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Abstract: ORC is a heat to power solution to convert low-grade thermal energy into electricity with
relative low cost and adequate efficiency. The working of ORC relies on the liquid–vapor phase
changes of certain organic fluid under different temperature and pressure. ORC is a well-established
technology utilized in industry to recover industrial waste heat to electricity. However, the frequently
varied temperature, pressure, and flow may raise difficulty to maintain a steady power generation
from ORC. It is important to develop an effective prediction methodology for power generation in a
stable grid system. This study proposes a methodology based on deep learning neural network to
the predict power generation from ORC by 12 h in advance. The deep learning neural network is
derived from long short-term memory network (LSTM), a type of recurrent neural network (RNN).
A case study was conducted through analysis of ORC data from steel company. Different time
series methodology including ARIMA and MLP were compared with LSTM in this study and shows
the error rate decreased by 24% from LSTM. The proposed methodology can be used to effectively
optimize the system warning threshold configuration for the early detection of abnormalities in
power generators and a novel approach for early diagnosis in conventional industries.

Keywords: deep learning; recurrent neural network; power generation prediction

1. Introduction

In today’s society, more than 90% of energy is generated as thermal energy, most of which is
emitted into the environment as waste heat after use. Only 40–50% of thermal energy is converted
to manufacturing thermal energy, mechanical power, electricity, or chemical energy. In particular,
low-temperature waste heat (less than 100 ◦C) constitutes 63% of global waste heat [1]. Waste heat from
thermal energy applications has led to problems such as energy waste, thermal pollution, and global
warming. For example, when waste heat is discharged into lakes and rivers, the water temperature will
rise sharply, causing the death of animals and plants. It may also increase the heat in the atmosphere
and affect global climate change. The recovery and reuse of waste heat is an effective way to reduce
thermal pollution. Recycling schemes for low-temperature waste heat are highly conducive to energy
conservation and carbon emission reduction. Such schemes also help governments reduce the load
on electrical grids. Therefore, countries worldwide have invested in research and development as
well as commercialization of lower-temperature thermal energy conversion technology in the past
decade. In particular, organic rankine cycle (ORC) products are advantageous for their use of mature
technology as well as high reliability and low costs. Such products are considered the most economical
solution to low-temperature thermal energy conversion with the highest conversion efficiency [2].
At present, ORC technology is widely used in industrial waste heat recycling [3] and geothermal
energy conversion [4]. In the case of industrial waste heat, which is emitted continuously for 24 h,
recycling and applying it to power generation can achieve a capacity factor of >75%, and the generated
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power can contribute to the baseload. The capacity factor stated here shows the operation time of
power generation system from waste heat recovery can last for a year, about 6500 h. The operation
time excludes the factors of unit maintenance and factory maintenance. Accordingly, the effective
utilization of low-temperature waste heat creates multiple benefits in the areas of energy conservation,
carbon emission reduction, environmental protection, and economic development.

In recent years, deep learning technology has been used to perform time series forecasting in
the energy field. In solar energy applications, autoencoders and long short-term memory (LSTM)
deep learning frameworks are used to estimate solar cell power conversion, and the forecasting results
are more accurate compared with those of physical models [5–7]. Deep learning is also applied to
photovoltaic power forecasting [8]. In addition, deep learning has been used to predict wind speed
and wind power generation, achieving higher accuracy compared with conventional time series
analysis [9,10].

Currently, ORC applications for estimating power generation from thermal energy conversion
cannot effectively predict the amount of power generated in real time. Solutions are devised only after
problems in power generators are generated. More clearly, we cannot effectively know the generator
failure early, and we must wait for the abnormality before inspecting and repairing it. The advancement
of computer hardware has considerably enhanced the computation ability of computers. This drives the
rapid development of deep learning technology, which is now widely adopted in research, and allows
for time series analysis with more detailed data structures. In deep learning, scholars have achieved
major breakthroughs in the practical applications of recurrent neural networks (recurrent neural
networks, RNNs), which are now widely used in article generation, machine translation, voice
recognition, and time series analysis. From the literature review related to applying established deep
learning to wind, solar, and photovoltaic power forecasts, the deep learning methods are capable of
making forecast analysis on thermoelectric power generation.

In this study, we proposed a deep learning framework. The amount of power generated, working
fluid volume, cold and heat source temperatures, and pressure during the operation of ORC systems
were used as training data for an RNN. The actual amount of power generated was used to verify and
test the forecasting results of the RNN to develop a network model that can forecast power generation
for the next 12 h. The proposed model can be used to monitor the condition of power generators
and effectively configure warning thresholds to detect system abnormalities 12 h before they occur.
This allows maintenance personnel to schedule system diagnosis and repair in advance.

