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Abstract: This paper presents a new and novel hybrid modeling method for the segmentation of high
dimensional time-series data using the mixture of the sparse principal components regression (MIX-SPCR)
model with information complexity (ICOMP) criterion as the fitness function. Our approach encompasses
dimension reduction in high dimensional time-series data and, at the same time, determines the number
of component clusters (i.e., number of segments across time-series data) and selects the best subset of
predictors. A large-scale Monte Carlo simulation is performed to show the capability of the MIX-SPCR
model to identify the correct structure of the time-series data successfully. MIX-SPCR model is also
applied to a high dimensional Standard & Poor’s 500 (S&P 500) index data to uncover the time-series’s
hidden structure and identify the structure change points. The approach presented in this paper
determines both the relationships among the predictor variables and how various predictor variables
contribute to the explanatory power of the response variable through the sparsity settings cluster wise.

Keywords: high dimensional time-series; segmentation; mixture regression; sparse PCA; entropy-based
robust EM; information complexity criteria

1. Introduction

This paper presents a new and novel method for the segmentation and dimension reduction in
high dimensional time-series data. We develop hybrid modeling between mixture-model cluster analysis
and sparse principal components regression (MIX-SPCR) model as an expert unsupervised classification
methodology with information complexity (ICOMP) criterion as the fitness function. This new approach
performs dimension reduction in high dimensional time-series data and, at the same time, determines the
number of component clusters.

The research of time-series segmentation and change point positioning has been a hot topic of research
for a long time. Different research groups have provided solutions with various approaches in this
area, including, but not limited to, Bayesian methods Barber et al. [1], fuzzy systems Abonyi and Feil [2],
and complex system modeling Spagnolo and Valenti [3], Valenti et al. [4], S Lima [5], Ding et al. [6].
We group these approaches into two branches, one based on complex systems modeling and the other on the
statistical model through parameter estimation and inference. Among the complex systems-based modeling
approaches, it is worth noting a series of papers that use the stochastic volatility model by Spagnolo and
Valenti [3]. For example, these authors used a nonlinear Hestone model to analyze 1071 stocks on the New
York Stock Exchange (1987–1998). After accounting for the stochastic nature of volatility, the model is well
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suited to extracting the escape time distribution from financial time-series data. The authors also identified
the NES (Noise Enhanced Stability) effect to measure market dynamics’ stabilizing effect. The approach we
propose in this paper belongs to another branch of using a statistical model on time scales. Along with the
empirical analysis, we show a broader view of how different companies/sectors behaved across different
periods. In particular, we use a mixture-model based statistical methodology to segment the time-series
and determine change points.

The mixture-model cluster analysis of regression models is not new. These models are also known
as “cluster-wise regression”, “latent models”, and “latent structure models of choice”. These models have
been well-studied among statisticians, machine learning researchers, and econometricians in the last
several decades to construct time-series segmentation models and identify change points. They have
many useful theoretical and applied properties. Mixture-model cluster analysis of regression models is a
natural extension of the standard multivariate Gaussian mixture-model cluster analysis. These models
are beneficial to study heterogeneous data sets that involve not just one response variable but can have
several responses or target-dependent variables simultaneously with a given set of independent variables.
Recently, they have been proven to be a precious class of models in various disciplines in behavioral and
economic research, ecology, financial engineering, process control, and monitoring, market research, transportation
systems. Additionally, we also witness the mixture model’s usage in the analysis of scanner panel, survey,
and other choice data to study consumer choice behavior and dynamics Dillon et al. [7].

In reviewing the literature, we note that Quandt and Ramsey [8] and Kiefer [9] studied data sets by
applying a mixture of two regression models using moment generating function techniques to estimate
the unknown model parameters. Later, De Veaux [10] developed an EM algorithm to fit a mixture of two
regression models. DeSarbo and Cron [11] used similar estimating equations and extended the earlier
work done on a mixture of two regression models to a mixture of K-component regression models. For an
excellent review article on this problem, we refer the reviewers to Wedel and DeSarbo [12].

In terms of these models’ applications in the segmentation of time-series, they can be seen in the early
work of Sclove [13], where the author applied the mixture model to the segmentation of US gross national
product, a high dimensional time-series data. Specifically, Sclove [13] used the statistical model selection
criteria to choose the number of classes.

With the currently existing challenges in mind in the segmentation of time-series data, in this paper,
our objective and goal are to develop a new methodology which can:

• Identify and select variables that are sparse in the MIX-SPCR model.
• Treat each time segment continuously in the process with some specified probability density

function (pdf).
• Determine the number of time-series segments and the number of sparse variables and estimate the

structural change points simultaneously.
• Develop a robust and efficient algorithm for estimating model parameters.

We aim to achieve these objectives by developing the information complexity (ICOMP) criteria as our
fitness function throughout the paper for the segmentation of high-dimensional time-series data.

Our approach involves a two-stage procedure. We first make a variable selection by using SPCA
with the benefit of sparsity. We then fit the sparse principal component regression (SPCR) model by
transforming the original high dimensional data into several main principal components and estimating
relationships between the sparse component loadings and the response variable. In this way, the mixture
model not only handles the curse of dimensionality but also maintains the model’s excessive explanatory
power. In this manner, we choose the best subset of predictors and determine the number of time-series
segments in the MIX-SPCR model simultaneously using ICOMP.
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The rest of the paper is organized as follows. In Section 2, we present the model and methods.
In particular, we first briefly explain sparse principal component analysis (SPCA) due to Zou et al. [14]
in Section 2.1. In Section 2.2, we modify SPCA and develop mixtures of the sparse principal component
regression (MIX-SPCR) model for the segmentation of time-series data. In Section 3, we present a
regularized entropy-based Expectation and Maximization (EM) clustering algorithm. As is well known,
the EM algorithm performs through maximizing the likelihood of the mixture models. However, to make
the conventional EM algorithm robust (not sensitive to initial values) and converge to global optimum, we
use the robust version of the EM algorithm for the MIX-SPCR model based on the work of Yang et al. [15].
These authors addressed the robustness issue by adding an entropy term of mixture proportions to
the conventional EM algorithm’s objective function. While our EM algorithm is in the same spirit of
the Yang et al. [15] approach, there are significant differences between our approach and theirs. Yang’s
robust EM algorithm merely deals with the usual clustering problem without involving any response
(or dependent) variable or time factor in the data. We extend it to the case of the MIX-SPCR model in
the context of time-series data. In Section 4, we discuss various information criteria, specifically the
information complexity based criteria (ICOMP). We derive the ICOMP for the MIX-SPCR model based
on Bozdogan’s previous research ([16–20]). In Section 5, we present our Monte Carlo simulation study.
Section 5.2 involves an experiment on the detection of structural points, and Section 5.3 presents a large
scale Monte Carlo simulation verifying the advantage of the MIX-SPCR with statistical information criteria.
We provide a real data analysis in Section 6 using the daily adjusted closing S&P 500 index and stock
prices from the Yahoo Finance database that spans the period from January 1999 to December 2019. Finally,
our conclusion and discussion are presented in Section 7.

