout/ ∑j τj for a given loss, or equivalently
we fix the (maximum) amount of dissipated work,

∑
i

Tiσi
τi
≡ wdiss (43)

and maximize P. The power can be written as

P =
(∑i Ti∆Si)− wdiss

∑j τj
, (44)

hence, maximising it is equivalent to minimising ∑j τj with the constraint (43). This can be stated as

Principle 1. Maximising the power at fixed dissipation is equivalent to minimising the dissipation at
given duration.

This remark is important as the main result of this subsection (the optimality of constant
thermodynamic speed, or dissipation rate) will thus be valid for all machines performing tasks that are
limited by the above trade-off. Examples are: maximising the power, minimising the dissipation
(or entropy production) with fixed total time, or hybrid figures of merit combinations, such as
maximising the power with a fixed amount of total loss. For a discussion of what machines maximise
their outputs when the irreversible entropy production is minimised see [71].
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The maximisation of (44) can be done differentiating w.r.t τi and using Lagrange multipliers,
or directly with a Cauchy–Schwarz inequality

wdiss ∑
i

τi =

(
∑

j

Tjσj

τj

)(
∑

i
τi

)
≥
(

∑
j

√
Tjσj

)2

(45)

which is saturated when all Tjσj/τ2
j are equal, that is

τj =

√
Tjσj(∑i

√
Tiσi)

wdiss
(46)

Pwdiss =
wdiss(∑i Ti∆Si)− w2

diss
(∑j

√
Tjσj)2 . (47)

Notice that the fact that Tjσj/τ2
j is the same ∀j means that the rate of dissipation is constant

for each of the N steps of the protocol. In particular, when the dissipation is described by an
underlying thermodynamic metric (41), this implies the optimality of constant thermodynamic
velocity T~λ′T g~λ

~λ′ = const., which can be seen by dividing each transformation into infinitesimal
steps, i.e., expressing

Ti∆Si −
Tiσi
τi

=
∫

γ(i)
TdS−

Td~λT g~λd~λ
dτ

(48)

and applying the above reasoning, which concludes that each of the infinitesimal
Td~λT g~λd~λ

dτ2 must
be equal. The “thermodynamic length inequality” inequality (6) ([6,72]) is indeed saturated when its
integrand is constant, and coincides with the continuous version of (45). These considerations can be
summed up saying that for the class of machines considered here

Principle 2. In optimal protocols, the speed of the control variation is constant (as measured from the underlying
thermodynamic metric), leading to a constant entropy production rate.

The optimality of constant entropy production rate was noted already in the first seminal
papers [73] in the context of endoreversible engines, and appeared in many works thereafter (for
an historical perspective, see also [74,75]). The above formulation manifests the universality of this
principle whenever a trade-off between output rate and losses is present in the regime where losses
are linear in the average speed of the process.

The power (46) can be further maximised choosing wdiss = 1
2 ∑i Ti∆Si to obtain the durations

leading to the maximum power, in this case

Pmax =
(∑i Ti∆Si)

2

4(∑j
√

σj)2 . (49)

At maximum power the losses thus correspond to half of the quasistatic output: this corresponds to
the “7th principle of control thermodynamics” pointed out by Salamon et al. in [74], whose general
validity was unknown: we can state it holds (at least) for all machines described by (42).

We give here an example of application of the time tuning optimisation just described.

Multi-Bath Carnot Engine

A generalised Carnot engine consists of a sequence of isotherms in contact with different thermal
baths, alternated with adiabats as in the standard Carnot cycle. The total work output can be expressed
as the sum of the heat exchanges due to cycling conditions, as in Equation (42), with ∑i ∆Si = 0. All the
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results described above apply and the maximum power obtainable by tuning the time durations of the
isotherms is thus as in Equation (49). Moreover, in Appendix A we further analyze this result assuming
that all the baths have the same spectral density ∝ ωα, described by the ohmicity α. Under this
hypothesis and the assumption that all the isotherms are small enough (see details in Appendix A),
we show how this can be translated in the maximum power being expressed by

Pmulti−Carnot
max =

(∑i TidSi)
2

4κ0T0

(
∑i(

Ti
T0
)

1−α
2 |dSi|

)2 (50)

where κ0 represents the local ratio between σ0 and (∆S0)
2 at some reference temperature T0,

and satisfies κi/κj = (Ti/Tj)
−α. In the Appendix A, we show how in this case, the power is upper

bounded by the same power when it is obtained by the use of the highest and lowest temperature only,
which leads to the maximum power of a standard Carnot Engine (cf. Section 4.3 or [31])

