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Abstract: We introduce a quantum key distribution protocol using mean multi-kings’ problem.
Using this protocol, a sender can share a bit sequence as a secret key with receivers. We consider
a relation between information gain by an eavesdropper and disturbance contained in legitimate users’
information. In BB84 protocol, such relation is known as the so-called information disturbance
theorem. We focus on a setting that the sender and two receivers try to share bit sequences and
the eavesdropper tries to extract information by interacting legitimate users’ systems and an ancilla
system. We derive trade-off inequalities between distinguishability of quantum states corresponding
to the bit sequence for the eavesdropper and error probability of the bit sequence shared with the
legitimate users. Our inequalities show that eavesdropper’s extracting information regarding the
secret keys inevitably induces disturbing the states and increasing the error probability.

Keywords: quantum key distribution; mean-king’s problem; mean multi-kings’ problem; information
disturbance theorem

1. Introduction

In the quantum state discrimination problems, one tries to discriminate the quantum states by
performing the single measurement. Several strategies exist, e.g., in [1–3] and Section 9.1.4 in [4].
On the other hand, in the mean-king’s problem [5], one can use not the single measurement but
also post-information. Specific setting of the mean-king’s problem is often told as a tale [6] of a
king and a physicist Alice. In the tale, Alice prepares a qubit in an initial state at first. The king
performs a measurement with one of observables σx, σy, σz on the qubit and obtains an outcome.
Then, Alice obtains an outcome by performing a measurement on the qubit. After the measurement,
the king reveals the observable he has measured as the post-information. Then, Alice tries to guess
king’s outcome by using her outcome and the post-information. A solution to the problem is a
pair of the initial state and Alice’s measurement such that she can guess king’s outcome correctly.
Using Aharonov–Bergman–Lebowitz rule [7], a solution which consists of Bell state and a measurement
on a bipartite system has been shown [5]. As an application of the solution to the mean-king’s
problem, a quantum key distribution protocol (QKD) has been shown [8]. In this protocol, Alice and
the king employ the guessing result as a secret key, and security analysis of the protocol has been
considered [8–11].

A QKD protocol by using mean multi-kings’ problem has been shown [12] (see Section 2 for details).
In this protocol, Alice and kings (called King1, King2, ..., Kingn) are legitimate users. Alice guesses each
king’s measurement outcome by using her measurement outcome and post-information from each
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king; then, each guessing result is shared as a secret key between Alice and each king. The protocol has
superior aspects, such as the number of measurements, state preparation and key discarding, to several
realizations (whose components are the QKD protocol by using the mean-king’s problem or BB84
protocol [13]) for Alice and each king to share the secret key. In the case of n = 2, security analysis
against a simple attack so called intercept-resend attack has been considered and error rate of bits
shared between Alice and the kings has been shown.

In this paper, we consider a relation between information gain by an eavesdropper (called Eve)
and disturbance contained in the legitimate users’ information in the QKD protocol by using the
mean multi-kings’ problem. In BB84 protocol, such relation is known as the so-called information
disturbance theorem [14–18]. According to the theorem, Eve’s information gain in a basis inevitably
induces disturbance contained in the legitimate users’ information in the conjugate basis. Therefore,
the theorem is also regarded as an information theoretical version of the uncertainty relation.
The theorem also plays an important role in the proof of the unconditional security [19]. We consider
that Eve tries to extract information by employing an attack which she performs any measurement
on her quantum system at any time after interacting the quantum system with kings’ qubits after
their measurements in the case of n = 2. In this setting, we give trade-off inequalities between
distinguishability of quantum states corresponding to the bit sequences for Eve and error probability
of the bit sequences shared with Alice and the kings. Our inequalities show that Eve’s extracting
information regarding the secret keys inevitably induces disturbing the states of kings’ qubits and
increasing the error probability even though the post-information and Alice’s qubit are used in the
guessing step, unlike BB84 protocol.

This paper is organized as follows. In the next section, we review a description of the quantum
key distribution protocol by using the mean multi-kings’ problem. In Section 3, we give the description
of the protocol in the case of n = 2. In Section 4, we give the outline of the attack and the trade-off
inequalities between distinguishability and disturbance. Finally, we summarize this paper in Section 5.

2. Protocol

Let us start by introducing the essence of the mean multi-kings’ problem and the QKD by using it.
Alice and King1, King2, ... , Kingn are the characters in this problem. The problem can be summarized
as follows. Alice prepares a composite system, which consists of her system and n systems for
kings, in an initial state. Each king performs a measurement on his system and obtains an outcome.
After kings’ measurement, Alice performs a measurement on the composite system and obtains an
outcome. Furthermore, each king reveals post-information: the measurement type he has performed.
Immediately, Alice guesses kings’ outcomes by using her outcome and the post-information from each
king. A solution to the problem is defined as a three-tuple of the initial state, Alice’s measurement,
and a guessing function such that she can guess kings’ outcomes correctly. In this problem, the initial
state will be changed depending on the kings’ measurements and outcomes. In general, it is impossible
to distinguish the changed states correctly. Therefore, Alice tries to get some potential answers by
performing the measurement and to narrow down the correct outcome from them by using the
guessing function of her outcome and the post-information.

We can construct the QKD protocol by using a setting of the mean multi-kings’ problem and
a solution to it, i.e., Alice and each king share the guessing result as a secret key. Figure 1 is a
graphically demonstrated protocol. Let us consider a setting that Alice prepares a composite system
which consists of n + 1 qubits and each king performs one of two fixed measurements on his qubit.
Then, two solutions where the initial states are multipartite entangled states can be shown as described
below; therefore, we can also construct the QKD protocol by using those solutions. In the QKD,
Alice and each king try to share secret keys while she switches the solutions.
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Figure 1. The QKD protocol by using the mean multi-kings’ problem.

