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Abstract: We establish Chen inequality for the invariant δ(2, 2) on statistical submanifolds in Hessian
manifolds of constant Hessian curvature. Recently, in co-operation with Chen, we proved a Chen
first inequality for such submanifolds. The present authors previously initiated the investigation of
statistical submanifolds in Hessian manifolds of constant Hessian curvature; this paper represents a
development in this topic.
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1. Introduction

In 1985, Amari [1] introduced the notion of a statistical manifold, closely related with information
geometry. At the same time, the geometry of statistical manifolds is not far from affine differential
geometry, because it also involves dual connections (also called conjugate connections). A Hessian
structure is a particular case of a statistical structure.

Opozda, in [2], defined a sectional curvature on a statistical manifold, which cannot be defined in
a standard way (as in Riemannian geometry), because the dual connections are not metric.

The main Riemannian invariants are the curvature invariants, with many important applications,
for example in physics. Among them, the most studied and well known are the sectional curvature,
scalar curvature, and Ricci curvatures.

In submanifold theory, beside the study of the geometric properties of submanifolds,
establishing sharp relationships between intrinsic and extrinsic invariants is another topic of interest.

In 1993 [3], Chen defined a new type of curvature invariants, which he called δ-invariants (or Chen
invariants) (see also [4,5]). In the same paper, he proved the Chen first inequality for submanifolds in
Riemannian space forms. The Chen first invariant of an n-dimensional Riemannian manifold Mn is
defined by δMn = τ − inf K, where τ and K are the scalar and sectional curvatures of Mn, respectively.

Moreover, δ(2, 2)(p) = τ(p)− inf[K(π1) + K(π2)], where π1 and π2 are mutually orthogonal
plane sections at p ∈ Mn. Chen and his coworkers studied this invariant for Lagrangian submanifolds
in complex space forms (see [6,7]).

On the other hand, in [8], it is shown that a Hessian manifold of constant Hessian curvature c is
a statistical manifold of null constant curvature and a Riemannian space form of constant sectional
curvature −c/4 (with respect to the sectional curvature defined by the Levi-Civita connection).
The present authors (see [9]) initiated the study of statistical submanifolds in such manifolds. In the
same paper [9], we established a Euler inequality and also a Chen–Ricci inequality.
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The curvature invariants of statistical submanifolds in different ambient spaces were recently
studied by several authors, for example in Kenmotsu statistical manifolds of constant φ-sectional
curvature (see [10]). Also, a generalized Wintgen inequality for statistical submanifolds was obtained
in [11].

In 2019, Chen and the present authors [12] proved a Chen first inequality for statistical
submanifolds in Hessian manifolds of constant Hessian curvature.

The main goal of this paper is to establish a Chen-like inequality for the invariant δ(2, 2) on such
submanifolds.

2. Statistical Manifolds and Statistical Submanifolds

A statistical manifold is an m-dimensional Riemannian manifold (M̃m, g) endowed with a pairing
of torsion-free affine connections ∇̃ and ∇̃∗ satisfying

Zg̃ (X, Y) = g̃
(
∇̃ZX, Y

)
+ g̃
(
X, ∇̃∗ZY

)
, (1)

for any X, Y, Z ∈ Γ(TM̃m). One says that the connections ∇̃ and ∇̃∗ are dual connections (see [1,13,14]);
one has (∇̃∗)∗ = ∇̃. The pairing (∇̃, g) is said to be a statistical structure.

The dual connection of a torsion-free affine connection ∇̃ always exists and is given by

∇̃+ ∇̃∗ = 2∇̃0, (2)

where ∇̃0 is the Levi-Civita connection on M̃m.
The curvature tensor fields with respect to the dual connections ∇̃ and ∇̃∗ are denoted by R̃ and

R̃∗, respectively.
The curvature tensor R̃0 associated with ∇̃0 is known as the Riemannian curvature tensor.
A statistical structure (∇̃, g) is called of constant curvature ε ∈ R [14] if

R̃(X, Y)Z = ε{g(Y, Z)X− g(X, Z)Y}, ∀X, Y, Z ∈ Γ(TM̃m). (3)

If the constant curvature is 0, then it is known as a Hessian structure.
The curvature tensor fields R̃ and R̃∗ of the dual connections are related by

g(R̃∗(X, Y)Z, W) = −g(Z, R̃(X, Y)W). (4)

It is clear that if (∇̃, g) is a statistical structure of constant curvature ε, then (∇̃∗, g) is also a statistical
structure of constant curvature ε (obviously, if (∇̃, g) is Hessian, (∇̃∗, g) is also Hessian [8]).