Pmulti−Carnot
max ≤ PCarnot

max =
(∆S)2

σh

(Th − Tc)2

4Th

(
1 + ( Tc

Th
)

1−α
2

)2 . (51)

4.2. Path Optimisation: Geodesics and Coherences

When the control over the working fluid allows not only to vary the speed of the transformation,
but includes possible modifications of the path γ of the trajectory~λ(s), the machine can be substantially
improved. The optimisation over γ is independent from the time tuning considered in the previous
section. It consists of finding the shortest path σ =

∫
γ
~λ′T g~λ

~λ′ between two fixed points for each
isotherm (41) considered in the cycle. Indeed, when the extremal points of a trajectory are fixed,
the quasistatic output is fixed and minimizing σ always improves both power and the efficiency.

More precisely, with the tools described in Section 2, each of the σi in Equation (42) will be
described as in (5) by some metric g(i) and some trajectory ~λ(i), in the form σi =

∫
γ(i)~λ′T(i)g

(i)
~λ
~λ′(i) .

As mentioned earlier (see Section 2 or Section 4.1), by choosing the speed to be constant the above
expression can be minimised to the thermodynamic length of the path γ(i)

σi =

(∫
γ(i)

ds
√
~λ′T
(i)g

(i)
~λ
~λ′
(i)

)2

≡ l2
γ(i) . (52)

This quantity depends only on the path γ(i) of the trajectory and not on its parametrisation ~λ(s),
but it can be further minimised by considering its minimum among all the possible paths linking the
extremal points, which then defines the geodesics distance between the extremal points

d~λ(0),~λ(1) = min
γ with extremals
{~λ(0),~λ(1)}

lγ (53)

These considerations can be stated as follows:

Principle 3. In optimal protocols, the driving minimises the entropy production, i.e., it follows a geodesic on
the thermodynamic manifold.

In the quantum case, as showed in Section 3, the irreversible entropy production can be split in
two independent parts, one due to the variation of the spectrum Ḣ(d)

t and one due to the rotation of

the eigenvectors Ḣ(c)
t of the Hamiltonian, i.e., Ḣt = Ḣ(d)

t + Ḣ(c)
t and

wdiss = w(d)
diss + w(c)

diss , (54)
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where w(X)
diss = −β

∫
dt Tr

[
Ḣ(X)

t L +
t Jπt Ḣ(X)

t

]
, with X = d, c. Now, notice that the quasistatic (lossless)

output of a thermal machine is given by the integral of the heat exchange, or the work exchange,
computed on the equilibrium state πt, for example

weq =
∫

dt Tr
[
πtḢt

]
=
∫

dt Tr
[
πtḢ(d)

t

]
, (55)

which shows how the work exchange only depends on the diagonal variation of H, that is the
spectrum variation. This easily follows from the fact that for thermal states at temperature T one
has ∆U = w + ∆Q = w + T∆S , where all the quantities depend uniquely on the spectrum of the
final and initial control H0, Hτ (which define as well the spectrum of π0, πτ). This means that given
the most general control Ht = UtH(d)

t U†
t , where H(d)

t is diagonal in a time-independent basis, all the
lossless heat and work exchanges are the same for the protocol in which only the spectrum is varied,
H(d)

t . At the same time given w(c)
diss ≥ 0, losses are clearly reduced using H(d)

t . From this we learn that,
for standard Markovian dissipators,

Principle 4. Quantum coherences are not created in optimal protocols, i.e., non-commutativity [Ht, Ht′ ] 6= 0
is avoided.

The effect of coherences inducing losses in the power was noted already in [67] in the context of
linear response theory of slowly driven engines with slowly driven temperature, and more recently
in [42]. A different approach to quantum dynamics, namely quantum jump trajectories, shows again
the detrimental effects of coherence creation [70]. Moreover, notice that if the degree of control on
the thermal machine allows to eliminate any coherence creation, using commutative controls all the
metrics defined in Equation (26) collapse into the classical one and the geodesics distance between
states is given by (31), and the bound (33) can be saturated.

We show here an example of application for a cooling process.