2. Model and Methods

In this section, we briefly present the sparse principal component analysis (SPCA), sparse principal
component regression (SPCR) as a background. Then, by hybridizing these two methods within the mixture
model, we propose the mixture-model cluster analysis of sparse principal component regression (abbreviated as
MIX-SPCR model hereafter), for segmentation of high dimensional time-series datasets. Compared with
a simple linear combination of all explanatory variables (i.e., the dense PCA model), the new approach
interprets better because it maintains a sparsity specification.

Referring to Figure 1, we first show the overall structure of the model in this paper. The overall
processing flow is that we clean and standardize the data after obtaining the time-series data.
Subsequently, we specify the number of time-series segments and how many Sparse Principal Components
(SPCs) each segment contains. Using the Robust EM algorithm (Section 3), we estimate the model
parameters, especially the boundaries (also known as change points) of each time segment. The information
criterion values are calculated using the method of Section 4. By testing different numbers of time
segments/SPCs, we obtain multiple criterion values. According to the calculated information criterion
values, we choose the most appropriate model with the estimated parameters.
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Figure 1. The flowchart of the MIX-SPCR method.

2.1. Sparse Principal Component Analysis (SPCA)

Given the input data matrix, X with n number of observations and p variables, we decompose X using
the singular value decomposition (SVD). We write the decomposition procedure as X = UDVT , where D is
a diagonal matrix of singular values and orthogonal columns U and V as the left and right singular vectors.
When we perform SVD of a data matrix X that has been centered, by subtracting each column’s mean,
the process is the well-known principal component analysis (PCA). As discussed by Zou et al. [14], PCA has
several advantages as compared with other dimensionality reduction techniques. For example, the PCA
can sequentially identify the source of variability by considering the linear combination of all the variables.
Because of the orthonormal constraint during the computation, all the calculated principal components (PCs)
have clear geometrical interpretation corresponding to the original data space as a dimension reduction
technique. Because PCA can deal with “the curse of dimensionality” of high-dimensional data sets, it has
been widely used in real-world scenarios, including biomedical and financial applications.

Even though PCA has excellent properties that are desirable in real-world applications and statistical
analysis, the interpretation of PCs is often difficult since it includes all the variables as linear combinations
of all the original variables in each of the PCs. In practice, the principal components always have a
large number of non-zero coefficient values for corresponding variables. To resolve this drawback,
researchers proposed various improvements focusing on PCA’s sparsity while maintaining the minimal
loss of information. Shen and Huang [21] designed an algorithm to iteratively extract top PCs using the
so-called penalized least sum of square (PLSS) criterion. Zou et al. [14] utilized the lasso penalty (via Elastic
Net) to maintain a sparse loading of the principal components, which is named sparse principal component
analysis (SPCA).

In this paper, we use the sparse principal component analysis (SPCA) proposed by Zou et al. [14].
Given the data matrix X, we minimize the objective function to obtain the SPCA results:

(Â, B̂) = arg min
A,B

n

∑
i=1

∥∥∥xT
i −ABTxT

i

∥∥∥2
+

k

∑
j=1

λ1,j

∥∥∥B(j)

∥∥∥
1
+ λ2

k

∑
j=1

∥∥∥B(j)

∥∥∥2

2
, (1)
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subject to

ATA = Ik. (2)

where Ik is the identity matrix. We maintain the hyperparameters λ1,j and λ2 to be non-negative. The A
and B matrices of size (p× k) are given by

B =

 B1,1 · · · B1,k
...

. . .
...

Bp,1 · · · Bp,k

 =
[
B(1) | . . . | B(k)

]
=

 B1
...

Bp

 , (3)

and

A =

 A1,1 · · · A1,k
...

. . .
...

Ap,1 · · · Ap,k

 =
[
A(1) | . . . | A(k)

]
=

 A1
...

Ap

 . (4)

If we choose the first k principal components from the data matrix X, then the estimate B̂(j) contains
the sparse loading vectors, which are no longer orthogonal.

A bigger λ1,j means a greater penalty for having non-zero entries in B̂(j). By using different λ1,j,
we control the number of zeros in the jth loading vector. If λ1,j = 0 for j = 1, 2, . . . , k, this problem reduces
to usual PCA.

Zou et al. [14] proposed a generalized SPCA algorithm to solve the optimization problem in
Equation (1). The algorithm applies the Elastic Net (EN) to estimate B(j) iteratively and update matrix
A. However, this algorithm is not the only available approach for extracting principal components with
sparse loadings. The SPCA could also be computed through dictionary learning by Mairal et al. [22].
By introducing the probability model of principal component analysis, SPCA is equivalent to the sparse
probabilistic principal component analysis (SPPCA) if the prior is Laplacian distribution for each weight matrix
element (Guan and Dy [23], Williams [24]). For further discussion on SPPCA, we refer readers to those
related publications for more details.

Next, we introduce the MIX-SPCR model for the segmentation of time-series data.

2.2. Mixtures of SPCR Model for Time-Series Data

Suppose the continuous response variable is denoted as y = {yi|1 ≤ i ≤ n}, where n represents the
number of observations (time points). Similarly, we have the predictors denoted as X = {xi|1 ≤ i ≤ n}.
Each observation xi has p dimensions and is represented as xi = [x1,i, x2,i, · · · , xp,i]

T . Both the response
variable and independent variables are collected sequentially labeled by time points T = [t1, t2, · · · , tn].

