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Abstract: A vital aspect of the Multiple Classifier Systems construction process is the base model
integration. For example, the Random Forest approach used the majority voting rule to fuse the base
classifiers obtained by bagging the training dataset. In this paper we propose the algorithm that
uses partitioning the feature space whose split is determined by the decision rules of each decision
tree node which is the base classification model. After dividing the feature space, the centroid of
each new subspace is determined. This centroids are used in order to determine the weights needed
in the integration phase based on the weighted majority voting rule. The proposal was compared
with other Multiple Classifier Systems approaches. The experiments regarding multiple open-source
benchmarking datasets demonstrate the effectiveness of our method. To discuss the results of our
experiments, we use micro and macro-average classification performance measures.
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1. Introduction

Multiple Classifier Systems (MCS) are a popular approach to improve the possibilities of base
classification models by building more stable and accurate classifiers [1]. MCS are one of the major
development directions in machine learning [2,3]. MCS proved to have a significant impact on the
system performance, therefore they are used in many practical aspects [4–7].

MCS are essentially composed of three stages: generation, selection and fussion or integration.
The aim of the generation phase is to create basic classification models, which are assumed to be
diverse. This goal is achieved, inter alia, by methods of dividing the feature space [8]. In the selection
phase, one classifier (the classifier selection) or a certain subset of classifiers is selected (the ensemble
pruning) learned at an earlier stage. The fusion or the integration process combines outputs of base
classifiers to obtain an integrated model of classification, which is the final model of MCS. One of
the commonly used methods to integrate base classifiers’ outputs is the majority vote rule. In this
method each base model has the same impact on the final decision of MCS. To improve the efficiency
of MCS the weights are defined and used in the integration process. The use of weights allows
to determine the influence of a particular base classifier on the final decision of MCS. The most
commonly used approach to determining the weights uses probability error estimators or other
factors [9–11]. A distance-weighted approach to calculating the weights is also often used in many
problems, were the weights are determined [12–14]. In general, this approach is based on the query
where the appropriate object is located. In this article, we use the feature subspace centroid in the
definition of the distance-weighted approach.

There are, in general, two approaches to partition a dataset [15]. In horizontal partitioning the set
of data instances is divided into a subset of datasets that are used to learn the base classifiers. Bagging
bootstrap sampling to generate a training subset is one of the most used method in this type of datasets
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partitioning. In the vertical partitioning the feature set is divided into feature subsets that are used
to learn the base classifiers. Based on vertical partitioning feature space the forest of decision trees
was proposed in [16]. Contrary to the types of dataset partitioning mentioned above, the clustering
and selection algorithm [17] is based on the clustering. After clustering, one classifier is selected for
each feature subspace. In this algorithm the feature space partition is an independent process from the
classifier selection process and precedes this selection. The non-sequential approach to clustering and
selection algorithm was probesed in [18,19].

In this work, we propose a novel approach to determining the division feature space into the disjoint
feature subspace. Contrary to the clustering and the selection method described above in our proposal
the proces of partitioning the feature space follows base classifier learning. Additionally, the proposed
approach does not use clustering to define a feature subspace. The partiotion of the feature space is
defined by base classifier models, and exactly through their decision boundaries. According to our
best knowledge the use of the decision boundary of base models for partitioning feature space is not
represented in MCS. Finally, the centroids of proposed feature subspace are used in the weighted
majority voting rule to define the final MCS decision.

Given the above, the main objectives of this work can be summarized as follows:

• A proposal of a new partitioning of the feature space whose split is determined by the decision
bonduaries of each decision tree node which is a base classification model.

• The proposal of a new weighted majority voting rule algorithm dedicated to the fusion of decision
tree models.

• An experimental setup to compare the proposed method with other MCS approaches using
different performance measures.

The outline of the paper is as follows: In Section 2 related works are presented. Section 3 presents
the proposed approach to MCS fusion process. In Section 4 the experiments that were carried out and
the discusion of the obtained results are presented. Finally, we conclude the paper in Section 6.