Cooling/Work Extraction

Suppose we are interested only in a subset of the heat currents that are part protocol, meaning
that relevant output is the heat extracted from one (or multiple) thermal sources, as in a generalised
refrigerator model. To fix the ideas for a single bath to be cooled the cooling rate is

Pcooling =
Tc∆Sc − Tcσc

τc

τex + τc
≡ Tc∆Sc − wdiss

τex + τc
(56)

where now τex is additional time spent on parts of the cycle that do not contribute to the cooling output.
The optimisation for fixed loss wdiss applies as from (46) leading to τc = Tcσc/wdiss , and a power

Pcooling
wdiss =

Tc∆Sc − wdiss

τex + Tcσcw−1
diss

, (57)

which clearly increases as σc is minimised. The overall maximum of the cooling rate becomes for a
suitable choice of wdiss

Pcooling
max = Tcσc

(√
∆Scτex/σc + 1− 1

)2

τ2
ex

= Tc
∆S2

c
4σc
− Tc

∆S3
c

8σ2
c

τex +O(τ2
ex) . (58)

The above expressions are all decreasing in the value of σc, which is minimal when obtained
on the geodesics of the transformation, as from Equations (52) and (53). For example, let us
assume that the cooling consists of a single transformation from πx to πy, with no additional

time τex = 0, and full control on the Hamiltonian defining πx,y = e−Hx,y/Tc /Tr
[
e−Hx,y/Tc

]
.
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Then, the maximum cooling power is obtained for a coherence-free protocol [Hx, Hy] = 0 that leads
to σmin = 2τeq arccos(Tr

[√
πx
√

πy
]
) from (30), whereas the maximum cooling rate is obtained by

substituting it into (58). If the control does not allow for coherence-less transformations, or the
Lindbladian has several time-scales, upper bounds on the cooling rate can be obtained by the use
of (33).

4.3. Choosing the Location: Total Optimisation

After optimizing the time duration and trajectory of the transformations, the resulting optimal
output rates only depend on the end points of the transformations. The final maximisation of such
expressions is in general non-trivial. However, we note how the maximum power obtained in (51)
is proportional (∆S)2 /σ, which is maximal when σ takes the geodesics value described above (53).
Thus, this last quantity

(∆S)2

σ
=

(
S~λ(0) − S~λ(1)

)2

d2
~λ(0),~λ(1)

(59)

can be maximised by changing the extremal of the transformation. The same quantity appears as
the leading term for the cooling rate in (58). We find this to be a strikingly general feature of all
thermal machines whose dynamical information ultimately consists of just one simple isothermal
transformation close to equilibrium. This is clearly the case for a single heat extraction from a bath as
in (58), but it happens also, e.g., for Carnot engines, which, due to the trivial dynamics at the quenches,
have all relevant quantities which can be expressed solely in terms of the two isotherms. For example,
power and efficiency of a Carnot engine read:

PCarnot =
∆S(Th − Tc)−

(
Tcσc

τc
+ Thσh

τh

)
τc + τh

, η =
Qh + Qc

Qh
= 1−

Tc(∆S + σc
τc
)

Th(∆S− σh
τh
)

, (60)

where ∆S is the variation of entropy during the hot isotherm, and the irreversible entropy productions
are proportional to each other on optimal protocols σh/σc = (Tc/Th)

−α, according to the spectral
density of the baths [31,55] (cf. Appendix A). The two isotherms are thus symmetric, in the sense that by
construction they have an opposite entropy variation ∆Sh = −∆Sc, and the trajectories follow the same
geodesics to link the endpoints [31,55]. After time optimisation on τc, τh in such a case it is clear from
dimensional analysis that the resulting power can only be proportional to (∆S)2/σh (or equivalently
(∆S)2/σc due to proportionality) multiplied by a function with the dimension of temperature.

In more detail, it has been shown recently [31] that is possible to express the maximum power
at any given efficiency η = (1− δ)ηC = (1− δ)(1− Tc/Th) for a Carnot engine (see also [51,52]). We
report here for simplicity only on the case where α = 0, thus σc = σh = σ, as

PCarnot
δ =

(∆S)2

4σ

(Th − Tc)2δ(1− δ)

(1− δ)Tc + δTh
(61)

The importance of the term (∆S)2/σ was noted already in [49] as a natural unit of entropy over
time, defining the performance of thermal machines in the low-dissipation regime for any trade-off
between power and efficiency. The equivalent optimisation for a refrigerator has been conducted
in [76], where one has a cooling power and COP coefficient (this time ∆S is defined to be positive on
the cold isotherm)