On a Hessian manifold (M̃m, ∇̃), denote by γ = ∇̃− ∇̃0. The tensor field Q̃ of type (1,3) defined by

Q̃(X, Y) = [γX , γY], X, Y ∈ Γ(TM̃m)

is said to be the Hessian curvature tensor for ∇̃ (see [8], [2]). One has

R̃(X, Y) + R̃∗(X, Y) = 2R̃0(X, Y) + 2Q̃(X, Y).

Then, the Hessian sectional curvatures can be defined on a Hessian manifold using Q̃. More precisely,
if one considers p ∈ M̃m and π a plane section in Tp M̃m and an orthonormal basis {X, Y} of π,
then the Hessian sectional curvature is defined by

K̃(π) = g(Q̃(X, Y)Y, X),

independent of the choice of an orthonormal basis.



Entropy 2020, 22, 164 3 of 8

A Hessian manifold is of constant Hessian sectional curvature c if and only if (see [8])

Q̃(X, Y, Z, W) =
c
2
{g(X, Y)g(Z, W) + g(X, W)g(Y, Z)},

for all vector fields on M̃m.
In [8], it is proved that a Hessian manifold of constant Hessian sectional curvature c is a

Riemannian space form of constant sectional curvature −c/4.
Let (M̃m, g) be a statistical manifold and Mn a submanifold of M̃m of dimension n. The induced

connections ∇ and ∇∗ and the induced metric g define a statistical structure on the submanifold
(Mn, g). The set of the sections of the normal bundle to Mn is denoted by Γ(T⊥Mn).

The corresponding Gauss formulae for the conjugate connections (see [15]) are

∇̃XY = ∇XY + h(X, Y), (5)

∇̃∗XY = ∇∗XY + h∗(X, Y), (6)

for any X, Y ∈ Γ(TMn); h, h∗ : Γ(TMn)× Γ(TMn)→ Γ(T⊥Mn) are symmetric and bilinear and they
are known as the imbedding curvature tensor of Mn in M̃m for ∇̃ and the imbedding curvature tensor of Mn

in M̃m for ∇̃∗, respectively. One remarks that (∇, g) and (∇∗, g) are dual statistical structures on Mn.
Since h and h∗ are bilinear, there exist linear transformations Aξ and A∗ξ on TMn defined by

g(Aξ X, Y) = g(h(X, Y), ξ), (7)

g(A∗ξ X, Y) = g(h∗(X, Y), ξ), (8)

for any ξ ∈ Γ(T⊥Mn) and X, Y ∈ Γ(TMn).
Furthermore, the Weingarten formulae are [15]

∇̃Xξ = −A∗ξ X +∇⊥X ξ, (9)

∇̃∗Xξ = −Aξ X +∇∗⊥X ξ, (10)

for any ξ ∈ Γ(T⊥Mn) and X ∈ Γ(TMn). The connections ∇⊥ and ∇∗⊥ defined by Equations (9) and
(10) are Riemannian dual connections with respect to the induced metric on Γ(T⊥Mn).

Let {e1, ..., en} and {en+1, ..., em} be orthonormal tangent and normal frames on M, respectively.
Then, the mean curvature vector fields are defined by

H =
1
n

n

∑
i=1

h(ei, ei) =
1
n

m

∑
α=n+1

(
n

∑
i=1

hα
ii

)
eα, hα

ij = g(h(ei, ej), eα),

H∗ =
1
n

n

∑
i=1

h∗(ei, ei) =
1
n

m

∑
α=n+1

(
n

∑
i=1

h∗αii

)
eα, h∗αij = g(h∗(ei, ej), eα),

for 1 ≤ i, j ≤ n and n + 1 ≤ α ≤ m.
The Gauss, Codazzi, and Ricci equations for statistical submanifolds, with respect to the dual

connections, were established by Vos [15].