2. Related works

Classifier integration using the geometrical representation has already been mentioned in [20].
Based on transformations in the geometrical space spread on real-valued, non-categorical features
this procedure has proven itself to be more effective in comparison to others, commonly used
integration techniques such as majority voting [21]. The authors have studied and proved the
effectiveness of an integration algorithm based on averaging and taking median of values of the
decision boundary in the SVM classifiers [22]. Next, two algorithms for decision trees were proposed
and evaluated [23,24]. They have proven themselves to provide better classification quality and ease
of use than referential methods.

Polianskii and Pokorny have examined a geometric approach to the classification using Voronoi
cells [25]. Voronoi cells fulfill the role of the atomic elements being classified. Labels of the nearest
training objects are assigned to the boundaries. The algorithms walks along the boundaries and
integrates them with respect to the associated class. SVM, NN and random forest classifiers were used
in evaluation.

The nearest neighbor algorithm can be used to test which Voronoi cell an object belongs to [26].
By avoiding the calculation of the Voronoi cells geometry, the test appears to be very efficient. On that
basis a search lookup was described by Kushilevitz et al. [27]. A space-efficient data structure is utilized
to find an approximately nearest neighbor in nearly-quadratic time with respect to the dimensionality.

However, the nearest neighbor algorithms are difficult. The number of prototypes needs to be
specified beforehand. Using too many causes high computational complexity. Too few, on the other
hand, can result in an oversimplified classification model. This matters especially when datasets are
not linearly separable, have island–shaped decision space, etc. There are several ways to solve this
problem that can be found in the literature. Applying Generalized Condensed Nearest Neighbor rule
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to obtain a set of prototypes is one of the possible solutions [28]. In this method a constraint is added,
that each of the prototypes has to come from the training dataset. A different approach was proposed
by Gou et al. [29]. Firstly, kNN algorithm is used to obtain a certain number of prototypes for each
class. Afterwards the prototypes obtained in the first step are transformed by the local mean vectors.
This results in a better representation of the distribution of the decision space.

Decision trees are broadly used due to their simplicity, intuitive approach and at the same time
good efficiency. The way they classify the objects is by recursive partitioning of the classification
space [30]. Although they have first appeared more than three decades ago [31], the decision tree
algorithm and its derivatives are in use in a range of industry branches [32].

At some point it has been noticed that the local quality of each of the base classifiers is different.
The classifier selection process was introduced in order to choose a subset of base classifiers that have
the best classification quality over the region. The selection is called static, when the division can
be determined prior to the classification. In the opposite scenario the new pattern is used to test the
models’ quality [33]. Kim and Ko [34] have shown a greater improvement in the classification when
using local confidence over averaging over the entire decision space.

Another approach to the classifier integration is by using a combination of weighting and local
confidence estimation [35]. The authors noticed, that using only a subset of points limited to a certain
area in the training process results in a better classification performance.

An article [36] discusses a variation of the majority voting technique. A probability estimate is
computed as the ratio of properly classified validation objects over certain geometric constraints known
a priori. Regions that are functionally independent from each other are treated separately. The proposed
approach provides a significant improvement in the classification quality. The downside of this method
is that the knowledge of the domain is necessary to provide a proper division. Additionally, the split
of the classification space has to be done manually. The performance of the algorithm was evaluated
using a retinal image and classification in its anatomic regions.

An improvement in the weighted majority voting classification can be observed for class–wise
approach covered in [37]. For each label weights are determined separately for the objects in the
validation dataset.

Random forest, introduced by Breiman in 2001 [38] is one of the most popular ensemble methods.
It has proven itself to be very effective and many related algorithms were developed since then.
Fernandez et al. studied 179 different classifications algorithms using 121 datasets [39]. The random
forest outperforms most of the examined classifiers. It uses decision trees trained on distinct subsets of
the training dataset. A majority voting over classifications of every model for an object under test is
calculated as the final result.