PRefrigerator =
∆STc − Tcσc

τc

τc + τh
, ε =

Qc

|Qh| −Qc
=

Tc

(
∆S− σc

τc

)
Th

(
∆S + σh

τh

)
− Tc

(
∆S− σc

τc

) , (62)
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which leads to a maximum cooling power at given COP (again we report it for flat spectral density
σc = σh, see [76] for generalisations) ε = (1− δ)εC = (1− δ)Tc/(Th − Tc)

PRefrigerator
δ =

(∆S)2

4σ

Tc(Th − Tc)δ

Th − δTc
. (63)

Crucially, the maximisation of the (∆S)2/σ term can always be obtained by the use of a
Cauchy–Schwarz inequality [31], that is noticing that

(
∫

dS)2∫
ds~λ′T g~λ

~λ′
=

(∫
ds~∂S~λ ·~λ

′
)2∫

ds~λ′T g~λ
~λ′

≤
∫

ds~∂ST
~λ

g−1
~λ
~∂S~λ ≤ max

~λ

~∂ST
~λ

g−1
~λ
~∂S~λ ≡ max

~λ
C(~λ) (64)

The upper bound in (64) can be saturated by performing an infinitesimal cycles around the point where
C(~λ) is maximised. In the meaningful case in which the observables Xi decay with a well defined
timescale τeq, the dissipation is described by the Kubo-Mori metric (see Section 3), and C(~λ) is exactly
the heat capacity of the system divided by the equilibration time, leading to [31]:

(∆S)2

σ
≤ max

G

C(G)

τeq
. (65)

Here, G = βH is the adimensional Hamiltonian, and the thermal state and the heat capacity can be
expressed as π = e−G/Tr

[
e−G] and C(G) = Tr

[
G2π

]
− Tr [Gπ]2. In other words,

Principle 5. In order to optimise the power-efficiency trade-off, perform the finite-time Carnot cycle around the
point where the ratio between heat capacity and relaxation time of the working medium is maximised.

This general principle is illustrated in the next section for a two-level Carnot engine.

5. Case Study: Finite-Time Qubit Carnot Engine

In what follows, we analyse the exactly solvable case of a heat engine where the engine consists
of a driven two-level system:

H(t) = E(t)σz. (66)

We consider a finite-time Carnot cycle where the working substance is sequentially connected with two
thermal baths at different temperatures (see details of the cycle in [31]), and focus on the low-dissipation
regime where the results of Section 4 naturally apply. We model the relaxation with any of the
two baths by an exponential decay to equilibrium with timescale τeq, Tr [Hρ̇] = τ−1

eq Tr [H(π − ρ)],
which corresponds to the so-called reset master equation. In this case, the thermodynamic metric is
given by the KMB metric.

Let us define g ≡ βE (with β being the inverse temperature of the bath the working substance
is connected to), and let gx and gy be the two endpoints of the isotherms, with gx > gy. Let us also
introduce the corresponding probabilities of the excited state:

px =
e−gx

1 + e−gx
,

py =
e−gy

1 + e−gy
, (67)

with px < py. Then, we easily obtain:

∆S = −py ln py − (1− py) ln(1− py) + px ln px + (1− px) ln(1− px). (68)
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On the other hand, we can use (33) to lower bound the entropy production in the isothermal
processes as:

σ ≥ τeq

(
2 arccos

[√
px py +

√
(1− px)(1− py)

])2
. (69)

This bound can be saturated by following a geodesic, i.e., a protocol satisfying (7). Putting everything
together, we can upper bound the relevant figure of merit (∆S)2/σ for the power-efficiency
optimisation as:

(∆S)2

σ
≤

(−py ln py − (1− py) ln(1− py) + px ln px + (1− px) ln(1− px))2

τeq

(
2 arccos

[√px py +
√
(1− px)(1− py)

])2 . (70)

Importantly, this expression is protocol-independent and can be saturated. Indeed, the maximal power
of a finite-time Carnot engine (for a given efficiency η = (1− δ)ηC) given a two-level system can then
be written as (see (61)):

maxγ PCarnot
δ =

1
4
(−py ln py − (1− py) ln(1− py) + px ln px + (1− px) ln(1− px))2

τeq

(
2 arccos

[√px py +
√
(1− px)(1− py)

])2
(Th − Tc)2δ(1− δ)

(1− δ)Tc + δTh
, (71)

where the maximisation is meant over all possible protocols in the slow driving regime. We show the
upper bound (70) as a function of gx in Figure 1 for various values of gy, including the optimal one,
gy ≈ 2.4. It can be seen that the maximum of (∆S)2/σ over {gx, gy} is bounded by the maximum of
C/τeq, where C is the heat capacity,

C = g2 p(1− p), (72)

where p is the excited state probability p = e−g/(1 + e−g). This is in full agreement with (65) and [77],
and is a particular illustration that the power of finite-time Carnot engines at any efficiency can be
bounded by substituting the maximum value of C/τeq to (∆S)2/σ inside expression (61), as discussed
in detail in Ref. [31].