Before introducing details of the QKD protocol, we introduce some preliminary definitions,
the setting of the mean multi-kings’ problem, and the solutions to it. Define

Z0 := |0〉〈0|, Z1 := |1〉〈1|, X0 := |0̄〉〈0̄|, X1 := |1̄〉〈1̄| (1)

for |0〉 := (1, 0)T , |1〉 := (0, 1)T , |0̄〉 := 1√
2
(1, 1)T , |1̄〉 := 1√

2
(1,−1)T . Define an outcome set

K := {(s1, t1, s2, t2, . . . , sn, tn) | sj, tj ∈ {0, 1}}, (2)

operators for (s1, t1, s2, t2, . . . , sn, tn) ∈ K

E(Z)
(s1,t1,s2,t2,...,sn ,tn)

:= Xs1 Zt1 ⊗ Xs2 Zt2 ⊗ · · · ⊗ Xsn Ztn , (3)

E(X)
(s1,t1,s2,t2,...,sn ,tn)

:= Zs1 Xt1 ⊗ Zs2 Xt2 ⊗ · · · ⊗ Zsn Xtn , (4)

and an index set

S(W)
(Jj ,ij)

n
j=1

= S(W)
(J1,i1,J2,i2,...,Jn ,in)

:= S(W)
(J1,i1)

× S(W)
(J2,i2)

× · · · × S(W)
(Jn ,in)

(5)

(W ∈ {Z, X}) which consists of direct product of

S(Z)
(J,i) :=

{
{(0, i), (1, i)} (J = 0, i ∈ {0, 1})
{(i, 0), (i, 1)} (J = 1, i ∈ {0, 1}), (6)

S(X)
(J,i) :=

{
{(i, 0), (i, 1)} (J = 0, i ∈ {0, 1})
{(0, i), (1, i)} (J = 1, i ∈ {0, 1}). (7)

We define the setting of the mean multi-kings’ problem. Alice prepares the composite system
(n + 1 qubits) H̃ := HA ⊗HK1 ⊗HK2 ⊗ · · · ⊗HKn ' (C2)

⊗n+1 in an initial state. Each Kingj performs
one of the measurements onHKj

M(Jj) = (M
(Jj)

0 , M
(Jj)

1 ) (Jj ∈ {0, 1}), (8)

where M(0) := (M(0)
0 := Z0, M(0)

1 := Z1) and M(1) := (M(1)
0 := X0, M(1)

1 := X1), and obtains an
outcome ij ∈ {0, 1}. Alice performs a measurement on H̃ and obtains an outcome. After Alice’s
measurement, the kings reveal (Jj)

n
j=1 as the post-information. Then, Alice tries to guess kings’

outcomes by using her outcome and the post-information.
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Here, we show two solutions to the problem. In this case, Alice can guess the kings’ outcomes
correctly by employing one of

|Φ(Z)〉 :=
1√
2
(|00 · · · 0〉+ |11 · · · 1〉) (9)

|Φ(X)〉 :=
1√
2
(|0̄0̄ · · · 0̄〉+ |1̄1̄ · · · 1̄〉) (10)

as an initial state, a measurement depending on the initial state |Φ(W)〉

P(W) :=
(

P(W)
k := 2n+1|(I⊗E(W)

k )Φ(W)〉〈(I⊗E(W)
k )Φ(W)|

)
k∈K

(11)

and a guessing function s(k, (Jj)
n
j=1, Φ(W)) of her outcome k ∈ K, the post-information (Jj)

n
j=1, and the

initial state |Φ(W)〉, where s(k, (Jj)
n
j=1, Φ(W)) is defined as (ij)

n
j=1 satisfying k ∈ S(W)

(Jj ,ij)
n
j=1

(we regard

k = (s1, t1, s2, t2, . . . , sn, tn) in the same light as ((s1, t1), (s2, t2), . . . , (sn, tn))).
We clear the number of non-zero matrices in her measurement and their orthogonality.

We can observe

|(I⊗E(Z)
k )Φ(Z)〉 = (I⊗Xs1 Zt1 ⊗ · · · ⊗ Xsn Ztn)

1√
2
(|00 · · · 0〉+ |11 · · · 1〉)

= 1√
2
(δt10 · · · δtn0|0〉Xs1 |0〉 ⊗ Xs2 |0〉 ⊗ · · · ⊗ Xsn |0〉

+δt11 · · · δtn1|1〉 ⊗ Xs1 |1〉 ⊗ Xs2 |1〉 ⊗ · · · ⊗ Xsn |1〉).
(12)

Then, the number of non-zero vectors is equal to 2n+1. It leads to the conclusion that the number
of non-zero matrices in P(Z) is equal to 2n+1. Furthermore, we observe

〈(I⊗E(Z)
k )Φ(Z)|(I⊗E(Z)

k′ )Φ(Z)〉
= 〈(I⊗Xs1 Zt1 ⊗ · · · ⊗ Xsn Ztn)Φ

(Z)|(I⊗Xs′1
Zt′1
⊗ · · · ⊗ Xs′n Zt′n)Φ

(Z)〉
= 1

2n+1 (δt10δt20 · · · δtn0 + δt11δt21 · · · δtn1)δkk′ .
(13)

It implies that P(Z) is an orthogonal measurement on H̃. When Z is switched to X, we have the
same result in the case of W = X.

Next, we show that Alice can correctly guess kings’ outcomes. We observe

S(W)
(Jj ,ij)

n
j=1
∩ S(W)

(Jj ,i′j)
n
j=1

= ∅ (14)

for any Jj and (i1, i2, . . . , in) 6= (i′1, i′2, . . . , i′n), and

M(J1)
i1
⊗M(J2)

i2
⊗ · · · ⊗M(Jn)

in = ∑
k∈S(W)

(Jj ,ij)
n
j=1

E(W)
k (15)

holds for any Jj and ij. When Kingj performs the measurement M(Jj) and obtains an outcome ij,
by Equation (15), the post-measurement state is proportional to

|(I⊗M(J1)
i1
⊗M(J2)

i2
⊗ · · · ⊗M(Jn)

in )Φ(W)〉 ∈
⊕

k∈S(W)
(Jj ,ij)

n
j=1

Ak, (16)

where Ak is a subspace spanned by |(I⊗E(W)
k )Φ(W)〉. Ak and Ak′ are orthogonal for any k 6= k′ and

P(W) is composed of orthogonal projections onto each subspaceAk by Equation (13). If Alice obtains an
outcome k by performing P(W) and the post-information (Jj)

n
j=1 from the kings, then kings’ outcomes
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(ij)
n
j=1 should satisfy k ∈ S(W)

(Jj ,ij)
n
j=1

. However, by Equation (14), such (ij)
n
j=1 uniquely exists. Thus,

Alice can correctly guess kings’ outcomes.
A description of the QKD protocol by using the mean multi-kings’ problem is as follows.