Currently, most thermal energy conversion units are maintained on a regular basis. This leads to
problems such as the unnecessary replacement of healthy parts and downtime caused by temporary
faults, which result in the waste of resources and reduced utilization rates. To effectively increase the
amount of power generated, power companies mostly adopt Internet of Things schemes as a solution.
In general, sensors are installed on essential parts to collect data, which are transmitted to a cloud
center through online communication. The real-time monitoring platform in the cloud center allows
companies to monitor their generators remotely. Additionally, warning thresholds can be configured in
such platforms. When abnormalities are detected, notifications are immediately sent to the personnel
in charge for subsequent maintenance [11]. Using our proposed method, it is expected to be able to
predict abnormalities in ORC.

The ORC was proposed by Tabor and Bronicki [12]. An ORC system uses an organic fluid as a
medium to absorb thermal energy and generate power. Figure 1 illustrates the configuration of the
ORC, which is divided into four components. The key components and principles of the ORC are
described as follows: (1) Pressure pump: a pump is used to increase the pressure of a low-pressure
working fluid and transport the liquid to the heat extractor. (2) Heat exchanger: an evaporator is
used to extract thermal energy from the heat source and heat the working fluid in the loop system.
This converts the working fluid to saturated gas or overheated gas, which is then directed to the
working component. (3) Thermal power converter: The working components of an ORC system
include a turbine expander, screw expander, or scroll expander. The working component module
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guides the gaseous working fluid into the expander, which converts the pressure and temperature
of the working fluid into shaft power that enables a generator to generate power. (4) Heat removal
component: finally, a condenser is used to remove the excess thermal energy from the gaseous working
fluid and condense the fluid to liquid form. This completes one thermal cycle in the ORC system.
In general, a heat source and a cold source with a temperature difference of ≥10 ◦C are applicable to
ORC systems, and such systems become profitable when the temperature difference is ≥50 ◦C. Suitable
working fluids, heat exchangers, and heat sinks can be employed in an ORC system along with diverse
cold and heat sources to generate power. The temperature difference between thermal energy in room
and cold temperatures may also be used to generate power through ORC systems.
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Our work focuses on combining ORC mechanical heat flow knowledge with data science. Using
deep learning, time series analysis for ORC operating data, we hope to effectively predict ORC power
generation. We propose improvements based on the concept of LSTM model and compare some
commonly used time series models. According to the experimental results, our improved model can
have the best prediction performance in the case of predicting the next 12 h.

2. Methods

2.1. Recurrent Neural Networks

A common type of neural network is the feedforward neural network, in which data are transmitted
through multiple layers in one direction from the input to output layers. This means that all layers
are independent of each other. However, neighboring data points in a time series data set are in a
sequential relationship, in which the current input and subsequent input are temporally correlated.
Therefore, the time series input was used to train the prediction model. RNNs differ from feedforward
neural networks in that they can process sequential data as well as memorize the recent output of
a hidden layer node and use it as the extra output in the next hidden layer. This enables RNNs to
account for the temporal relationships between data points [13].

Tenti [14] mentioned numerous types of RNN with different frameworks, such as those shown in
Figures 2 and 3 and Equations (1) and (2). The equations indicate that in a Jordan network, the output
(yt−1) of the previous output layer is memorized and used as the other output of the current hidden
layer. By contrast, an Elman network memorizes the previous hidden layer output (ht−1) and uses it as
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another output of the current hidden layer. Elman networks are more widely used in applications,
including famous artificial neural network open source platforms, such as TensorFlow and Keras.

ht= σh(Whxt+Rhyt−1+bh),yt= σy
(
Wyht+by

)
, (1)

where ht is the current (t) hidden layer output, yt is the current (t) output layer output, xt is the
current (t) output vector, σ is the activation function, W and R are the corresponding weights, b is the
corresponding bias, and yt−1 is the previous (t − 1) output layer output.

ht= σh(Whxt+Rhht−1+bh),yt= σy
(
Wyht+by

)
, (2)

where ht is the current (t) hidden layer output, yt is the current (t) output layer output, xt is the
current (t) output vector, σ is the activation function, W and R are the corresponding weights, b is the
corresponding bias, and ht−1 is the previous (t − 1) hidden layer output.Entropy 2020, 20, x 4 of 14 
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2.2. Long Short-Term Memory Networks

Proposed by Hochreiter and Schmidhuber [15] in 1997, LSTM networks are a derivative of RNNs.
An Elman network maintains short-term memories through recurrent connection with outputs in
neighboring hidden layers. However, because long-term dependencies are required for time series
analysis, LSTM networks, a new type of RNN, were developed to maintain long-term memories
through gradual and slow changes in weights.