The finite mixture model allows applying cluster analysis on conditionally dependent data into several
classes. In the time-series data scenario, researchers cluster the data ((t1, x1, y1), (t2, x2, y2), · · · , (tn, xn, yn))

into several homogeneous groups where the number of groups G is unknown in general. Within each
group, we apply the SPCA to extract top k principal components that each of them has a sparse loading of
p variable coefficients. The extracted top k PCs are denoted as matrix Pp×k. We also use Pg to represent the
principal component matrix obtained from the group indexed by g = 1, 2, . . . , G.

The SPCR model assumes that each pair (xi, yi) is independently drawn from a cluster using both the
SPCA and the regression model as follows.

yi = xT
i Pgβg + εi,g, i = 1, 2, · · · , n, (5)
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where βg =
[

βg,1, βg,2, · · · , βg,k

]T
.

For each group g, the random error is assumed to be Gaussian distributed. That is, εi,g ∼ N (0, σ2
g).

If the response variable is multivariate, then the random error is usually also assumed to be a multivariate
Gaussian distribution. Thus the probability density function (pdf) of the SPCR model is

f (yi|xi, Pg, βg) = N
(

yi|xT
i Pgβg, σ2

g

)
. (6)

We emphasize here that the noise (i.e., the error term) included in the statistical model is drawn from
a normal distribution independent for each time-series segment, with different values of σ2

g for each period.
Since we use the EM algorithm to estimate the parameters of the model, the noise parameter σ2

g can be
estimated accurately as well. Future studies will consider introducing different noise distributions, such as
α-stable Lévy noise [25], and other non-Gaussian noise distributions to further extend the current model.

We also consider time factor ti in the SPCR model of time-series data to be continuous. The pdf of the
time factor is

f (ti|vg, σ2,time
g ) = N

(
ti|vg, σ2,time

g

)
, (7)

where vg is the mean, and σ2,time
g is the variance of the time segment g. Apart from the normal distribution,

our approach can also be generalized to other distributions for the time factor, such as skewed distributions,
Student’s t-distribution, ARCH, GARCH time-series models, and so on.

As a result, if we use the MIX-SPCR model to perform segmentation of time-series data, the likelihood
function of the whole data ((t1, x1, y1), (t2, x2, y2), · · · , (tn, xn, yn)) with G number of clusters (or segments)
is given by

L =
n

∏
i=1

G

∏
g=1

[
πg f (yi|xi, Pg, βg) f (ti|vg, σ2,time

g )
]zg,i

, (8)

where the πg is the mixing proportion with the constraint that πg ≥ 0 and
G
∑

g=1
πg = 1. We follow the

definition of missing values by Yang et al. [15] and let Z = {Z1, Z2, · · · , Zn}. If Zi = g, then zg,i = 1,
otherwise, zg,i = 0. Then the log-likelihood function of the MIX-SPCR model models is

Lmix = log (L)

=
n

∑
i=1

G

∑
g=1

zg,i log
[
πg f (yi|xi, Pg, βg) f (ti|vg, σ2,time

g )
]

(9)

=
n

∑
i=1

G

∑
g=1

zg,i

[
log πg + log f (yi|xi, Pg, βg) + log f (ti|vg, σ2,time

g )
]

=
n

∑
i=1

G

∑
g=1

zg,i log πg︸ ︷︷ ︸
Lπ

+
n

∑
i=1

G

∑
g=1

zg,i log f (yi|xi, Pg, βg)︸ ︷︷ ︸
LSPCR

+
n

∑
i=1

G

∑
g=1

zg,i log f (ti|vg, σ2,time
g )︸ ︷︷ ︸

Ltime

. (10)

We denote z =
[
zg,i
]

where g = 1, 2, · · · , G and i = 1, 2, · · · , n.
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Given the number of segments, researchers usually apply the EM algorithm to
determine the optimal segmentation by setting the objective function as JEM = Lmix
(Gaffney and Smyth [26], Esling and Agon [27], Gaffney [28]).

3. Regularized Entropy-Based EM Clustering Algorithm

The EM algorithm is a method for iteratively optimizing the objective function. As discussed in
Section 2.2, by setting the objective function as the log-likelihood function, we can use the EM algorithm to
identify optimal segmentation of time series.

However, in practice, the EM algorithm is sensitive to model initialization conditions and
cannot estimate the number of clusters appropriately. To deal with the initialization problem,
in 2012, Yang et al. [15] proposed using an entropy penalty to stabilize the computation of each step.
The improved method is called the robust EM algorithm. In this paper, we extend the robust EM algorithm
to deal with time-series data for the MIX-SPCR model.

In Section 3.1, we discuss the entropy term of the robust EM algorithm. Then, we show the extension
of the robust EM algorithm for the MIX-SPCR model in Sections 3.2 and 3.3.

3.1. The Entropy of EM Mixture Probability

As introduced in Equation (8), the πg represents the mixture probability of each cluster or segment.
In other words, the value of πg is the probability that a data point belongs to group g. The clustering
complexity is determined by the number of clusters and corresponding probability values, which could be
obtained using entropy. Given {πg|1 ≤ g ≤ G}, the entropy of Zi is

H(Zi|
{

πg|1 ≤ g ≤ G
}
) = −

G

∑
g=1

πglog(πg), for i = 1, 2, · · · , n. (11)

Then the entropy of Z is written as,

H(Z|
{

πg|1 ≤ g ≤ G
}
) =

n

∑
i=1

H(Zi|
{

πg|1 ≤ g ≤ G
}
)

= −
n

∑
i=1

G

∑
g=1

πglog(πg)

= −n
G

∑
g=1

πglog(πg). (12)

The objective function of the robust EM algorithm is

JRobust-EM = Lmix − λRobust-EMH(Z|
{

πg|1 ≤ g ≤ G
}
), (13)

where λRobust-EM ≥ 0. The log-likelihood term Lmix is from Equation (9), which gives the goodness-of-fit.
Next, we present the steps of the EM algorithm for maximizing the objective function in Equation (13).
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3.2. E-Step (Expectation)

From a Bayesian perspective, we let ẑg,i denote the posterior probability of the true cluster membership
that a dataset triplet (ti, xi, yi) is drawn from group g. Using the Bayes theorem, we have

ẑg,i = E(Zi = g|yi, xi, Pg, βg) (14)

=
πgN

(
yi; xiPgβg, σ2

g

)
N
(

ti|vg, σ2,time
g

)
G
∑

h=1
πhN

(
yi; xiPhβh, σ2

h
)
N
(

ti|vh, σ2,time
h

) . (15)