1. Alice prepares a composite system (n + 1 qubits) H̃ = HA ⊗HK1 ⊗HK2 ⊗ · · · ⊗HKn ' (C2)
⊗n+1

in the initial state |Φ(W)〉 (W ∈ {Z, X}) with probability 1
2 . Then, she sends the qubitHKj to Kingj

(j = 1, 2, . . . , n).

2. Each Kingj performs the measurement M(Jj) = (M
(Jj)

0 , M
(Jj)

1 ) (Jj ∈ {0, 1}) with probability 1
2 on

HKj and obtains an outcome ij ∈ {0, 1}. After the measurement, each Kingj returnsHKj to Alice.

3. Alice performs the measurement P(W) = (P(W)
k )k∈K (W ∈ {Z, X}) on H̃ when the initial state

was |Φ(W)〉. Then, she obtains an outcome k ∈ K.
4. After the measurement, each Kingj announces post-information Jj to Alice.
5. Alice obtains a sequence s(k, (Jj)

n
j=1, Φ(W)) from the outcome k, the post-information (Jj)

n
j=1,

and the initial state |Φ(W)〉.
6. They repeat the above process. After that, Alice randomly chooses sequences

(i′1j )
n
j=1, (i′2j )

n
j=1, . . . , (i′rj )

n
j=1 from all sequences. Similarly, kings work together to choose

sequences (i1j )
n
j=1, (i2j )

n
j=1, . . . , (irj )

n
j=1 which are the same positions as the positions Alice chose.

Then, Alice and kings work together to calculate error rate
∑r

u=1(1−δ(i′uj )nj=1(i
u
j )

n
j=1

)

r .

The rest of the process is the same as for ordinary QKD protocols, such as BB84 protocol. If the
error rate is too large, the protocol is aborted. Otherwise, the leftover sequences are performed with
error-correction and privacy amplification [20].

Remark that Alice and each Kingj can share the secret key when they employ the QKD protocol
using the mean-king’s problem or BB84 protocol. In the case of employing the QKD using the
mean-king’s problem (see left hand side of Figure 2), Alice prepares 2 qubits in the Bell state and
performs a single measurement on the 2 qubits for each Kingj. Therefore, she needs to prepare 2n qubits
and perform n measurements to share the secret key with n kings. On the other hand, in the QKD
protocol using the mean multi-kings’ problem, Alice only prepares n + 1 qubits in |Φ(Z)〉 or |Φ(X)〉
and performs the single measurement P(Z) or P(X). In the case where the BB84 protocol is employed
(see right hand side of Figure 2), Alice just prepares n qubits in one of the states |0〉, |1〉, |0̄〉, |1̄〉 and no
performing the measurement is required. Then, Alice and Kingj discard the raw key where their bases
do not match before calculating error rate. On the other hand, in the QKD protocol using the mean
multi-kings’ problem, there is not such discarding step before calculating error rate.

Figure 2. The QKD protocols using the mean-king’s problem (left hand side) and BB84 protocols
(right hand side) for Alice and the kings to share the secret key.



Entropy 2020, 22, 1275 6 of 15

3. Protocol: n = 2

We describe the working of the protocol in the case of n = 2 by focusing on the case of W = Z to
reduce cumbersome notations.

By Equation (2), the index set takes the following form,

K = {(s1, t1, s2, t2) | sj, tj ∈ {0, 1}}. (17)

And by Equation (3), the operator E(Z)
k for k ∈ K takes the following form,

E(Z)
k = E(Z)

(s1,t1,s2,t2)
= Xs1 Zt1 ⊗ Xs2 Zt2 (k = (s1, t1, s2, t2) ∈ K). (18)

Similarly, we can observe the operators for W = X. By Equation (5), we observe the index sets
S(W)
(J1,i1,J2,i2)

for J1 = 0, J2 = 0, i1, i2 ∈ {0, 1}, and W = Z:

S(Z)
(0,0,0,0) = S(Z)

(0,0) × S(Z)
(0,0)

= {((0, 0), (0, 0)), ((0, 0), (1, 0)), ((1, 0), (0, 0)), ((1, 0), (1, 0))}
= {(0, 0, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0), (1, 0, 1, 0)} (19)

S(Z)
(0,0,0,1) = S(Z)

(0,0) × S(Z)
(0,1)

= {((0, 0), (0, 1)), ((0, 0), (1, 1)), ((1, 0), (0, 1)), ((1, 0), (1, 1))}
= {(0, 0, 0, 1), (0, 0, 1, 1), (1, 0, 0, 1), (1, 0, 1, 1)} (20)

S(Z)
(0,1,0,0) = S(Z)

(0,1) × S(Z)
(0,0)

= {((0, 1), (0, 0)), ((0, 1), (1, 0)), ((1, 1), (0, 0)), ((1, 1), (1, 0))}
= {(0, 1, 0, 0), (0, 1, 1, 0), (1, 1, 0, 0), (1, 1, 1, 0)} (21)

S(Z)
(0,1,0,1) = S(Z)

(0,1) × S(Z)
(0,1)

= {((0, 1), (0, 1)), ((0, 1), (1, 1)), ((1, 1), (0, 1)), ((1, 1), (1, 1))}
= {(0, 1, 0, 1), (0, 1, 1, 0), (1, 1, 0, 1), (1, 1, 1, 1)}, (22)

where we regard ((l1, l2), (l3, l4)) in the same light as (l1, l2, l3, l4). Similarly, we can observe the index
sets for other J1, J2, i1, i2, and W.