Numerous algorithms involving gradient boosting and decision trees have emerged.
Extreme Gradient Boosting (XGB) is an implementation of one of the most widely spread stacking
techniques. It is used especially in machine learning competitions [40–42]. In theory subsequent
decision trees are trained. Consecutive models minimize the value of loss function left by their
predecessors [43]. Another implementation of Gradient Boosting Decision Tree designed with
performance in mind, especially when working with datasets with many dimensions, is LightGBM [44].
Compared to the previous library, statistically no loss of performance in the classification is observed,
but the process of training can be up to 20 times faster.

Vertical or horizontal partitioning can be used to force the diversity between base classifiers [30].
The datasets of extreme sizes are classified better using horizontal partitioning compared to bagging,
boosting or other ensemble techniques [45].

3. Proposed Method

The proposed method is based on previous works of authors, but suggests a slightly different
approach [23,24]. While the cited articles used static division into regions of competence, this paper
presents an algorithm with a dynamic approach. The main goal of introducing the dynamically
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generated Voronoi cells is to achieve better performance than with other referential methods of the
decision tree commitee ensembling: majority voting and random forest.

Before proceeding with the algorithm, datasets are normalized to the unit cube (every feature
takes values in range of [0, 1]) and two most informative features are extracted. Feature extraction is
conducted using ANOVA method.

The first step of the presented algorithm is training a pool of base decision trees. To make sure
the classifiers are different from one another, they are trained on the random subsets of the dataset.
Having a commitee of decision trees trained, we are extracting rectangular regions that fulfill the
following properties:

• Their area is maximal.
• Every point they span is labeled with the same label by every single classifier (labels can differ

across different classifiers). In other words regions span over the area of objects equally labelled
by the classifier points.

In practice this means, that the entire space is divided along every dimension at all the split points of
every decision tree. This way the regions are of the same class as indicated by every model.

Having the space divided into subspaces, midpoints are calculated. Let us denote by S the set of
obtained subspaces and by (xs,1,min; xs,1,max) and (xs,2,min, xs,2,max) the range of subspace s along axis
x1 and x2 respectively. The midpoint of subspace s will be denoted as xs,mid. For every subspace and
every label the weight is calculated using the following formula:

f (Ψi, s0) =
1
σ ∑

s∈S
cs,Ψi (1− d(xs0,mid, xs,mid))δ(s0, s) +

cs0,Ψi

2n
(1)

where d(p1, p2) is the euclidean distance between the points p1 and p2, cs,Ψi is the number of classifiers
that classify the subspace s with the label Ψi, σ is the correction which purpose is to make the sum of
weights equal 1 and δ(s0, s) is a function that returns 1 if s0 and s are neighbors and 0 otherwise, i.e.,

δ(s0, s) =


1 if xs0,1,min = xs,2,max or xs0,1,max = xs,1,min

or xs0,2,min = xs,2,max or xs0,2,max = xs,2,min
0 otherwise

(2)

It’s important to notice, that according to the Formula (2), δ(s, s) = 0 for every subspace s. This is
because the contribution of the subspace itself is reflected by the second summand of the Equation (1).
The term 2n was chosen in the denominator, because then the subspace s0 makes up half of the weight’s
value, i.e.,

n

∑
i=1

cs0,Ψi

2n
=

1
2

The process of obtaining subspaces is depicted in the Figure 1. Let us suppose, that all the base
decision trees (colorful lines on subfigure a) are oriented in the same way - all the points below the
decision boundary are classified by the given decision tree with a single label, different from all the
objects above the line. As it was stated before, the competence regions are obtained by splitting the
entire space at the splitpoints of all the decision trees (subfigure b). When calculating the weight of the
label for each region, the region itself (filled with dark grey in subfigure c) together with its neighbors
(lightgrey in subfigure c) are considered. Whereas the region itself contributes to half of its weight,
contributions from every neighbor depend on the distance between its midpoint and the midpoint of
the considered region. The entire procedure is presented in Algorithm 1.
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(a) Base classifiers. (b) Classification regions.

(c) Specific subspace (darkgrey) with its neighbors
(lightgrey). Midpoints are designated with blue dots.