3.3. M-Step (Maximization)

Using the robustified derivation of π̂g, the estimated mixture proportion, we have

π̂new
g = π̂EM

g + λ̂Robust-EMπ̂old
g

(
log(π̂old

g )−
G

∑
h=1

(
π̂old

h log(π̂old
h )
))

, (16)

where

π̂EM
g =

n
∑

i=1
ẑg,i

n
. (17)

We follow the recommendation of Yang et al. [15] for the value of λ̂new
Robust-EM as

λ̂new
Robust-EM = min


G
∑

h=1
exp

(
−ηn

∣∣∣π̂new
g − π̂old

g

∣∣∣)
G

,
1−max

{
n
∑

i=1
ẑold

h,i /n|h = 1, 2, · · · , G
}

−max
{

π̂old
h |h = 1, 2, · · · , G

} G
∑

h=1
π̂old

h log π̂old
h

 ,

(18)

where

η = min
{

1, 0.5bp/2−1c
}

, (19)

and p is the number of variables in the model.
We iterate E-step and M-step several times until convergence to obtain the parameter estimates.

In particular, the βg values get updated by maximizing the JRobust-EM from Equation (13). Since we fix
the number of segments and principal components during each E-step and M-step, the updated values of
βg and σg can be calculated using Lmix directly. The estimated values of βg and σg are given as follows.

β̂new
g =

[
n

∑
i=1

ẑold
g,i (x

T
i Pg)

T(xT
i Pg)

]−1 n

∑
i=1

ẑold
g,i (x

T
i Pg)

Tyi

=

[
n

∑
i=1

ẑold
g,i PT

g xixT
i Pg

]−1 n

∑
i=1

ẑold
g,i PT

g xiyi, (20)

σ̂2,new
g =

n

∑
i=1

ẑold
g,i

∥∥∥yi − xT
i Pg β̂new

g

∥∥∥2

2
/

n

∑
i=1

ẑold
g,i . (21)
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For the time factor, the estimated mean v̂g and variance σ̂2,time
g are

v̂g =

n
∑

i=1
ẑg,iti

n
∑

i=1
ẑg,i

, (22)

σ̂2,time
g =

n
∑

i=1
ẑg,i
(
ti − v̂g

)2

n
∑

i=1
ẑg,i

. (23)

As discussed above, our approach is flexible in considering other distributional models for the
time-series factor, which we will pursue in separate research work.

4. Information Complexity Criteria

Recently, the statistical literature recognized the necessity of introducing model selection as one of the
technical areas. In this area, the entropy and the Kullback–Leibler [29] information (or KL distance) play a
crucial role and serve as an analytical basis to obtain the forms of model selection criteria. In this paper,
we use information criteria to evaluate a portfolio of competing models and select the best-fitting model
with minimum criterion values.

One of the first information criteria for model selection in the literature is due to the seminal work
of Akaike [30]. Following the entropy maximization principle (EMP), Akaike developed the Akaike’s
Information Criterion (AIC) to estimate the expected KL distance or divergence. The form of AIC is

AIC = −2 log L(θ̂) + 2k, (24)

where L(θ̂) is the maximized likelihood function, and k is the number of estimated free parameters in the
model. The model with minimum AIC value is chosen as the best model to fit the data.

Motivated by Akaike’s work, Bozdogan [16–20,31] developed a new information complexity (ICOMP)
criteria based on Van Emden’s [32] entropic complexity index in parametric estimation. Instead of
penalizing the number of free parameters directly, ICOMP penalizes the covariance complexity of the
model. There are several forms of ICOMP. In this section, we present the two general forms of ICOMP
criteria based on the estimated inverse Fisher information matrix (IFIM). The first form is

ICOMP(IFIM) = −2 log L(θ̂) + 2C(Σ̂model)

= −2 log L(θ̂) + 2C1(F̂−1), (25)

where L(θ̂) is the maximized likelihood function, and C1(F̂−1) represents the entropic complexity of IFIM.
We define C1(F̂−1) as

C1(F̂−1) =
s
2

log

(
trF̂−1

s

)
− 1

2
log
∣∣∣F̂−1

∣∣∣ , (26)

and where s = rank(F̂−1). We can also give the form of C1(F̂−1) in terms of eigenvalues,

C1(F̂−1) =
s
2

log

(
λ̄a

λ̄g

)
, (27)
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where λ̄a is the arithmetic mean of the eigenvalues, λ1, λ2, . . . , λs, and λ̄g is the geometric mean of
the eigenvalues.

We note that ICOMP penalizes the lack of parsimony and the profusion of the model’s complexity
through IFIM. It offers a new perspective beyond counting and penalizing number of estimated parameters
in the model. Instead, ICOMP takes into account interaction (i.e., correlation) among the estimated
parameters through the model fitting process.

We define the second form of ICOMP as

ICOMP(IFIM)C1F
= −2 log L(θ̂) + 2C1F(F̂−1), (28)

where C1F(F̂−1) is given by

C1F(F̂−1) =
s
4

1
s tr
((
F̂−1

)T (
F̂−1

))
−
(

tr(F̂−1)
s

)2

(
tr(F̂−1)

s

)2 . (29)

In terms of the eigenvalues of IFIM, we write C1F(F̂−1) as

C1F(F̂−1) =
1

4λ̄2
a

s

∑
j=1

(
λj − λ̄a

)2 . (30)

We want to highlight some features of C1F(F̂−1) here. The term C1F(F̂−1) is a second-order
equivalent measure of complexity to the original term C1(F̂−1). Additionally, we note that C1F(F̂−1) is
scale-invariant and C1F(F̂−1) ≥ 0 with C1F(F̂−1) = 0 only when all λj = λ̄a. Furthermore, C1F(F̂−1)

measures the relative variation in the eigenvalues.
These two forms of ICOMP provide us an easy to use computational means in high dimensional

modeling. Next, we derive the analytical forms of ICOMP in the MIX-SPCR model.