Let us consider that Alice prepares the qubits H̃ = HA⊗HK1 ⊗HK2 in the initial state

|Φ(Z)〉 = 1√
2
(|000〉+ |111〉). (23)

Let us consider that King1 and King2 choose the same measurement M(0) and obtain the same
outcome 0, i.e., J1 = 0, J2 = 0 and i1 = 0, i2 = 0. After kings’ measurement, Alice performs the
measurement P(Z) = (P(Z)

k )k∈K on H̃, where

P(Z)
k = 8|(I⊗E(Z)

k )Φ(Z)〉〈(I⊗E(Z)
k )Φ(Z)|r

= 8|(I⊗Xs1 Zt1 ⊗ Xs2 Zt2)Φ
(Z)〉〈(I⊗Xs1 Zt1 ⊗ Xs2 Zt2)Φ

(Z)|.
(24)

After the measurement, King1 and King2 announce the post-information J1 = 0 and J2 = 0 to
Alice. When Alice obtains an outcome k = (0, 0, 0, 0), she is assured that kings’ outcome (i1, i2) is (0, 0),
because (i1, i2) satisfying k = (0, 0, 0, 0) ∈ S(W)

(J1,i1,J2,i2)
= S(Z)

(0,i1,0,i2)
is (0, 0). In Table 1, we summarize

Alice’s guessing rule by using her outcome and the post-information from the kings.
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Table 1. The relationship among kings’ measurements J1, J2, Alice’s outcome k, and kings’ outcomes
i1, i2 when she chooses |Φ(W)〉. In this table, NA means that probability of obtaining the corresponding

outcome k is zero unless Eve performs an attack because the corresponding matrix P(W)
k is a zero

matrix. An example of Alice’s guessing: Alice is assured that kings’ outcome (i1, i2) is (0, 0) when
W = Z, J1 = 0, J2 = 0, and k = (0, 0, 0, 0).

W = Z, J1 = 0, J2 = 0 W = Z, J1 = 0, J2 = 1 W = Z, J1 = 1, J2 = 0 W = Z, J1 = 1, J2 = 1
W = X, J1 = 1, J2 = 1 W = X, J1 = 1, J2 = 0 W = X, J1 = 0, J2 = 1 W = X, J1 = 0, J2 = 0

k (i1, i2) k (i1, i2) k (i1, i2) k (i1, i2)

(0, 0, 0, 0) (0, 0) (0, 0, 0, 0) (0, 0) (0, 0, 0, 0) (0, 0) (0, 0, 0, 0) (0, 0)
(0, 0, 0, 1) NA —— (0, 0, 0, 1) NA —— (0, 0, 0, 1) NA —— (0, 0, 0, 1) NA ——
(0, 0, 1, 0) (0, 0) (0, 0, 1, 0) (0, 1) (0, 0, 1, 0) (0, 0) (0, 0, 1, 0) (0, 1)
(0, 0, 1, 1) NA —— (0, 0, 1, 1) NA —— (0, 0, 1, 1) NA —— (0, 0, 1, 1) NA ——
(0, 1, 0, 0) NA —— (0, 1, 0, 0) NA —— (0, 1, 0, 0) NA —— (0, 1, 0, 0) NA ——
(0, 1, 0, 1) (1, 1) (0, 1, 0, 1) (1, 0) (0, 1, 0, 1) (0, 1) (0, 1, 0, 1) (0, 0)
(0, 1, 1, 0) NA —— (0, 1, 1, 0) NA —— (0, 1, 1, 0) NA —— (0, 1, 1, 0) NA ——
(0, 1, 1, 1) (1, 1) (0, 1, 1, 1) (1, 1) (0, 1, 1, 1) (0, 1) (0, 1, 1, 1) (0, 1)
(1, 0, 0, 0) (0, 0) (1, 0, 0, 0) (0, 0) (1, 0, 0, 0) (1, 0) (1, 0, 0, 0) (1, 0)
(1, 0, 0, 1) NA —— (1, 0, 0, 1) NA —— (1, 0, 0, 1) NA —— (1, 0, 0, 1) NA ——
(1, 0, 1, 0) (0, 0) (1, 0, 1, 0) (0, 1) (1, 0, 1, 0) (1, 0) (1, 0, 1, 0) (1, 1)
(1, 0, 1, 1) NA —— (1, 0, 1, 1) NA —— (1, 0, 1, 1) NA —— (1, 0, 1, 1) NA ——
(1, 1, 0, 0) NA —— (1, 1, 0, 0) NA —— (1, 1, 0, 0) NA —— (1, 1, 0, 0) NA ——
(1, 1, 0, 1) (1, 1) (1, 1, 0, 1) (1, 0) (1, 1, 0, 1) (1, 1) (1, 1, 0, 1) (1, 0)
(1, 1, 1, 0) NA —— (1, 1, 1, 0) NA —— (1, 1, 1, 0) NA —— (1, 1, 1, 0) NA ——
(1, 1, 1, 1) (1, 1) (1, 1, 1, 1) (1, 1) (1, 1, 1, 1) (1, 1) (1, 1, 1, 1) (1, 1)

In the case of n = 2, the following simple attack so called intercept-resend attack can be
considered. An eavesdropper (called Eve) intercepts HKj returned to Alice from Kingj (step 2

in the protocol) and performs the measurement M(0) or M(1) probabilistically on HKj . After the
measurement, she resends HKj to Alice. When Eve performs the intercept-resend attack to only

HK1 , the probability which the error occurs is 1
8 , where the error means the event: δ(i′uj )2

j=1(i
u
j )

2
j=1

= 0.

When Eve performs the intercept-resend attack to both HK1 and HK2 , the probability which the
error occurs is 1

32 (p1 + p2 − 2p1 p2 + 7), where pj denotes the probability, which Eve performs the
measurement M(0) on HKj (j ∈ {1, 2}). The minimum value of the probability is 0.21875 when
(p1 = 1, p2 = 1) or (p1 = 0, p2 = 0) and the maximum value of the probability is 0.25 when
(p1 = 1, p2 = 0) or (p1 = 0, p2 = 1).