Long-term memories have great potentials in applications such as sentence analysis and voice
processing. The unique model structure of an LSTM network overcomes problems regarding the
vanishing and exploding of error signals during backpropagation. Therefore, such networks are
applicable to the processing of time series data with long intervals. Figure 4 illustrates the internal
framework of an LSTM network.
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In Figure 4, σ is the S function, x is the output, ht−1 is the previous hidden layer state, W is the
corresponding weight of the input, R is the iteration weight, and b is the bias. The initial cell state and
hidden state are 0.

The forget gate ( ft) determines the extent to which a cell forgets its old state (Ct−1).

ft= σ
(
W f xt+R f ht−1+b f

)
. (3)

The input gate (it) determines the extent to which a new input updates a cell state (Ct).

it= σ(Wixt+Riht−1+bi). (4)

A cell state (Ct) denotes a long-term memory, which is divided into two parts: (1) The new input
is subject to the tan h activation function and enters a temporary state (Ct). (2) The forget gate allows
the cell to remove unnecessary data, and the input gate inputs new data to update the cell.

Ct= tanh(Wcxt + Rcht−1 + bc). (5)

Ct = ft∗Ct−1 + it∗Ct. (6)

The output gate (Ot) determines whether the new cell state (Ct) can be adopted as the new
hidden state.

Ot= σ(Woxt+Roht−1+bo). (7)
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A hidden state (ht) denotes a short-term memory that serves as the input of the next hidden layer.

ht= Ot∗tanh(C t). (8)

3. Experimental Design and Simulation

3.1. Data Set and Data Pre-Processing

The data analyzed in this study came from a waste heat recycling generator used in steel
manufacturing. The research site employed the 200 kW ORC generator developed by the present
research team (Figure 5). The original data set incorporated more than two million pieces of data from
October 2016 to May 2020. Each piece of data incorporated 41 parameters, the more essential of which
were net power generation, working fluid volume, heat source temperature and pressure, and cold
source temperature and pressure. To predict power generation for the next 12 h, the original data
were averaged by the hour. In order to raise the accuracy through more data, the study made the
model learns by every 15 min or 1 min. However, 1 to 15 min prediction in advance is way too short
for maintenance staff to deal with the situation. For the multi-step deep learning model, the longer
the sequence is, the less accurate the prediction model is. To predict the next 12 h generation, it
must be made by 48 steps or 720 steps in advance respectively and the accuracy will be less than the
1-h data. The correctness of the data was verified by removing erroneous data caused by damaged
parts. Accordingly, 18,000 pieces of data were retained for analysis. Table 1 lists the number of data
items, maximum and minimum values, mean, and standard deviation of the net power generation
after pretreatment.
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Table 1. Statistics of power generated through thermal energy conversion

Mean (kW) 165.6
Standard deviation (kW) 28

Minimum value (kW) 100
Maximum value (kW) 246.8

Total number of data items 17,914

To reduce the training time, a Spearman correlation matrix was used to select model training
parameters with a correlation coefficient of >0.7 or <−0.7. The selected parameters were working
fluid volume, net power generation, expander inlet pressure, recuperator inlet pressure, evaporator
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inlet pressure, and heat source outlet temperature (Figures 6–12). The x-axis of the chart represents
time, and the y-axis represents the corresponding unit. The chart can effectively show the trend
of pre-processing parameters used to predict power generation. The correlation coefficient is used
to reflect the close relationship between variables and find out the parameters highly related to
power generation.
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3.2. Model Parameters

In the pretreatment, 14,400 pieces of data were used as the training set, and the remaining
3515 pieces of data were used as the testing set. The mean and standard deviation of the training set were
used to normalize all data. The normalization equation was as follows: (original value−mean)/standard
deviation. The training set and test set are divided into eight to two, and the standard method is
standard deviation normalization. This usage is a normal operation in data science.