Figure 1. The process of extracting subspaces from base classifiers and determining neighbors for
a subspace.

Algorithm 1: Classification algorithm using dynamic regions of competence obtained from
decision trees.

Input : K – number of base classifiers (Ψ1, Ψ2, . . . , ΨK)
Output : Integrated decision tree Ψi

1 Normalize the dataset and select two most informative features.
2 Split dataset into K + 1 subsets (K for training every base decision tree and 1 for testing).
3 Train base classifiers Ψ1, Ψ2, . . . , ΨK and obtain their geometrical representation (splits

and labels).
4 Divide the feature space using splits of all the decision trees.
5 For every region and every label calculate the weight using formula (1).
6 Classify every region by picking the label with the highest weight value.

4. Experimental Setup

The algorithm was implemented in Scala. Decision tree and random forest implementation
from Spark MlLib were used [46]. The statistical analysis was performed with Python and libraries
Numpy, Scipy and Pandas [47–49]. Matplotlib was used for plotting [50]. In Spark’s implementation
the bottommost elements (leaves) are classified with a single label. The algorithm performs a greedy,
recursive partitioning in order to maximize the information gain in every tree node. Gini impurity
is used as the homogeneity measure. Continuous feature discretization is conducted using 32 bins.
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The source code used to conduct experiments is available online (https://github.com/TAndronicus/
dynamic-dtree).

The experiments were conducted using open-source benchmarking datasets from repositories
UCI and KEEL [51,52]. Table 1 describes the datasets used with the number of features, instances and
imbalance ratio.

Table 1. Descriptions of datasets used in experiments (name with abbreviation, number of instances,
number of features, imbalance ratio).

Dataset #inst #f Imb

Indoor Channel Measurements (aa) 7840 5 208.0
Appendicitis (ap) 106 7 4.0

Banana (ba) 5300 2 5.9
QSAR biodegradation (bi) 1055 41 2.0

Liver Disorders (BUPA) (bu) 345 6 1.4
Cryotherapy (c) 90 7 1.1

Banknote authentication (d) 1372 5 1.2
Ecoli (e) 336 7 71.5

Haberman’s Survival (h) 306 3 2.8
Ionosphere (io) 351 34 1.8
Iris plants (ir) 150 4 1.0
Magic (ma) 19,020 10 1.0

Ultrasonic flowmeter diagnostics (me) 540 173 1.4
Phoneme (ph) 5404 5 2.4

Pima (pi) 768 8 1.9
Climate model simulation crashes (po) 540 18 10.7

Ring (r) 7400 20 1.0
Spambase (sb) 4597 57 1.5

Seismic-bumps (se) 2584 19 14.2
Texture (te) 5500 40 1.0
Thyroid (th) 7200 21 1.0
Titanic (ti) 2201 3 2.1

Twonorm (tw) 7400 20 1.0
Breast Cancer (Diagnostic) (wd) 569 30 1.7

Breast Cancer (Original) (wi) 699 9 1.9
Wine quality – red (wr) 1599 11 68.1

Wine quality – white (ww) 4898 11 439.6
Yeast (y) 1484 8 92.6

The imbalance ratio was given to stress the fact that accuracy is not a reliable metric when
comparing the performance of the presented algorithm and the reference. It is calculated as the
quotient of the count of objects with the major label (most frequent) and the objects with minor
label (least common): Imb =

#major class objects
#minor class objects [53]. If the value of Imb equals 1, then the dataset is

balanced—all classes have the same amount of instances. The larger the value, the more imbalanced
the dataset is. Some of the datasets are highly imbalanced, because of the low imbalance ratio,
so other metrics other than average accuracy should be considered when comparing the performance
of classifiers. The reason is explained in the following example. Suppose Imb = 9 for a binary
classification problem. When a classifier labels all the test objects with the label of the major class,
its accuracy is ACC = 9

9+1 = 90%. In the parentheses, together with the names, abbreviations of the
datasets names were placed by which they will be further referenced for brevity.