4. Distinguishability vs. Disturbance

In this section, let us consider two types of the attacks and let us see whether Eve can extract
information by employing the attacks without disturbing contained in legitimate users’ information
in the case of n = 2. First, Eve tries to gain information from the qubit returned to Alice by King1

(step 2 in the protocol) by interacting the qubit HK1 with her quantum system HE (see Figure 3).
Second, she tries to gain information from the qubits HKj returned to Alice by Kingj (step 2 in the
protocol) by interactingHK1 ⊗HK2 with her quantum systemHE (see Figure 4). In both of the attacks,
Eve performs any measurement on her quantum systemHE at any time.

We can consider an attack that Eve interacts her quantum system with the qubits sent to the kings
by Alice. However, in this attack, the qubits are not encoded because the kings have not measured
the qubits. Especially, in the case of n = 1, the setting of the attack can be considered as monogamy
of entanglement [21,22]. Moreover, we can also consider an attack that Eve interacts her quantum
system with both of the qubits sent to the kings by Alice and the qubits returned to Alice by the kings.
However, the setting of the attack is different from one for discussing the information disturbance
theorem. In the setting for the theorem, Eve tries to information extract from only the encoded qubits.
Therefore, we concentrate on the above two attacks that Eve tries to extract information from the qubits
sent to Alice by the kings.
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Figure 3. The interactionHK1 withHE.

Figure 4. The interactionHK1 ⊗HK2 withHE.

In the beginning, we define error probability which represents probability that Alice cannot guess
king’s outcomes correctly by using her outcome and the post-information. Remark that the error
probability is different from the error rate (step 6 in the protocol). Let P(W)(k | J1; i1, J2; i2) be the
probability that Alice obtains an outcome k when she chooses |Φ(W)〉 and Kingj obtains an outcome ij

with the measurement M(Jj) (j ∈ {1, 2}). We define

P(W)
suc(J1;i1,J2;i2)

:= ∑
k∈S(W)

(Jj ,ij)
2
j=1

P(W)(k | J1; i1, J2; i2) (25)

and
Psuc(J1;i1,J2;i2) :=

1
2 ∑

W∈{X,Z}
P(W)

suc(J1;i1,J2;i2)
. (26)

Then, we define the error probability when Kingj obtains an outcome ij with the

measurement M(Jj):
Perr(J1;i1,J2;i2) := 1− Psuc(J1;i1,J2;i2). (27)

Equation (27) represents probability that Alice’s sequence and kings’ sequence do not match when
Kingj obtains an outcome ij with the measurement M(Jj), i.e., Alice cannot guess kings’ outcomes
correctly by using her outcome and the post-information.

Let us consider that Eve tries to extract information fromHK1 . Eve prepares her own quantum
systemHE in a quantum state Ω. She interceptsHK1 in the state ρ(K1) returned to Alice by King1 and
interacts it withHE. Let us denote the interaction by

T∗(ρ(K1)) := Uρ(K1) ⊗ΩU†, (28)

where U is a unitary operator onHK1 ⊗HE. Moreover, we denote the local state ofHE (resp. HK1 ) by
partial trace over theHK1 (resp. HE)

T∗E(ρ
(K1)) := trHK1

T∗(ρ(K1))
(

resp. T∗K1
(ρ(K1)) := trHKE

T∗(ρ(K1))
)

. (29)
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Let us consider that King1 obtains an outcome i with a measurement M(1). Then, the state ofHK1

before the interaction is ρ(K1) = |ī〉〈ī|. Eve tries to extract information regarding to the secret key by
distinguishing T∗E(|0̄〉〈0̄|) and T∗E(|1̄〉〈1̄|).

We employ trace distance as a measure for distinguishability of the states. Trace norm between a
state ρ and a state σ is defined as ||ρ− σ||1 := sup||A||=1 | tr(ρ− σ)A|, where || · || denotes operator
norm. Trace distance is defined as follows,

D(ρ, σ) :=
1
2
||ρ− σ||1. (30)

It takes a value from 0 to 1. In addition, D(ρ, σ) = 0 if and only if ρ = σ, and D(ρ, σ) = 0 if and
only if tr(ρσ) = 0. Let us remind the definition of fidelity [23,24]. Fidelity between ρ and σ is defined

as F(ρ, σ) := tr
√

ρ1/2σρ1/2. The following alternative expression of fidelity [25,26] has been shown,

F(ρ, σ) = inf
(Ma)a :POVM

∑
a

√
p(a | ρ)p(a | σ), (31)

where p(a | ρ) and p(a | σ) are defined as p(a | ρ) := tr(Maρ) and p(a | σ) := tr(Maσ).

Lemma 1. The following relation between trace distance and fidelity holds,

1
2
||T∗E(|0̄〉〈0̄|)− T∗E(|1̄〉〈1̄|)||1 ≤ F(T∗K1

(|0〉〈0|), T∗K1
(|1〉〈1|)). (32)

Proof of Lemma 1. From Lemma 3 in [27], we have

|〈0|T(I⊗A)|1〉| ≤ ||A||F(T∗K1
(|0〉〈0|), T∗K1

(|1〉〈1|)) (33)

for any operator A on HE, where T is defined as tr T∗(ρ)X = tr ρT(X). By using Equation (33),
we observe ∣∣∣ tr

[{
T∗E(|0̄〉〈0̄| − T∗E

(
1
2 I
)}

A
]∣∣∣ =

∣∣∣ tr
{(
|0̄〉〈0̄| − 1

2 I
)

T(I⊗A)
}∣∣∣

=
∣∣∣ tr
{

1
2 (|0〉〈1|+ |1〉〈0|)T(I⊗A)

}∣∣∣
≤ 1

2{|〈1|T(I⊗A)|0〉|+ |〈0|T(I⊗A)|1〉|}
≤ ||A||F(T∗K1

(|0〉〈0|), T∗K1
(|1〉〈1|)).