In Equation (9), n is the total number of data, yi is the normalize value, and xi is the original value.

yi =
xi − x

s
, x =

1
n

n∑
i=1

xi, s =

√√
1

n− 1

n∑
i=1

(x− x)2 (9)

Univariate and multivariate LSTM models were proposed in this study. Historical data must be
used to predict future power generation. In the univariate model, 120 h of data were used to predict the
power generation in the next hour. The hidden layer comprised a double-layered LSTM model with
128 neurons in one layer and 64 neurons in the other. They were connected to two connection layers
that had 128 and 64 neurons, respectively. The output layer had one neuron to predict the amount of
power generated for the next hour. The multivariate model used 120 h of data from the past 5 days to
predict the amount of power generated for the next 12 h. The design of the hidden layer was identical
to that of the univariate model. The output layers consisted of 12 neurons to predict the amount of
power generated for the next 12 h (Figure 13).
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3.3. Model Accuracy Assessment

To effectively assess the accuracy of the model in predicting power generation, three assessment
methods were adopted, namely the mean absolute error (MAE), root mean square error (RMSE),
and mean absolute percentage error (MAPE) [16]. The three methods differ in mathematical significance
and exhibit distinct advantages and disadvantages; hence, they were adopted together to perform a
comprehensive comparison.

In Equation (10), n is the total number of data, y is the observed value, and ŷ is the predicted value.

MAE =

∑n
i=1

∣∣∣ŷi − yi
∣∣∣

n
(10)

The MAE can be used to reflect prediction errors and is in the range of (0, +∞). When the predicted
and observed values are identical, the MAE is 0, indicating a perfect model. Large errors lead to large
MAE values.

RMSE =

√∑n
i=1(ŷi − yi)

2

n
(11)

The RMSE is used to observe the difference between the observed and predicted values. However,
the difference between the values might be difficult to observe following normalization. The RMSE is
also in the range of (0, +∞). When the predicted and observed values are identical, the RMSE is 0,
indicating a perfect model. Large errors lead to large RMSE values.

MAPE =
100%

n

n∑
i=1

xi

∣∣∣∣∣∣∣ ŷi − yi

yi

∣∣∣∣∣∣∣ (12)

The MAPE is presented as percentage values. The error of each predicted value is divided by
the observed value; hence, skewness can occur. This means that the MAPE is considerably affected
when an observed value is extremely low and the error is large. Consequently, optimization based on
the MAPE can lead to illogical prediction results. The MAPE is in the range of (0, + ∞). When the
predicted and observed values are identical, the MAPE is 0%, indicating a prefect model. Large errors
lead to large MAPE values.

3.4. Autoregressive Integrated Moving Average and Multilayer Perceptron Models

This section introduces two time series analysis models for comparison with LSTM models.
Autoregressive integrated moving average (ARIMA) [17]: The ARIMA model is a time series

analysis method based on statistical theories. ARIMA models built using collected data can be used to
observe the trend, seasonal characteristics, and irregular patterns of the data. Such models are adjusted
using the parameters p, d, and q; p and q are the order of the autoregressive model and moving average
model, respectively, and d is the calculated difference.

Multiplayer perceptron (MLP) [18]: The MLP model is a type of feedforward neural network that
produces a set of outputs from a set of inputs. MLP models are composed of multiple node layers
that are connected to each other. Except for the input node, all nodes are neurons with nonlinear
activation functions. Of the two hidden layers in the MLP model of this study, one had 128 neurons
and the other had 64 neurons. The output layer had either 1 or 12 neurons depending on the number
of prediction steps. This study’s MLP model can be considered an LSTM model without the LSTM
structure. The accuracy of the MLP model was compared with that of the designed LSTM model.

In addition, this study compared the accuracy of the multivariate and univariate models.
The univariate model only used the previous amount of power generated to make a prediction
for the next 12 h. By contrast, the multivariate model accounted for the working fluid volume, net
power generation, expander inlet pressure, recuperator inlet pressure, evaporate inlet pressure, heat
source inlet temperature, and heat source outlet temperature.
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4. Results and Discussion

To validate the prediction performance of the multivariate LSTM model for 1 h and 12 h,
five models are employed for comparison: the Univariate LSTM model, the multivariate LSTM model,
the Univariate MLP model, the multivariate MLP model and the ARIMA model. The evaluation
indexes of the proposed and comparison models are presented in Table 2. The forecasting results based
on the Univariate LSTM, multivariate LSTM, univariate MLP, multivariate MLP, and ARIMA models
are shown in Figures 14 and 15.