4.1. Derivation of Information Complexity in MIX-SPCR Model for Time-Series Data

We first consider the log-likelihood function of the MIX-SPCR model given in Equation (9),

Lmix = Lπ + LSPCR + Ltime. (31)

After some work, the estimated inverse Fisher information matrix (IFIM) of the mixture probabilities is

F̂−1
π =


π̂−1

1 0 0 0
0 π̂−1

2 0 0

0 0
. . . 0

0 0 0 π̂−1
G

 . (32)

Similarly, for each segment g, the estimated IFIM, F̂−1
g,SPCR, is

F̂−1
g,SPCR =

 σ̂2
g

[
n
∑

i=1
ẑg,i
(
xT

i Pg
)T (xT

i Pg
)]−1

0

0T 2σ̂4
g
(
∑ ẑg,i

)−1

 , g = 1, 2, . . . , G. (33)
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Note that the IFIM should include both the SPCR models F̂−1
g,SPCR and the time factor F̂−1

g,time for
each segment.

For each segment g, the time factor is under the univariate Gaussian distribution. As a result, the IFIM
of the time factor is

F̂−1
g,time =

[
σ̂2,time

g /n 0
0 2

n σ̂4,time
g

]
. (34)

By combining the two IFIMs for the SPCR model and the time factor, we have the inverse
Fisher information

F̂−1
g =

[
F̂−1

g,SPCR 0

0T F̂−1
g,time

]
. (35)

Overall, the inverse of the estimated Fisher information matrix (IFIM) for the MIX-SPCR
model becomes

F̂−1 ∼=


F̂−1

π 0 0 · · · 0
0 F̂−1

1 0 · · · 0
0 0 F̂−1

2 · · · 0
...

...
...

. . .
...

0 0 0 · · · F̂−1
G

. (36)

Using the above definition of ICOMP(IFIM) and the properties of block-diagonal matrices with their
trace and determinant, we have

ICOMP(IFIM) = −2Lmix + 2C1(F̂−1), (37)

where

C1(F̂−1) =
s
2

log


tr(F̂−1

π ) +
G

∑
g=1

tr(F̂−1
g )

s

− 1
2

[
log
∣∣∣F̂−1

π

∣∣∣+ G

∑
g=1

log
∣∣∣F̂−1

g

∣∣∣] , (38)

and where s = rank(F̂−1) = rπ +
G
∑

g=1
rg = dim(F̂−1).

Similarly, we derive the second equivalent form of ICOMP(IFIM)C1F
as

ICOMP(IFIM)C1F
= −2Lmix + 2C1F(F̂−1). (39)

Using the properties of the block-diagonal matrices, we have

tr
((
F̂−1

)T (
F̂−1

))
= tr

(
F̂−1

π

)2
+

G

∑
g=1

tr
(
F̂−1

g

)2
. (40)
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Thus, an open computational form of ICOMP(IFIM)C1F
becomes

ICOMP(IFIM)C1F
= −2Lmix +

s
2

1
s

[
tr
(
F̂−1

π

)2
+

G
∑

g=1
tr
(
F̂−1

g

)2
]
−

 tr(F̂−1
π )+

G
∑

g=1
tr(F̂−1

g )

s


2

 tr(F̂−1
π )+

G
∑

g=1
tr(F̂−1

g )

s


2 . (41)

We note that in computing both forms of ICOMP above, we do not need to build the full inverse of
the estimated Fisher information matrix (IFIM) for the MIX-SPCR model given in Equation (36). All one
requires is the computation of IFIM for each segment, which is appealing.

We also use AIC and CAIC (Bozdogan [33]) for comparison purposes given by

AIC = −2Lmix + 2s∗, and, (42)

CAIC = −2Lmix + s∗ (log n + 1) , (43)

where s∗ = G(k + 3) is the number of estimated parameters in the MIX-SPCR model and log denotes the
natural logarithm of the sample size n.

Next, we show our numerical examples starting with a detailed Monte Carlo simulation study.

5. Monte Carlo Simulation Study

We perform numerical experiments in a unified computing environment: Ubuntu 18.04 operating
system, Intel I7-8700, and 32 GB of RAM. We use the programming language Python and the scientific
computing package NumPy [34] to build a computational platform. The size of the input data directly
affects the running time of the program. At n = 4000 time-series observations, the execution time for
each EM iteration is about 0.9 s. Parameter estimation can reach convergence within 40 steps of iterations,
with a total machine run time of 37 s.

5.1. Simulation Protocol

In this section, we present the performance of the proposed MIX-SPCR model using synthetic data
generated from a segmented regression model. Our simulation protocol has p = 12 variables and four
actual latent variables. Two segmented regression models determine the dependent variable y, and each
segment is continuous and has its own specified coefficients (β1 and β2). Our simulation set up is as follows:
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Λ =



1.8 0 0 0
1.8 0 0 0
1.8 0 0 0
0 1.7 0 0
0 1.7 0 0
0 1.7 0 0
0 0 1.6 0
0 0 1.6 0
0 0 1.6 0
0 0 0 1.5
0 0 0 1.5
0 0 0 1.5



, (44)

ψ = diag (1.27, 0.61, 0.74, 0.88, 0.65, 0.81, 0.74, 1.3, 1.35, 0.74, 0.92, 1.32) , (45)

Σ = ΛΛT + ψ, (46)

xt ∼ MVN (0, Σ) , t = 1, 2, · · · , 4000, (47)

β1 = (−10, 0.1, 0.1, 0.1, 2.1, 0, 0, 0.1, 0.1, 0, 0, 0), (48)

β2 = (0, 0, 0, 0, 0, 0.5, 0.3, 0.1, 2.1, 1, 2, 20), (49)

yt,g=1 = x1,tβ1 + ε1,t, t = 1, 2, · · · , 2800, (50)

yt,g=2 = x2,tβ2 + ε2,t, t = 2801, 2802, · · · , 4000. (51)

We set the total number of time-series observations, n = 4000. The first segment has n1 = 2800,
and the second segment has n2 = 1200 time-series observations. We randomly draw error term from a
Gaussian distribution with zero mean and σ2 = 9. Among all the variables, the first six observable variables
explain the first segment, and the remaining six explanatory variables primarily determine the second
segment. We set the mixing proportions π1 = 0.7 and π2 = 0.3 for two time-series segments, respectively.

5.2. Detection of Structural Change Point

In the first simulation study, we limit the actual number of segments equal to two, which means that
the first segment expands from the starting point to a structural change point, and the second segment
expands from the change point to the end. By design, each segment is continuous on the time scale,
and different sets of independent variables explain the trending and volatility. We run the MIX-SPCR
model to see if it can successfully determine the position of the change point using the information
criteria. If a change point is correctly selected, we expect that the information criteria is minimized at this
change point.