(34)

Then,

1
2 ||T∗E(|0̄〉〈0̄|)− T∗E(|1̄〉〈1̄|)||1 =

∣∣∣∣∣∣T∗E(|0̄〉〈0̄|)− T∗E
(

1
2 I
)∣∣∣∣∣∣

1

= sup||A||=1

∣∣∣ tr
[{

(T∗E(|0̄〉〈0̄|)− T∗E
(

1
2 I
)}

A
]∣∣∣

≤ F(T∗K1
(|0〉〈0|), T∗K1

(|1〉〈1|))

(35)

holds.

Theorem 1. The following trade-off inequality holds,

D(T∗E(|0̄〉〈0̄|), T∗E(|1̄〉〈1̄|)) ≤
√

2Perr(0;0,0;0) +
√

2Perr(0;1,0;1). (36)

The left hand side of the inequality represents distinguishability for Eve, and the right hand
side is the sum of the error probabilities which represent probability that Alice’s sequence and kings’
sequence are not equal when the kings obtain the corresponding outcomes with the corresponding
measurements, i.e., Alice cannot guess kings’ sequence correctly by using her outcome and the
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post-information. This theorem shows that Eve’s extracting information regarding King1’s key related
with the measurement M(1) inevitably induces disturbing the states and increases the error probability
when both of kings choose the measurement M(0). This implies that the more Eve extracts information,
the more possibility for Alice and the kings to detect the existence of the attack increases. In particular,
Eve cannot extract information about the key at all (i.e., trace distance is zero) when the corresponding
error probabilities are zero. Remark that similar inequalities between distinguishability of other pairs
of states and the error probabilities can be proven in the similar way as below.

Proof of Theorem 1. Before obtaining the inequalities, let us observe the error probability.
Define ρi := T∗K1

(|i〉〈i|). By direct calculations (see Appendix A for details), we have the
following probability,

Perr(0;i,0;i) =
1
2
(1− 〈i|ρii〉). (37)

By using Equations (31) and (37), we have

F(ρ0, ρ1) = inf(Ma)a :POVM ∑a
√

tr(Maρ0) tr(Maρ1)

≤
√

tr(|0〉〈0|ρ0) tr(|0〉〈0|ρ1) +
√

tr(|1〉〈1|ρ0) tr(|1〉〈1|ρ1)

=
√
〈0|ρ00〉(1− 〈1|ρ11〉) +

√
(1− 〈0|ρ00〉)〈1|ρ11〉

≤
√

1− 〈1|ρ11〉+
√

1− 〈0|ρ00〉
=

√
2Perr(0;0,0;0) +

√
2Perr(0;1,0;1),

(38)

where we employ (|0〉〈0|, |1〉〈1|) as a POVM in the first inequality. Then, we have the trade-off
inequality by the definition of trace distance, Equations (32) and (38).

Let us consider that Eve tries to extract information fromHK1 andHK2 . Eve prepares a quantum
systemsHE in a quantum state Ω. She interceptsHK1 ⊗HK2 in the state ρ(K1,K2) returned to Alice by
King1 and King2. Then, she interacts both systems withHE. Let us denote the interaction by

K∗(ρ(K1,K2)) := Vρ(K1,K2) ⊗ΩV†, (39)

where V is a unitary operator on HK1 ⊗ HK2 ⊗ HE. And we denote the local state of HE
(resp. HK1 ⊗HK2 ) by partial trace over theHK1 ⊗HK2 (resp. HE)

K∗E(ρ
(K1,K2)) := trHK1⊗HK2

K∗(ρ(K1,K2))
(

resp. K∗K1,K2
(ρ(K1K2)) := trHKE

K∗(ρ(K1,K2))
)

. (40)

Let us consider that King1 and King2 perform the same measurement M(1) and obtain the same
outcome i. Then, the state ofHK1 ⊗HK2 before the interaction is |īī〉〈īī|. Eve tries to extract information
regarding to the secret key by distinguishing K∗E(|0̄0̄〉〈0̄0̄|) and K∗E(|1̄1̄〉〈1̄1̄|).

Lemma 2. The following relation between trace distance and fidelity holds,

||K∗E(|0̄0̄〉〈0̄0̄|)− K∗E(|1̄1̄〉〈1̄1̄|)||1 ≤ ∑i∈{0,1} F(K∗K1K2
(|ii〉〈ii|), K∗K1K2

(|01〉〈01|)
+∑i∈{0,1} F(K∗K1K2

(|ii〉〈ii|), K∗K1K2
(|10〉〈10|). (41)

Proof of Lemma 2. From Lemma 3 in [27], we have

|〈i1i2|K(I ⊗ A)|i′1i′2〉| ≤ ||A||F(K∗K1K2
(|i1i2〉〈i1i2|), K∗K1K2

(|i′1i′2〉〈i′1i′2|)) (42)
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for any operator A on HE, where K is defined as tr K∗(ρ)X = tr ρK(X). By using Equation (42),
we observe

| tr[{K∗E(|0̄0̄〉〈0̄0̄|)− K∗E(|1̄1̄〉〈1̄1̄|)}A]| = | tr{(|0̄0̄〉〈0̄0̄| − |1̄1̄〉〈1̄1̄|)K(I⊗A)}|
=

∣∣∣ tr
{

1
2 (|00〉〈01|+ |00〉〈10|+ |01〉〈00|+ |01〉〈11|

+|10〉〈00|+ |10〉〈11|+ |11〉〈01|+ |11〉〈10|)K(I⊗A)
}∣∣∣

≤ ∑i∈{0,1} |〈ii|K(I ⊗ A)|01〉|+ ∑i∈{0,1} |〈ii|K(I⊗A)|10〉|

≤ ||A||
{

∑i∈{0,1} F(K∗K1K2
(|ii〉〈ii|), K∗K1K2

(|01〉〈01|)

+∑i∈{0,1} F(K∗K1K2
(|ii〉〈ii|), K∗K1K2

(|10〉〈10|)
}

.

(43)

In Equation (43), we take supreme over all A such that ||A|| = 1, then we have Equation (41).