Table 2. Accuracy of the different models

Predicted Amount of Power Generated
for the Next Hour MAE RMSE MAPE

ARIMA(1,1,2) 0.5488 0.7498 453.5%
Univariate MLP 1.1772 (−8%) 1.4899 (−18%) 110.3%

Multivariate MLP 1.2788 1.7932 118.6%
Univariate LSTM 1.0605 (−17%) 1.3129 (−27%) 100.2%

Multivariate LSTM 1.1432 (−11%) 1.3130 (−27%) 100.0%
Predicted amount of power generated for

the next 12 h MAE RMSE MAPE

ARIMA(4,1,0) 9.1849 11.9719 285.1%
Univariate MLP 1.1761 1.2295 143.6%

Multivariate MLP 1.1573 (−2%) 1.1932 (−3%) 129.2%
Univariate LSTM 0.9457 (−20%) 1.1860 (−4%) 105.7%

Multivariate LSTM 0.8944 (−24%) 1.1396 (−8%) 100.0%

Based on the forecasting results of one-hour-ahead forecasting models shown in Figure 14,
the following can be observed. The ARIMA model almost mapping to true data after 50 h and
performance is best. The prediction result of the LSTM model is similar to the concept of mean value,
and its performance is not bad. The MLP model is a backward indicator, and the previous hour’s data
is used as the predicted value.

Based on the forecasting results of twelve hour-ahead forecasting models shown in Figure 15,
the following can be observed. Results are about the same as predicted in the next hour. Under the
fluctuation of the data, the LSTM model tends to the average of the data, which makes this method
have a certain degree of stability for prediction work.

The results revealed that when making a prediction for the next hour, the ARIMA model was the
most accurate, and using multiple variables reduced the model accuracy (Table 2). This indicated that
the data set used in this study was from a stable generator. Therefore, using the mean amount of power
generated alone achieved excellent model accuracy, whereas using multiple variables to perform the
prediction resulted in excessive noise signals during model training. When the multivariate MLP was
used as the benchmark, the prediction error of the LSTM models assessed using RMSEs were reduced
by 27% compared with those of the MLP models.

When making a prediction for the next 12 h, the ARIMA model performed poorly, because of the
large variability and uncertainty of the data in this case. The accuracy was reduced by 90% compared
with other deep learning models. In addition, the multivariate models performed more favorably
than did their univariate counterparts. When the univariate MLP model was used as the benchmark,
the network prediction error of the LSTM models assessed using MAE was reduced by 24% compared
with those of the MLP models. MLP only considers the weight of the current time point. LSTM uses
the weight of the past time point as the prediction standard, so it is reasonable that LSTM predicts
better than MLP.
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In the case of predicting a single step, the accuracy performance of Multivariate MLP is less than
Univariate MLP due to the over-fitting which occurs in training process from the growing accuracy
of parameters. It happens when the result of prediction model is similar to the training data and
cause poor accuracy of the test set. However, this phenomenon does not occur in multiple steps.
The multi-step forecasting is relatively difficult to accurately simulate the data, so there will be no
overfitting problems.

Regarding the limitations of the model, the neural network-like method belongs to supervised
learning, and the prediction model must be learned based on past historical data. If the historical data
does not represent this model or the historical data contains too much noise, the prediction will easily
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fail. Therefore, in experiments of this study, the data from two years operation is adopted to ensure that
the data is capable to effectively interpret the operating status of the ORC. It also effectively exclude
the missing values in the data pre-process. On the other hand, the highly correlated parameters to
power generation could be defined through the correlation coefficient analysis. The adoption of the
parameters can be ensured an effective established predictive model. If an ORC generator set which
just start to be operated uses this method to predict power generation, this method will fail due to
insufficient data.
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5. Conclusions

Affected by the heat source temperature, pressure, and flow, thermal energy conversion is
frequently unstable. Therefore, estimating the amount of power generated from thermal energy
conversion is crucial for the effective operation of power systems. In this study, a deep learning neural
network was proposed to estimate power generation from thermal energy conversion for the next 12 h.

The proposed method was based on a long short-term memory network, a type of recurrent
neural network. ORC data from the steel industry were used to perform analysis. The results verified
that the proposed method reduced the error by 24% compared with multilayer perceptron time series
analysis. Regarding the use of a single or multiple variables to predict the amount of power generated,
the LSTM models were more accurate compared with the ARIMA and MLP models in forecasting the
next 12 h case, verifying that the proposed deep learning framework can be used to accurately predict
the power generation of ORC systems.

In practice, power generation forecasting is conducive to the maintenance of power generators.
When the prediction model is highly accurate, a logical tolerance interval can be employed to create a
flexible warning threshold for generators and replace the conventional fixed threshold. Accordingly,
abnormalities in generators can be detected in advance to perform early maintenance and reduce
losses caused by tripping. The current research team will continue to improve the accuracy of power
generation forecasting models. Different deep learning methods, such as sequence-to-sequence models
and transformers, will be used to predict power generation. The optimization of these two methods
will yield more accurate prediction results from time series data, facilitating the development of early
diagnosis technology for power generators.
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