Figures 2 and 3 show our results from the MIX-SPCR model. Specifically, it shows the sample path of
the information criteria at each time point. We note that all the information criteria values are minimized
from t = 2800 to t = 3000, which covers the time-series’s actual change point position. As the MIX-SPCR
model selects different change points, the penalty term of AIC and CAIC remain the same because both the
number of model parameters and the number of observations do not change. In this simulation scenario,
the fixed penalty term means that the AIC and CAIC reflect the changes only in the “lack of fit” term of
various models without considering model complexity. This indicates that using AIC-type criteria just
counting and penalizing the number of parameters may be necessary but not sufficient in model selection.
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As a comparison, however, we note that the penalty term of information complexity-based criteria, C1 and
C1F, are adjusted in selecting different change points. They are varying but not fixed.

0 500 1000 1500 2000 2500 3000 3500 4000

t

−150

−100

−50

0

50

100

150
Y

Figure 2. The plot of two-segment simulated time-series data. We show the plot of the simulated time-series
data through the whole-time scale. Note that the first segment is from the starting point t = 1 to the change
point t = 2800, and the second time segment expands from the change point t = 2801 to the end t = 4000.

0 500 1000 1500 2000 2500 3000 3500 4000

t

22000

22500

23000

23500

In
fo

rm
at

io
n

C
ri

te
ri

on
V

al
u

e

ICOMP(IFIM)

ICOMP(IFIM)C1F

AIC
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Figure 3. Sample path of information criteria for the simulated time-series data. The horizontal
coordinate represents the position of the possible change points, and the vertical coordinate represents
the corresponding information criterion (IC) values. The lower the IC value, the more likely the selected
position of the change point is the real position. The real change point is t = 2800.

5.3. A Large-Scale Monte Carlo Simulation

Next, we perform a large-scale Monte Carlo simulation to illustrate the MIX-SPCR model’s
performance in choosing the correct number of segments and the number of latent variables. A priori,
in this simulation, we pretend that we do not know the actual structure of the data and use the information
criteria to recover the actual construction of the MIX-SPCR model. To achieve this, we follow the
above simulation protocol using a different number of time points by varying n = 1000, 2000, 4000.
As before, there are twelve explanatory variables drawn from four latent variable models generated
from a multivariate Gaussian distribution given in Equation (47). The simulated data again consist
of two time-series segments with mixing proportions π1 = 0.7 and π2 = 0.3, respectively. For each
data generating process, we replicate the simulation one hundred times and record both information
complexity-based criteria (ICOMP(IFIM) & ICOMP(IFIM)C1F

) and classic AIC-type criteria (AIC & CAIC).
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In Table 1, we present how many times the MIX-SPCR model selects different models in the one hundred
simulations. In this way, we can assess different information criteria by measuring the hit rates.

Looking at Table 1, we see that when the sample size n = 1000 (small), AIC selects the correct
model (G = 2, k = 4) 69 times, CAIC selects 80 times, ICOMP(IFIM) selects 48 times, and ICOMP(IFIM)C1F
selects 76 times, respectively, in 100 replications of the Monte Carlo simulation. When the sample size is
small, ICOMP(IFIM) tends to choose a sparser regression model sensitive to the sample size. However,
as the sample size increases, when n = 2000 and n = 4000, ICOMP(IFIM) consistently outperforms other
information criteria in terms of hit rates. The percentage of the correctly identified model is above 90%,
as reported above.

Table 1. Frequency of the choice of the true model with information criteria in 100 replications of the
experiment for each sample size (n) of time-series observations. The true model is G = 2 and k = 4.

n = 1000 n = 2000 n = 4000
G = 2 G = 3 G = 2 G = 3 G = 2 G = 3

AIC

k = 2 0 0 0 0 0 0
k = 3 0 6 0 3 0 1
k = 4 69 0 77 0 75 0
k = 5 24 1 20 0 24 0

CAIC

k = 2 1 0 0 0 0 0
k = 3 1 3 0 1 0 1
k = 4 80 0 96 0 93 0
k = 5 14 1 3 0 6 0

ICOMP(IFIM)

k = 2 31 2 1 0 0 0
k = 3 2 5 0 2 0 1
k = 4 48 0 96 0 96 0
k = 5 11 1 1 0 3 0

ICOMP(IFIM)C1F

k = 2 2 1 0 0 0 0
k = 3 0 7 0 3 0 1
k = 4 76 0 93 0 93 0
k = 5 13 1 4 0 6 0

Our results show that the MIX-SPCR model works well in all settings to estimate the number of
time-series segments and the number of latent variables.

Figure 4 illustrates how the MIX-SPCR model performs if the number of segments and the number of
sparse principal components are unknown beforehand.

The choice of the number of segments (G) has a significant impact on the results. For all the simulation
scenarios, the correct choice of the number of segments (G = 2) has information criterion values less
than the incorrect choice (G = 3). This pattern emerges consistently among all the sample sizes, both the
classical ones and information-complexity based criteria.

In summary, the large-scale Monte Carlo simulation analysis highlights the performance of the
MIX-SPCR model. As the sample size increases, the MIX-SPCR model improves its performance. As shown
in Figure 3, the MIX-SPCR model can efficiently determine the structural change point and estimate the
mixture proportions when the number of segments is unknown beforehand. Another key finding is that,
by using the appropriate information criteria, the MIX-SPCR model can correctly identify the number
of segments and the number of latent variables from the data. In other words, our approach can extract
the main factors not only from the intercorrelated variables but also classify the data into several clearly
defined segments on the time scale.
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Figure 4. Plot of average and 1SD (standard deviation) of information criterion values over different sample
sizes in all simulations with three Sparse Principal Components (SPCs) and G = 2 segments. The red
line indicates the estimated MIX-SPCR model based on two groups (G = 2). Correspondingly, the black
line indicates the estimated MIX-SPCR model for three groups (G = 3). Horizontal coordinates represent
different numbers of SPCs.

6. Case Study: Segmentation of the S&P 500 Index

6.1. Description of Data

The financial market often generates a large amount of time-series data, and in most cases,
the generated data is high-dimensional. In this paper, we use the S&P 500 index and its related hundreds
of company stocks categorized into eleven sectors, which are high dimensional time-series data. The index
value is the response variable mixed by plenty of companies’ variations at each time point. These long
time-series values often consist of different regimes and states. For example, the stock market experienced
a boom period from 2017 to 2019, which is a dramatic change compared with the stock market during the
2008 financial crisis. If we analyze each sector or company, some industries perform more actively than
others during a particular period.