Proposition 1. [15] Let ∇̃ and ∇̃∗ be dual connections on a statistical manifold M̃m, and let ∇ be the induced
connection by ∇̃ on a statistical submanifold Mn. Let R̃ and R be the Riemannian curvature tensors for ∇̃ and
∇, respectively. Then,
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g(R̃(X, Y)Z, W) = g(R(X, Y)Z, W) + g(h(X, Z), h∗(Y, W)) (11)

− g(h∗(X, W), h(Y, Z)),

(R̃(X, Y)Z)⊥ = ∇⊥X h(Y, Z)− h(∇XY, Z)− h(Y,∇XZ) (12)

− {∇⊥Y h(Y, Z)− h(∇YX, Z)− h(X,∇YZ)},
g(R⊥(X, Y)ξ, η) = g(R̃(X, Y)ξ, η) + g([A∗ξ , Aη ]X, Y), (13)

where R⊥ is the Riemannian curvature tensor of ∇⊥ on T⊥Mn, ξ, η ∈ Γ(T⊥Mn) and
[A∗ξ , Aη ] = A∗ξ Aη − Aη A∗ξ .

Proposition 2. [15] Let ∇̃ and ∇̃∗ be dual connections on a statistical manifold M̃m, and let∇∗ be the induced
connection by ∇̃∗ on a statistical submanifold Mn. Let R̃∗ and R∗ be the Riemannian curvature tensors for ∇̃∗
and ∇∗, respectively. Then,

g(R̃∗(X, Y)Z, W) = g(R∗(X, Y)Z, W) + g(h∗(X, Z), h(Y, W)) (14)

− g(h(X, W), h∗(Y, Z)),

(R̃∗(X, Y)Z)⊥ = ∇∗⊥X h∗(Y, Z)− h∗(∇∗XY, Z)− h∗(Y,∇∗XZ) (15)

− {∇∗⊥Y h∗(Y, Z)− h∗(∇∗YX, Z)− h∗(X,∇∗YZ)},
g(R∗⊥(X, Y)ξ, η) = g(R̃∗(X, Y)ξ, η) + g([Aξ , A∗η ]X, Y), (16)

where R∗⊥ is the Riemannian curvature tensor of ∇⊥∗ on T⊥Mn, ξ, η ∈ Γ(T⊥Mn) and[
Aξ , A∗η

]
= Aξ A∗η − A∗η Aξ .

3. Chen Inequality for the Chen Invariant δ(2, 2)

In [9], the present authors proved a Euler inequality and also a Chen–Ricci inequality for
submanifolds in a Hessian manifold of constant Hessian curvature. Recently Chen and the present
authors [12] obtained a Chen first inequality for such submanifolds.

Herein, we establish a Chen inequality for the Chen invariant δ(2, 2) on statistical submanifolds
in Hessian manifolds of constant Hessian curvature.

We state the following algebraic lemma which is used in the proof of our main result.

Lemma 1. Let n ≥ 4 be an integer and let a1, ..., an be n real numbers. Then, one has

∑
1≤i<j≤n

aiaj − a1a2 − a3a4 ≤
n− 3

2(n− 2)

(
n

∑
i=1

ai

)2

.

Moreover, the equality holds if and only if a1 + a2 = a3 + a4 = a5 = ... = an.

Proof. We shall prove this Lemma by mathematical induction.
For n = 4, the inequality becomes

a1a3 + a1a4 + a2a3 + a2a4 ≤
1
4
(a1 + a2 + a3 + a4)

2,

or equivalently 0 ≤ (a1 + a2 − a3 − a4)
2, with the equality holding if and only if a1 + a2 = a3 + a4.



Entropy 2020, 22, 164 5 of 8

Let us put

Ln = ∑
1≤i<j≤n

aiaj − a1a2 − a3a4 (17)

and assume

P(n) : Ln ≤
n− 3

2(n− 2)

(
n

∑
i=1

ai

)2

. (18)

The equality sign of Equation (18) holds if and only if a1 + a2 = a3 + a4 = a5 = ... = an.
By using P(n), we find

Ln+1 = Ln + (a1 + ... + an)an+1

≤ n− 3
2(n− 2)

(a1 + ... + an)
2 + (a1 + ... + an)an+1.