The experiments were conducted according to the procedure described in Section 3 and repeated
10 times for each hyperparameter set. Together with integrated classifiers, referential methods were
evaluated: majority voting of the base classifiers and random forest. The results were averaged. K = 3
was taken as the number of base classifiers.

https://github.com/TAndronicus/dynamic-dtree
https://github.com/TAndronicus/dynamic-dtree


Entropy 2020, 22, 1129 7 of 12

5. Results

The purpose of the experiments was to compare the classification performance measures obtained
by the proposed algorithm (with the subscript i) with the known methods as references: majority
voting (subscript mv) and random forest (subscript r f ). The experiments were conducted 10 times
for each setup and the results were averaged. Because we conducted experiments on the multiclass
datasets, as the classification evaluation metrics we use micro- and macro-average precision, recall and
F-score which is the harmonic mean of precision and recall. For this reason F-score takes both false
positives and false negatives into account. Additionally, we present the results for overall accuracy.
The F-score was computed alongside the accuracy because of the high imbalance of multiple datasets
used, as it was indicated in Section4. The F-score describes the quality of a classifier much better
than the overall accuracy for the datasets with a high imbalance ratio and gives a better performance
measure of the incorrectly classified cases than the overall accuracy. Accuracy can be in this case
artificially high. The metrics are calculated as defined in [54]. In the Table 2 the results are gathered:
average accuracy, micro- and macro-average F-score, while the Tables 3 and 4 show results for micro-
and macro-average respectively. Together with the mentioned metrics, Friedman ranks are presented
in the last row – the smaller the rank, the better the classifier performs. However, it should be noted
that for micro-average performance measures the result obtained for precision and recall are the same.
This result is justified by the micro-averaging disadvantage, because for the frequent single-label per
instance problems Precisionµ = Recallµ [55].

Table 2. Average accuracy and f-scores for the random forest, the majority voting and the proposed
algorithm together with Friedman ranks.

Average Accuracy F-Scoreµ F-ScoreM

Dataset Ψmv Ψr f Ψi Ψmv Ψr f Ψi Ψmv Ψr f Ψi

aa 0.917 0.918 0.919 0.469 0.474 0.477 0.196 0.192 0.176
ap 0.853 0.812 0.863 0.853 0.812 0.863 0.676 0.559 0.692
ba 0.789 0.808 0.815 0.683 0.712 0.722 0.483 0.493 0.502
bi 0.736 0.736 0.702 0.736 0.736 0.702 0.717 0.717 0.561
bu 0.579 0.527 0.536 0.579 0.527 0.536 0.563 0.520 0.512
c 0.762 0.867 0.684 0.762 0.867 0.684 0.773 0.870 0.698
d 0.935 0.935 0.938 0.935 0.935 0.938 0.934 0.934 0.936
e 0.825 0.827 0.825 0.414 0.423 0.414 0.110 0.167 0.106
h 0.637 0.691 0.657 0.637 0.691 0.657 0.480 0.581 0.491
io 0.862 0.868 0.458 0.862 0.868 0.458 0.845 0.853 0.578
ir 0.965 0.961 0.978 0.947 0.942 0.968 0.945 0.943 0.968
ma 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
me 0.582 0.681 0.615 0.582 0.681 0.615 0.583 0.688 0.607
ph 0.771 0.767 0.774 0.771 0.767 0.774 0.720 0.718 0.724
pi 0.699 0.685 0.704 0.699 0.685 0.704 0.661 0.653 0.670
po 0.879 0.872 0.897 0.879 0.872 0.897 0.468 0.466 0.473
r 0.726 0.723 0.728 0.726 0.723 0.728 0.733 0.730 0.735
sb 0.711 0.718 0.712 0.711 0.718 0.712 0.686 0.694 0.686
se 0.924 0.921 0.926 0.924 0.921 0.926 0.520 0.516 0.497
te 0.889 0.890 0.892 0.389 0.392 0.408 0.393 0.387 0.404
th 0.983 0.981 0.982 0.974 0.972 0.973 0.849 0.825 0.851
ti 0.788 0.778 0.681 0.788 0.778 0.681 0.752 0.732 0.405
tw 0.717 0.714 0.724 0.717 0.714 0.724 0.717 0.714 0.724
wd 0.902 0.893 0.918 0.902 0.893 0.918 0.893 0.884 0.911
wi 0.936 0.955 0.944 0.936 0.955 0.944 0.931 0.951 0.941
wr 0.831 0.827 0.823 0.493 0.481 0.468 0.241 0.227 0.225
ww 0.839 0.838 0.840 0.459 0.457 0.464 0.205 0.224 0.208
y 0.866 0.861 0.865 0.349 0.325 0.344 0.223 0.214 0.234
rank 2.00 2.14 1.61 2.00 2.14 1.61 1.93 2.04 1.79