Figure 1. We plot the upper bound of (∆S)2/σ, given in (70), as a function of gx for different values of
gy = {0.5, 1.5, 2.4}. The point where gx = gy ≈ 2.4 is the point where (∆S)2/σ is maximised (this can
be easily checked numerically), which is also the point of maximum heat capacity C. The heat capacity
and its maximum are also plotted in dashed lines. We take τeq = 1.
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Summarising, here we have provided a tight upper bound on the relevant figure of merit
(∆S)2/σ for power (and efficiency) of a finite-time Carnot engine, for the particular case of a two-level
driven system. We note that such optimisation for a low-dissipation Carnot cycle or an Otto cycle has
been performed in [77], while exact total optimisation for a two-level system performing an arbitrary
cycle was solved in Refs. [78,79], with both bosonic and fermionic baths. While our results apply in the
high efficiency or low-dissipation regime, their strength lies in its simplicity: indeed, Equation (70)
can be easily computed for larger working substances, and extensions to more complex relaxation
processes with multiple timescales can also be relatively straightforwardly built (see Equation (64)
and Ref. [31]). This contrasts with exact results in finite-time thermodynamics [78,80], which rely on
non-trivial optimisation procedures that can become quickly unfeasible as the size of the working
substance increases.

6. Conclusions and Outlook

While originally developed for macroscopic systems, the geometric approach to finite-time
thermodynamics is now finding renewed applications within the emerging fields of stochastic and
quantum thermodynamics. In this paper, we have highlighted its utility for minimising dissipation in
small scale systems operating close to equilibrium. We have derived lower bounds on thermodynamic
length that provide a geometric refinement to the second law of thermodynamics and allow one to
benchmark the attainable efficiency of quantum thermal machines. Alongside this, we summarised
a set of key principles needed to optimise finite-time quantum low-dissipation engines in terms of
efficiency and power, based on the computation of the thermodynamic metric tensor and length. Taken
together, these principles provide a straightforward method for determining optimal thermodynamic
processes. Indeed, we have seen that optimality is achieved by ensuring that the cycle follows a
geodesic in the parameter space at constant velocity, while minimising the generation of quantum
coherence and maximising the heat capacity relative to the relaxation time of the working system.

Interesting future directions for thermodynamic geometry in the quantum regime include the
extension beyond the slow driving regime [81], the minimisation and characterisation of work and
heat fluctuations [38–40,82], connections with strong coupling and speed-ups to isothermality [83],
application to cooling processes and relations with the third law of thermodynamics [84–86],
many-body systems and criticality [22,23,37].

Author Contributions: Conceptualization, P.A.; H.J.D.M.; M.P.-L. and M.S.; Investigation, P. A.; H.J.D.M.; M.P.-L.
and M.S.; Writing—original draft, P.A.; H.J.D.M.; M.P.-L. and M.S.; Writing—review & editing, P.A.; H.J.D.M.;
M.P.-L. and M.S. All authors have read and agreed to the published version of the manuscript.

Funding: P.A. is supported by “la Caixa” Foundation (ID 100010434, fellowship code LCF/BQ/DI19/11730023).
M.P.-L. acknowledges funding from Swiss National Science Foundation (Ambizione PZ00P2-186067). H.J.D.M.
acknowledges support from the EPSRC through a Doctoral Prize. M.S. acknowledges funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement
No 713729. Both P.A. and M.S. also acknowledge funding from Spanish MINECO (QIBEQI FIS2016-80773-P,
Severo Ochoa SEV-2015-0522), Fundacio Cellex, Generalitat de Catalunya (SGR 1381 and CERCA Programme).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Optimality of Lowest-Highest Temperature Use in Multi-Bath Carnot Engines

A generalised, finite-time Carnot engine between multiple thermal sources can be described as in
Equation (42) (where the adiabatic steps between the isotherms are assumed to happen on a much
shorter timescale and thus neglected when compared to the τis),