(19)

On the other hand, obviously one has

n− 3
2(n− 2)

(a1 + ... + an)
2 + (a1 + a2 + ... + an)an+1

≤ n− 2
2(n− 1)

(a1 + ... + an + an+1)
2,

(20)

because it it equivalent to
[(n− 2)an+1 − (a1 + ... + an)]

2 ≥ 0.

Inequalities (18) and (20) imply P(n + 1), with the equality sign holding if and only if we have
equalities in Equations (19) and (20), i.e.,

a1 + a2 = a3 + a4 = a5 = ... = an,

(n− 2)an+1 = a1 + .... + an.

Thus, an+1 = an and the proof is complete.

Let M̃m(c) be a Hessian manifold of constant Hessian curvature c. Then, it is flat with respect to
the dual connections ∇̃ and ∇̃∗. Moreover, M̃m(c) is a Riemannian space form of constant sectional
curvature −c/4 (with respect to the Levi-Civita connection ∇̃0).

Let Mn be an n-dimensional statistical submanifold of M̃m(c) and p ∈ Mn, and π1 and π2

mutually orthogonal plane sections at p. Consider orthonormal bases {e1, e2} of π1, {e3, e4} of π2,
and {e1, ..., en} and {en+1, ..., em} orthonormal bases of Tp Mnand T⊥p Mn, respectively. We denote by
K0 the sectional curvature of the Levi-Civita connection ∇0 on Mn and by h0 the second fundamental
form of Mn.

The sectional curvatures K(π1) and K(π2) of the plane sections π1 and π2, respectively, are

K(π1) =
1
2
[g(R(e1, e2)e2, e1) + g(R∗(e1, e2)e2, e1)− 2g(R0(e1, e2)e2, e1)],

K(π2) =
1
2
[g(R(e3, e4)e4, e3) + g(R∗(e3, e4)e4, e3)− 2g(R0(e3, e4)e4, e3)].
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Using Equations (11) and (14), we get

K(π1) =
1
2
[g(h∗(e1, e1), h(e2, e2)) + g(h(e1, e1), h∗(e2, e2))

− 2g(h(e1, e2), h∗(e1, e2))]− K0(π1)

=
1
2

m

∑
α=n+1

(h∗α11 hα
22 + hα

11h∗α22 − 2hα
12h∗α12 )− K0(π1)

=
1
2

m

∑
α=n+1

[(hα
11 + h∗α11 )(h

α
22 + h∗α22 )− hα

11hα
22 − h∗α11 h∗α22

− (hα
12 + h∗α12 )

2 + (hα
12)

2 + (h∗α12 )
2]− K0(π1)

=
m

∑
α=n+1

{
2[h0α

11h0α
22 − (h0α

12)
2]− 1

2
[hα

11hα
22 − (hα

12)
2]

− 1
2
[h∗α11 h∗α22 − (h∗α12 )

2]
}
− K0(π1).

The equation of Gauss for the Levi-Civita connection implies

K(π1) =
c
2
+ K0(π1)−

1
2

m

∑
α=n+1

[hα
11hα

22 − (hα
12)

2]

− 1
2

m

∑
α=n+1

[h∗α11 h∗α22 − (h∗α12 )
2].

(21)

Analogously, we have

K(π2) =
c
2
+ K0(π2)−

1
2

m

∑
α=n+1

[hα
33hα

44 − (hα
34)

2]

− 1
2

m

∑
α=n+1

[h∗α33 h∗α44 − (h∗α34 )
2].

(22)

On the other hand, let τ be the scalar curvature of Mn (with respect to the Hessian curvature
tensor Q). Then, from Equations (11) and (14), we have

τ =
1
2 ∑

1≤i<j≤n
[g(R(ei, ej)ej, ei) + g(R∗(ei, ej)ej, ei)− 2g(R0(ei, ej)ej, ei)]

=
1
2 ∑

1≤i<j≤n
[g(h∗(ei, ei), h(ej, ej)) + g(h(ei, ei), h∗(ej, ej))

− 2g(h(ei, ej), h∗(ei, ej))]− τ0

=
1
2

m

∑
α=n+1

∑
1≤i<j<n

(h∗αii hα
jj + hα

iih
∗α
jj − 2hα

ijh
∗α
ij )− τ0

=
1
2

m

∑
α=n+1

∑
1≤i<j≤n

[(hα
ii + h∗αii )(h

α
jj + h∗αjj )− hα

iih
α
jj − h∗αii h∗αjj

− (hα
ij + h∗αij )