Theorem 2. The following trade-off inequality holds,

D(K∗E(|0̄0̄〉〈0̄0̄|), K∗E(|1̄1̄〉〈1̄1̄|)) < ∑
i1,i2∈{0,1}

√
2Perr(0;i1,0;i2). (44)

Although Eve tries to distinguish the states on HK1 ⊗HK2 , this theorem gives the same claim
as the one of Theorem 1. This theorem shows that Eve’s extracting information regarding kings’
keys related with the measurement M(1) inevitably induces disturbing the states and increases the
error probability when both of kings choose the measurement M(0). Remark that similar inequalities
between distinguishability of other pairs of states and the error probabilities can be proven in the
similar way as below.

Proof of Theorem 2. In the same manner, let us observe the error probability. Define ρi1i2 :=
K∗K1K2

(|i1i2〉〈i1i2|). By direct calculations (see Appendix B for details), we have the following probability,

Perr(0;i1,0;i2) =

{
1
2 (1− 〈i1i2|ρi1i2 |i1i2〉) (i1 = i2)
1− 1

2 〈i1i2|ρi1i2 |i1i2〉 (i1 6= i2).
(45)

By using Equations (31) and (45), we have

F(ρ00, ρ01) = inf(Ma)a :POVM ∑a
√

tr(Maρ00) tr(Maρ01)

≤
√

tr{(|11〉〈11|+ |01〉〈01|)ρ00} tr{(|00〉〈00|+ |01〉〈01|)ρ01}
+
√

tr{(|00〉〈00|+ |10〉〈10|)ρ00} tr{(|00〉〈00|+ |10〉〈10|)ρ01}
<

√
tr{(|11〉〈11|+ |01〉〈01|)ρ00}+

√
tr{(|00〉〈00|+ |10〉〈10|)ρ01}

=
√

1− 〈00|ρ00|00〉 − 〈10|ρ00|10〉+
√

1− 〈01|ρ01|01〉 − 〈11|ρ01|11〉
<

√
1− 〈00|ρ00|00〉+

√
2− 〈01|ρ01|01〉

=
√

2Perr(0;0,0;0) +
√

2Perr(0;0,0;1).

(46)

where we employ (|11〉〈11|+ |01〉〈01|, |00〉〈00|+ |10〉〈10|) as a POVM in the first inequality. In the
same manner, we have

F(ρii, ρ01) <
√

2Perr(0;i,0;i) +
√

2Perr(0;0,0;1), (47)

F(ρii, ρ10) <
√

2Perr(0;i,0;i) +
√

2Perr(0;1,0;0) (i ∈ {0, 1}). (48)

Then, we have the trade-off inequality by the definition of trace distance, Equations (41) and (48).
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5. Summary

In this paper, we discussed the quantum key distribution protocol using the mean multi-kings’
problem. By using the protocol, Alice can share the secret key with Kingj (j = 1, 2, . . . , n). In the
case of n = 2, we considered whether Eve can extract information when she can performs the
interaction between her own quantum system and the qubit returned by Kingj and can performs
any measurement on her quantum system at any time. We employed trace distance as a measure for
distinguishability of the states for Eve. Furthermore, we gave the trade-off inequalities between trace
distance of the quantum states corresponding to the secret key for Eve and the error probability which
represents probability that the bit sequences shared by the legitimate users do not match. In BB84,
such relation is know as the information disturbance theorem and the theorem is also regarded as
an information theoretical version of the uncertainty relation. Our inequalities showed that Eve’s
extracting information regarding kings’ keys inevitably induces disturbing the states and increases the
error probability even though Alice can use the post-information to guess kings’ outcomes. This implies
that the information gain by Eve increases possibility for the legitimate users to detect the existence
of the attacks. In particular, when the corresponding error probability is zero, Eve cannot extract
any information.
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the published version of the manuscript.

Funding: This research received no external funding.
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Appendix A

We provide a direct calculation for obtaining the error probabilities in the proof of Theorem 1.
Let us consider that the initial state is |Φ(W)〉, Kingj (j ∈ {1, 2}) obtains an outcome ij with M(Jj),

and Eve performs the interaction onHK1 ⊗HE. Let ρ
(W)
(J1;i1,J2;i2)

be a state of the composite system before
Alice’s measurement. The state takes one of the following forms,

ρ
(Z)
(0;i1,0;i1)

= |i1〉〈i1| ⊗ ρi1 ⊗ |i1〉〈i1|, (A1)

ρ
(Z)
(0;i1,1;i2)

= |i1〉〈i1| ⊗ ρi1 ⊗ |ī2〉〈ī2|, (A2)

ρ
(Z)
(1;i1,0;i2)

= |i2〉〈i2| ⊗ ρī1 ⊗ |i2〉〈i2|, (A3)

ρ
(Z)
(1;i1,1;i2)

= |ī1〉〈ī1| ⊗ ρī1 ⊗ |ī2〉〈ī2|, (A4)

ρ
(X)
(0;i1,0;i2)

= |i1 ⊕ i2〉〈i1 ⊕ i2| ⊗ ρi1 ⊗ |i2〉〈i2|, (A5)

ρ
(X)
(0;i1,1;i2)

= |ī2〉〈ī2| ⊗ ρi1 ⊗ |ī2〉〈ī2|, (A6)

ρ
(X)
(1;i1,0;i2)

= |ī1〉〈ī1| ⊗ ρī1 ⊗ |i2〉〈i2|, (A7)

ρ
(X)
(1;i1,1;i1)

= |ī1〉〈ī1| ⊗ ρī1 ⊗ |ī1〉〈ī1|, (A8)

where ρi := T∗K1
(|i〉〈i|), ρī := T∗K1

(|ī〉〈ī|), and ⊕ denotes exclusive or.
By direct calculation of

P(W)
suc(J1;i1,J2;i2)

= ∑
k∈S(W)

(Jj ,ij)
2
j=1

tr
(

P(W)
k ρ

(W)
(J1;i1,J2;i2)

)
, (A9)



Entropy 2020, 22, 1275 13 of 15

we have the following probabilities,

P(Z)
suc(0;i1,0;i1)

= P(Z)
suc(0;i1,1;i2)

= 1, (A10)

P(Z)
suc(1;i1,0;i2)