Entropy 2020, 22, 1129 8 of 12

Table 3. Micro-average precision and recall for the random forest, the majority voting and the proposed
algorithm together with Friedman ranks.

Precisionµ Recallµ

Dataset Ψmv Ψr f Ψi Ψmv Ψr f Ψi

aa 0.469 0.475 0.477 0.469 0.473 0.477
ap 0.853 0.812 0.863 0.853 0.812 0.863
ba 0.683 0.712 0.722 0.683 0.712 0.722
bi 0.736 0.736 0.702 0.736 0.736 0.702
bu 0.579 0.527 0.536 0.579 0.527 0.536
c 0.762 0.867 0.684 0.762 0.867 0.684
d 0.935 0.935 0.938 0.935 0.935 0.938
e 0.418 0.424 0.417 0.411 0.423 0.411
h 0.637 0.691 0.657 0.637 0.691 0.657
io 0.862 0.868 0.458 0.862 0.868 0.458
ir 0.947 0.942 0.968 0.947 0.942 0.968
ma 1.000 1.000 1.000 1.000 1.000 1.000
me 0.582 0.681 0.615 0.582 0.681 0.615
ph 0.771 0.767 0.774 0.771 0.767 0.774
pi 0.699 0.685 0.704 0.699 0.685 0.704
po 0.879 0.872 0.897 0.879 0.872 0.897
r 0.726 0.723 0.728 0.726 0.723 0.728
sb 0.711 0.718 0.712 0.711 0.718 0.712
se 0.924 0.921 0.926 0.924 0.921 0.926
te 0.389 0.392 0.408 0.389 0.392 0.408
th 0.974 0.972 0.973 0.974 0.972 0.973
ti 0.788 0.778 0.681 0.788 0.778 0.681
tw 0.717 0.714 0.724 0.717 0.714 0.724
wd 0.902 0.893 0.918 0.902 0.893 0.918
wi 0.936 0.955 0.944 0.936 0.955 0.944
wr 0.493 0.481 0.468 0.493 0.481 0.468
ww 0.459 0.457 0.464 0.459 0.457 0.464
y 0.350 0.325 0.344 0.349 0.325 0.344

rank 2.00 2.14 1.64 2.00 2.14 1.61

Table 4. Macro-average precision and recall for the random forest, the majority voting and the proposed
algorithm together with Friedman ranks.