2 + (hα
ij)

2 + (h∗αij )
2]− τ0

=
m

∑
α=n+1

∑
1≤i<j≤n

{
2[h0α

ii h0α
jj − (h0α

ij )
2]− 1

2
[hα

iih
α
jj − (hα

ij)
2]

− 1
2
[h∗αii h∗αjj − (h∗αij )

2]
}
− τ0.
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In addition, the equation of Gauss for the Levi-Civita connection implies

τ = τ0 + n(n− 1)
c
4
− 1

2

m

∑
α=n+1

∑
1≤i<j≤n

[hα
iih

α
jj − (hα

ij)
2]

− 1
2

m

∑
α=n+1

∑
1≤i<j≤n

[h∗αii h∗αjj − (h∗αij )
2].

(23)

By subtracting Equations (21) and (22) from Equation (23), we obtain

(τ − K(π1)− K(π2))− (τ0 − K0(π1)− K0(π2)) ≥ (n2 − n− 4)
c
4
−

− 1
2

m

∑
α=n+1

(
∑

1≤i<j≤n
hα

iih
α
jj − hα

11hα
22 − hα

33hα
44

)

− 1
2

m

∑
α=n+1

(
∑

1≤i<j≤n
h∗αii h∗αjj − h∗α11 h∗α22 − h∗α33 h∗α44

)
.

(24)

Let H and H∗ denote the mean curvature vectors with respect to the dual connections ∇ and ∇∗,
respectively. Then, the above lemma implies

∑
1≤i<j≤n

hα
iih

α
jj − hα

11hα
22 − hα

33hα
44 ≤

n− 3
2(n− 2)

(
n

∑
i=1

hα
ii

)2

=
n2(n− 3)
2(n− 2)

(Hα)2,

∑
1≤i<j≤n

h∗αii h∗αjj − h∗α11 h∗α22 − h∗α33 h∗α44 ≤
n− 3

2(n− 2)

(
n

∑
i=1

h∗αii

)2

=
n2(n− 3)
2(n− 2)

(H∗α)2.

By summing the two above relations and substituting the result into Equation (24) , we get

τ − K(π1)− K(π2) ≥ τ0 − K0(π1)− K(π2) + (n2 − n− 4)
c
4
− n2(n− 3)

4(n− 2)
(‖H‖2 + ‖H∗‖2).

In summery, we may state our main result.

Theorem 1. Let Mn (n ≥ 4) be a statistical submanifold in a Hessian manifold M̃m(c) of constant Hessian
curvature c. Then, for any p ∈ Mn and any plane sections π1 and π2 at p, we have

τ0 − K0(π1)− K0(π2) ≤ τ − K(π1)− K(π2) +
n2(n− 3)
4(n− 2)

(‖H‖2 + ‖H∗‖2)− (n2 − n− 4)
c
4

,

where τ0 and K0 are the scalar curvature and the sectional curvature of Mn with respect to the Riemann
curvature tensor and τ and K with respect to the Hessian curvature tensor Q.

Moreover, the equality holds if and only if for any α ∈ {n + 1, ..., m},

hα
11 + hα

22 = hα
33 + hα

44 = hα
55 = ... = hα

nn,

h∗α11 + h∗α22 = h∗α33 + h∗α44 = h∗α55 ... = h∗αnn,

hα
ij = h∗αij = 0, ∀1 ≤ i 6= j ≤ n.

An immediate consequence of Theorem 1 is the following.

Theorem 2. Let Mn (n ≥ 4) be a statistical submanifold in a Hessian manifold M̃m(c) of constant Hessian
curvature c. If there exist a point p ∈ Mn and two mutually orthogonal plane sections π1 and π2 at p such that
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(τ − K(π1)− K(π2))− (τ0 − K0(π1)− K0(π2)) < (n2 − n− 4)
c
4

,

then Mn is nonminimal in M̃m(c), i.e., either H 6= 0 or H∗ 6= 0.

Theorem 1 represents a δ(2, 2) Chen inequality for statistical submanifolds in Hessian manifolds
of constant Hessian curvature.
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