In this section, we implement the MIX-SPCR model on the adjusted closing price of the S&P 500
(^GSPC) as a case study. We extract the daily adjusted closing prices from the Yahoo Finance database
(https://finance.yahoo.com/) that spans the period from 1 January 1999 to 31 December 2019. By removing
weekends and holidays, there are n = 5292 tradable days in total. The main focus of this section is to split
the time-series into several self-contained segments. Besides, we expect the extracted sparse principal
components to explain the variance and volatility in each segment.

https://finance.yahoo.com/
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6.2. Computational Results

To have a big picture of how the S&P 500 index values reflect the changes of 506 company stock
prices, Figure 5 shows the plot of the normalized values of adjusted closing prices. We use the MIX-SPCR
model with the information criteria to determine the number of segments and the number of sparse
principal components. To achieve interpretable results, we limit our search space to a maximum of
seven time-series and six sparse principal components. Table 2 shows the optimal combination of three
self-contained segments and three sparse principal components for each of the segments by using the
information complexity ICOMP(IFIM). The other three information criteria also choose this combination as
the best-fitting model. Figure 6 illustrates the probability and time range of each segment. We can see that
the first segment is from 1 January 1999, to 26 October 2007. The second time-series segment spans from
29 October 2007, to the end of 2016. The last segment extends from 30 December 2016 to 31 December 2019.

Figure 5. Normalized S&P 500 index and stock prices from January 1999 to December 2019.

2000-01-01 2004-01-01 2008-01-01 2012-01-01 2016-01-01 2020-01-01
0.0

0.2

0.4

0.6

0.8

1.0

P
(Z

i
=
g
)

Segment g = 1

Segment g = 2

Segment g = 3

Figure 6. Segmented periods and probability. The plot’s vertical coordinate indicates the probability that
an individual time-series data point belongs to each segment.
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Table 2. The ICOMP(IFIM) values of segmentation results for S&P 500 index data (Lower is better).

Number of Sparse Principal Components
1 2 3 4 5

Number of Segments

1 30,097.04 30,092.45 30,106.50 30,121.64 30,145.13
2 29,975.01 30,058.40 30,293.55 30,234.65 30,347.94
3 30,010.70 30,062.19 29,241.52 30,453.74 30,526.20
4 29,877.27 29,825.73 29,811.53 30,571.39 30,628.61
5 29,904.35 29,973.47 30,011.18 30,311.52 30,554.82
6 30,111.35 30,361.39 30,388.47 30,665.26 30,581.29
7 30,031.39 30,564.65 30,597.14 30,823.76 31,057.54

We emphasize that many factors may explain the stock market variation, and this is not a research
on how the socioeconomic events influence the S&P 500 index. However, it does raise our interest in
the distribution of two structural change points from the segmentation results. The first change point is
October 2007, which is the early stage of the 2008 financial crisis. The second structural change point is
December 2016, the transitional period of the USA presidential election. Identification of these two change
points shows that our proposed method can detect the underlying physical and structural change from the
available time-series data.

Table 3 lists the estimated coefficients (βg) from sparse principal component regression. Because all
the collected stock prices and S&P 500 index values are standardized before implementing the MIX-SPCR
model, we make dimension reduction, remove the constant term, and perform regression analysis using
the SPCR model. The R2 values are above 0.8 across all three different time segments.

Table 3. SPCR coefficients (βg) of three different segments.

Segment 1 (R2 = 0.82) Segment 2 (R2 = 0.94) Segment 3 (R2 = 0.97)
01-01-1999 ∼ 26-10-2007 27-10-2007 ∼ 29-12-2016 30-12-2016 ∼ 31-12-2019

SPC1 0.0964 0.1240 0.1512
SPC2 0.0729 −0.0439 0.0359
SPC3 0.0079 0.0191 −0.0051

6.3. Interpretation of Computational Results

One may ask a question, “Can the MIX-SPCR model identify the key variables from the hundreds
of companies?” If the constructed model is dense, the selected companies would include all the sectors
whereby the dense model is limiting the interpretation of the data. Our analysis identifies all the companies
with non-zero coefficient values and maps them back to each of the sectors in Tables A1–A3. Each calculated
sparse principal component vector consists of around fifty companies, much less than the original data
dimension (p = 506). We observe that these selected companies are grouped into a few sectors within
different time segments. For example, energy companies load in the first sparse principal component
vector from 1999 to 2007 (segment 1) and diminish after that.

To have a detailed analysis of how different sectors perform across three segments, we do the stem
plot to show the sparse principal component coefficients Pg of four sectors, namely financials, real estate,
energy, and information technology (IT). Figures 7–8 indicate a similar behavior that happened in financial
and real estate companies. Both sectors play an essential role in the first two time-series segments but
have no contribution in the third segment, which is the period after December 2016. Notice that in
Figure 9, energy companies act as an essential player before 2016. However, during the recession in
2008, energy company loadings are negated from the first SPC to the second SPC. Compared with other
industries, the variation in energy company stock prices does not contribute to the S&P 500 index after 2016.
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Another question is ”What sector/industry is the main contributing factor after the 2016 United
States presidential election?” A possible answer is, as shown in Figure 10, the SPC coefficients of
information technology companies. From 1999 to the recession in 2008, IT companies work mainly on the
second SPC and the third SPC, which do not contribute much to the main variation. After the recession,
the variations of IT companies do not contribute compared with other sectors. However, after December
2016, companies from the IT industry play an essential role in the primary stock price volatility.
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Figure 7. Stem plot of SPC coefficients Pg for financial companies within each time segment. From top to
bottom, the three panels represent different segmented periods, respectively. The horizontal axis of each
panel indicates the company in the industrial sector. The vertical axis shows the SPC coefficient values.
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Figure 9. Stem plot of SPC coefficients Pg for energy companies within each time segment. From top to
bottom, the three panels represent different segmented periods, respectively. The horizontal axis of each
panel indicates the company in the industrial sector. The vertical axis shows the SPC coefficient values.
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Figure 10. Stem plot of SPC coefficients Pg for information technology companies within each time
segment. From top to bottom, the three panels represent different segmented periods, respectively.
The horizontal axis of each panel indicates the company in the industrial sector. The vertical axis shows the
SPC coefficient values.