= P(Z)
suc(1;i1,1;i2)

= 〈ī1|ρī1 ī1〉, (A11)

P(X)
suc(0;i1,0;i2)

= P(X)
suc(0;i1,1;i2)

= 〈i1|ρi1 i1〉, (A12)

P(X)
suc(1;i1,0;i2)

= P(X)
suc(1;i1,1;i1)

= 1, (A13)

where we can find out the index set S(W)

(Jj ,ij)
2
j=1

in Table 1. By the definition of Psuc(J1;i1,J2;i2), we have the

following probabilities,

Psuc(0;i1,0;i2) =

{
1
2 (〈i1|ρi1 i1〉+ 1) (i1 = i2)
1
2 〈i1|ρi1 i1〉 (i1 6= i2),

(A14)

Psuc(0;i1,1;i2) =
1
2
〈i1|ρi1 i1〉, (A15)

Psuc(1;i1,0;i2) =
1
2
〈ī1|ρī1 ī1〉, (A16)

Psuc(1;i1,1;i2) =

{
1
2 (〈ī1|ρī1 ī1〉+ 1) (i1 = i2)
1
2 〈ī1|ρī1 ī1〉 (i1 6= i2).

(A17)

Then, we can observe the error probabilities from these probabilities.

Appendix B

We provide a direct calculation for obtaining the error probabilities in the proof of Theorem 2.
Let us consider that the initial state is |Φ(W)〉, Kingj (j ∈ {1, 2}) obtains an outcome ij with M(Jj),

and Eve performs the interaction on HK1 ⊗HK2 ⊗HEj . Let ρ
′(W)
(J1;i1,J2;i2)

be a state of the composite
system before Alice’s measurement. The state takes one of the following forms,

ρ
′(Z)
(0;i1,0;i1)

= |i1〉〈i1| ⊗ ρi1i1 , (A18)

ρ
′(Z)
(0;i1,1;i2)

= |i1〉〈i1| ⊗ ρi1 ī2 , (A19)

ρ
′(Z)
(1;i1,0;i2)

= |i2〉〈i2| ⊗ ρī1i2 , (A20)

ρ
′(Z)
(1;i1,1;i2)

= |ī1〉〈ī1| ⊗ ρī1 ī2 , (A21)

ρ
′(X)
(0;i1,0;i2)

= |i1 ⊕ i2〉〈i1 ⊕ i2| ⊗ ρi1i2 , (A22)

ρ
′(X)
(0;i1,1;i2)

= |ī2〉〈ī2| ⊗ ρī1i2 , (A23)

ρ
′(X)
(1;i1,0;i2)

= |ī1〉〈ī1| ⊗ ρī1i2 , (A24)

ρ
′(X)
(1;i1,1;i1)

= |ī1〉〈ī1| ⊗ ρī1 ī1 , (A25)

where ρij := K∗K1K2
(|ij〉〈ij|) (i, j ∈ {0, 1, 0̄, 1̄}).

By direct calculation of

P(W)
suc(J1;i1,J2;i2)

= ∑
k∈S(W)

(Jj ,ij)
2
j=1

tr
(

P(W)
k ρ

′(W)
(J1;i1,J2;i2)

)
, (A26)
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we have the following probabilities,

P(Z)
suc(0;i1,0;i1)

= 1, (A27)

P(Z)
suc(0;i1,1;i2)

= 〈ī1 ī2|ρi1 ī2 |ī1 ī2〉+ 〈i1 ⊕ 1ī2|ρi1 ī2 |i1 ⊕ 1ī2〉, (A28)

P(Z)
suc(1;i1,0;i2)

= 〈ī1 ī2|ρī1i2 |ī1 ī2〉+ 〈ī1i2 ⊕ 1|ρī1i2 |ī1i2 ⊕ 1〉, (A29)

P(Z)
suc(1;i1,1;i2)

= 〈ī1 ī2|ρī1 ī2 |ī1 ī2〉, (A30)

P(X)
suc(0;i1,0;i2)

= 〈i1i2|ρi1i2 |i1i2〉, (A31)

P(X)
suc(0;i1,1;i2)

= 〈i1i2|ρi1 ī2 |i1i2〉+ 〈i1i2 ⊕ 1|ρi1 ī2 |i1i2 ⊕ 1〉, (A32)

P(X)
suc(1;i1,0;i2)

= 〈i1i2|ρī1i2 |i1i2〉+ 〈i1 ⊕ 1i2|ρī1i2 |i1 ⊕ 1i2〉, (A33)

P(X)
suc(1;i1,1;i1)

= 1. (A34)

By the definition of Psuc(J1;i1,J2;i2), we have the following probabilities,

Psuc(0;i1,0;i2) =

{
1
2 (〈i1i2|ρi1i2 |i1i2〉+ 1) (i1 = i2)
1
2 〈i1i2|ρi1i2 |i1i2〉 (i1 6= i2),

(A35)

Psuc(0;i1,1;i2) =
1
2
(〈ī1 ī2|ρi1 ī2 |ī1 ī2〉+ 〈i1 ⊕ 1ī2|ρi1 ī2 |i1 ⊕ 1ī2〉

+〈i1i2|ρi1 ī2 |i1i2〉+ 〈i1i2 ⊕ 1|ρi1 ī2 |i1i2 ⊕ 1〉), (A36)

Psuc(1;i1,0;i2) =
1
2
(〈ī1 ī2|ρī1i2 |ī1 ī2〉+ 〈ī1i2 ⊕ 1|ρī1i2 |ī1i2 ⊕ 1〉

+〈i1i2|ρī1i2 |i1i2〉+ 〈i1 ⊕ 1i2|ρī1i2 |i1 ⊕ 1i2〉), (A37)

Psuc(1;i1,1;i2) =

{
1
2 (〈ī1 ī2|ρī1 ī2 |ī1 ī2〉+ 1) (i1 = i2)
1
2 〈ī1 ī2|ρī1 ī2 |ī1 ī2〉 (i1 6= i2).

(A38)

Then, we can observe the error probabilities from those probabilities.
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