∆Wout =
N

∑
i

∆Qi =
N

∑
i=1

Ti∆Si −
Tiσi
τi

, (A1)

with ∆W ≥ 0 and where the index i runs over multiple thermal baths, possibly with infinitesimal steps,
including as a possibility the case in which the reservoirs have finite size and change temperature
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during the process (notice that in the case of finite size baths the total dissipation ∑i
Tiσi
τi

is the natural
measure of efficiency, as the total work extractable from the machine sources is finite and obtainable in
the quasistatic regime). All the results of Section 4.1 apply, and the maximum power obtainable after
tuning the τis can be written

Pmax =
(∑i TidSi)

2

4(∑j
√

Tjσj)2 . (A2)

To analyze further this result, we consider here the following property that holds for simple models
where all the baths have the same spectral density

σi = κ0

(
Ti
T0

)−α

dS2
i (A3)

where α represents the spectral density exponent of the baths (their ohmicity), T0 is a reference
temperature that can be chosen at will, and κ0 a constant that depends on the local thermal state.
This property holds if the steps of the transformation are performed “parallel” to each other and are
small enough for the state to be almost always the same. More precisely, baths with the same spectral
density satisfy the property

g(T1)
H1

=

(
T1

T2

)−α

g(T2)
H2

when
H1

T1
=

H2

T2
. (A4)

Here, g is the metric that defines the dissipation in terms of the variation of dG ≡ dH/T
(cf. Equation (17)), and the property H1/T1 = H2/T2 means that the thermal state is the same π1 = π2.
The absolute value of the variation of entropy is instead the same if dG1 = ±dG2, as in such a case

|dS1| = |Tr [dπ1G1] | = |Tr [dπ2G2] | = |dS2| . (A5)

Combining the above two equations, we obtain (A3). For more details see [55] or the supplementary
material of [31]. For such a case we obtain substituting (A3)

P̄ =
(∑i TidSi)

2

4κ0T0

(
∑i(

Ti
T0
)

1−α
2 |dSi|

)2 . (A6)

Moreover, for a cycle we have ∑i dSi = 0 and we can divide the N steps into those having dSk+ > 0
(which we will indicate with the index k+ and those having dSk− < 0 (with index k−). We have
thus ∑k+ dSk+ = −∑k− dSk− ≡ S . The power (A12) can then be expressed in terms of the “weights”
associated to each step for the positive and negative entropy variations. That is, we define

pk+ =
dSk+

S pk− = −dSk−

S (A7)

The vectors pk+ and pk− are normalised probability vectors and the power (A12) can be written as

4κ0T0P̄ =
(∑k+ Tk+ pk+ −∑k− Tk− pk−)

2(
∑k+(

Tk+
T0

)
1−α

2 pk+ + ∑k−(
Tk−
T0

)
1−α

2 pk−
)2 =

(
~T+ · ~p+ − ~T− · ~p−
~T′+ · ~p+ + ~T′− · ~p−

)2

(A8)

where we defined 4 positive vectors ~T+,~T−,~T′+,~T′− > 0. Being allowed to modify separately we
positive and negative weight (essentially by tuning the size of the entropy variations (A7)) it is possible
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to maximize the above quantity by noting that for any probability vector ~p, positive vectors ~B > 0,
vector ~C, positive constant b > 0, and constant c, it holds

c + ~C · ~p
b + ~B · ~p

≤ max
i

c + Ci
b + Bi

(A9)

which is saturated by choosing pi = δiī, where ī is the index saturating the maximum of (A9).
Applying twice the above inequality to

√
4κ0T0P̄ of Equation (A8) we obtain

√
4κ0T0P̄ ≤ max

ij

T+i − T− j

T′+i + T′− j
. (A10)

Given that T′±i = T±
1−α

2
i , we study the function

f (x, y) =
x− y

xβ + yβ
x ≥ y ≥ 0 (A11)

and find that it is always decreasing in y. Also, it increases always in x provided that β ≤ 1. We thus
conclude that for α ≥ −1 the maximisation on the right-hand side of (A10) is obtained by using the
highest and lowest temperature available, that we will call Th and Tc respectively. We thus find that

P̄ ≤ (Th − Tc)2

4κ0T0

(
( Th

T0
)

1−α
2 + ( Tc

T0
)

1−α
2

)2 (A12)

which is saturated when dSc = −dSh and all the rest are null. This shows that under the assumption of
equal spectral density the power is bounded by the power obtainable by using only the extremal baths.
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