As discussed above, Figures 7–10 provide a clear picture of how different sectors perform
(via coefficient Pg) without considering the effects on the S&P 500 index. It might raise the interest in
how the SPCR coefficient Pgβg changes before/after certain socioeconomic events. We follow the research
implemented by Aït-Sahalia and Xiu [35] about how the Federal Reserve addressing heightened liquidity
from March 10 to 14 March 2008, affects the stock market. The data analyzed by Aït-Sahalia and Xiu [35]
are the S&P 100 index values using the traditional PCA, and the authors grouped stocks into financial
and non-financial categories. Instead of PCA, we apply the SPCR model on the S&P 500 index and
analyze how eleven sectors react before/after Federal Reserve operations. Figure 11 shows that financials,
consumer discretionary, real estate, and industrials experienced more significant perturbations than other
sectors in terms of SPCR coefficients Pgβg. This conclusion is consistent with the results from Aït-Sahalia
and Xiu [35] that the average loadings of first and second principal components of financial companies
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are distinct from non-financial companies. However, considering that we have 506 companies in the raw
data and make a sparse loading of companies for comparison, the excessive explanatory power is still
maintained in this high-dimensional case using the SPCR model, which is more interpretable.
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Figure 11. Overlay plot of the SPCR coefficients before/after 2008 financial crisis.

7. Conclusions and Discussions

In this paper, we presented a new and novel method to segment high-dimensional time-series data
into different clusters or segments using the mixture model of the sparse principal components model
(MIX-SPCR). The MIX-SPCR model considers both the relationships among the predictor variables and
how various predictor variables contribute the explanatory power to the response variable through
the sparsity settings. Information criteria have been introduced and derived for the MIX-SPCR model.
These criteria are applied to study their performance under different sample sizes and to select the
best-fitting model.

Our large-scale Monte Carlo simulation exercise showed that the MIX-SPCR model could successfully
identify the real structure of the time-series data using the information criteria as the fitness function.
In particular, based on our results, the information complexity-based criteria—i.e., ICOMP(IFIM) and
ICOMP(IFIM)C1F

—outperformed the conventional standard information criteria, such as the AIC-type
criteria as the data dimension and the sample size increase.

Later, we empirically applied the MIX-SPCR model to uncover the S&P 500 index data (from 1999 to
2019) and identify two change points of this data set.

We observe that the first change point physically coincides with the early stages of the 2008
financial crisis. The second change point is immediately after the 2016 United States presidential election.
This structural change point coincides with the election of President Trump and his transition.

Our findings showed how the S&P 500 index and company stock prices react within each time-series
segment. The MIX-SPCR model presents excessive explanatory power by identifying how different
sectors fluctuated before/after the Federal Reserve’s addressing heightened liquidity from 10 March to
14 March 2008.

Although this is not a traditional event study paper, it is the first paper to use the sparse principal
component regression model with mixture models in the time-series analysis. The proposed new and
novel MIX-SPCR model enlightens us to explore more interpretable results on how macroeconomic
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factors/events influence the stock prices on the time scale. Later, in a separate paper, we will incorporate
the event study in the MIX-SPCR model as our future research initiative.

This paper’s time segmentation model builds on time-series data, constructs likelihood functions,
and performs parameter estimation by introducing error information unique to each period.
Researchers have recently realized that environmental background noise can positively affect the model
building and analysis under certain circumstances ([36–42]). For example, in Azpeitia and Wagner [40],
the authors highlighted that the introduction of noise is necessary to obtain information about the system.
In our next study, we would like to explore this positive effect of environmental noise even further and
use it to build better statistical models for analyzing high-dimensional time-series data.
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Appendix A. Tables

Table A1. Sparse Principal Component (SPC) of Segment 1 (1 January 1999 ∼ 26 October 2007).

SPC1 SPC2 SPC3
Count Percentage Count Percentage Count Percentage

Health Care 4 6.56 6 9.84 1 1.64
Industrials 6 8.57 3 4.29 6 8.57

Utilities 5 17.86 3 10.71 3 10.71
Materials 2 7.14 1 3.57 1 3.57

Consumer Discretionary 5 7.81 6 9.38 6 9.38
Energy 13 46.43 1 3.57 3 10.71

Financials 5 7.58 10 15.15 15 22.73
Real Estate 5 16.13 2 6.45 5 16.13

Consumer Staples 2 6.06 0 0.00 1 3.03
Communication Services 1 3.85 2 7.69 1 3.85
Information Technology 2 2.82 16 22.54 8 11.27

Table A2. Sparse Principal Component (SPC) of Segment 2 (27 October 2007 ∼ 29 Decmeber 2016).

SPC1 SPC2 SPC3
Count Percentage Count Percentage Count Percentage

Health Care 7 11.48 2 3.28 1 1.64
Industrials 5 7.14 6 8.57 4 5.71

Utilities 0 0.00 0 0.00 5 17.86
Materials 6 21.43 2 7.14 3 10.71

Consumer Discretionary 7 10.94 14 21.88 3 4.69
Energy 2 7.14 14 50.00 9 32.14

Financials 12 18.18 3 4.55 16 24.24
Real Estate 2 6.45 3 9.68 6 19.35

Consumer Staples 0 0.00 0 0.00 0 0.00
Communication Services 5 19.23 3 11.54 1 3.85
Information Technology 4 5.63 3 4.23 2 2.82

Table A3. Sparse Principal Component (SPC) of Segment 3 (30 Decmeber 2016 ∼ 31 Decmeber 2019).

SPC1 SPC2 SPC3
Count Percentage Count Percentage Count Percentage

Health Care 10 16.39 14 22.95 2 3.28
Industrials 9 12.86 4 5.71 4 5.71

Utilities 1 3.57 0 0.00 0 0.00
Materials 1 3.57 3 10.71 6 21.43

Consumer Discretionary 3 4.69 10 15.63 8 12.50
Energy 0 0.00 3 10.71 1 3.57

Financials 5 7.58 1 1.52 10 15.15
Real Estate 0 0.00 0 0.00 2 6.45

Consumer Staples 0 0.00 6 18.18 3 9.09
Communication Services 2 7.69 5 19.23 5 19.23
Information Technology 19 26.76 4 5.63 9 12.68
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