PrecisionM RecallM

Dataset Ψmv Ψr f Ψi Ψmv Ψr f Ψi

aa 0.179 0.171 0.152 0.217 0.218 0.209
ap 0.705 0.557 0.710 0.663 0.563 0.684
ba 0.475 0.475 0.486 0.491 0.512 0.519
bi 0.712 0.712 0.526 0.721 0.721 0.614
bu 0.564 0.521 0.513 0.561 0.520 0.511
c 0.779 0.872 0.702 0.767 0.868 0.693
d 0.936 0.935 0.938 0.932 0.933 0.935
e 0.079 0.123 0.075 0.182 0.259 0.186
h 0.474 0.594 0.485 0.486 0.568 0.500
io 0.860 0.881 0.596 0.831 0.828 0.562
ir 0.944 0.942 0.968 0.945 0.944 0.968
ma 1.000 1.000 1.000 1.000 1.000 1.000
me 0.582 0.683 0.614 0.585 0.692 0.600
ph 0.726 0.721 0.730 0.715 0.716 0.718
pi 0.664 0.652 0.670 0.659 0.655 0.669
po 0.451 0.450 0.451 0.487 0.483 0.496
r 0.742 0.738 0.743 0.724 0.721 0.726
sb 0.723 0.728 0.721 0.653 0.663 0.655
se 0.542 0.527 0.495 0.504 0.507 0.501
te 0.397 0.380 0.400 0.390 0.393 0.409
th 0.816 0.803 0.826 0.886 0.848 0.879
ti 0.853 0.780 0.341 0.673 0.692 0.500
tw 0.718 0.714 0.724 0.717 0.714 0.724
wd 0.894 0.883 0.911 0.892 0.886 0.911
wi 0.926 0.948 0.931 0.935 0.954 0.951
wr 0.246 0.228 0.234 0.236 0.226 0.216
ww 0.226 0.247 0.230 0.189 0.206 0.191
y 0.232 0.200 0.244 0.216 0.230 0.226

rank 1.86 2.07 1.79 2.18 1.82 1.82
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6. Discussion

For the proposed weighting method of the decision tree integration all the calculated classification
performance measures are better than of the referrential algorithms as indicated by the Friedman ranks.
This statement holds true for all the classification performance measures that have been used. Post-hoc
Nemenyi test after Friedman ranking requires the difference in ranks of 0.38 to define a significant
statistical difference between the algorithms. For F-scoreµ performance measure this condition is
met, which means that the proposed method Ψi achieves statistically better results than the reference
methods Ψr f and Ψmv. Whereas for F-scoreM performacne measure there is no such property as shown
in the Figure 2. The micro-average measure counts the fraction of instances predicted correctly across
all classes. For this reason the micro-average can be a more useful metric than macro-average in the
class imbalance dataset. Thus, the results show that the proposed method improves the classification
results, in particular of imbalanced datasets. This conclusion is confirmed by the values obtained for
other performance measures. And so for micro-avarage precision and recall the difference in ranks
betwenn Ψi and Ψr f indicated the statistical differences in the results. The corresponding difference for
Ψi and Ψr f algorithms is very close to being able to state the statistical differences in the results because
it is equal 0.36 (see Table 3). In case of macro-avarage precision the obtained results do not indicate
significant difference in this performance measure. Whereas for macro-avarage recall (see Table 4) the
obtained avarage Friedman ranks are equal for Ψi and Ψr f algorithms.

(a) Friedman ranks with the critical Nemenyi test value for
average accuracy and F-scoreµ.

(b) Friedman ranks with the critical Nemenyi test value
for F-scoreM .

Figure 2. Friedman ranks for calculated metrics together with Nemenyi critical values.

7. Conclusions

This paper presents a new approach for determining MCS. Contrary to the clustering and selection
method we propose that the feature space partition is based on decision bonduaries defined by base
classifier models. It means that we propose to use learned base classification models instead of
clustering to determine the feature subspace. The centroids of the proposed feature subspace are
used in the weighted majority voting rule to define the final MCS decision. In particular, a class label
prediction for each feature subspace is based on adjacent feature subspaces.

The experimental results show that the proposed method may create an ensemble classifier that
outperforms the commonly used methods of combining decision tree models—the majority voting
and RF. Especially, the results show that the proposed method statistically improves the classification
results measured by the mico-avarage F1 classification performance measure.

According to our best knowledge the use of the decision boundary of base models to partition
feature space is not represented in MCS. On the other hand, the proposed approach has also a
drawback, because it uses geometrical centroids of defined feature subspaces. Consequently, our
future research needs to be aimed at finding centroids of objects belonging to particular feature
subspaces. Additionally, we can consider another neighborhood of a given feature subspace necessary
to determine the decision rule. This neighborhood may, for example, depend on the number of objects
in particular the feature subspace.
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