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Abstract: With the wide applications of three-dimensional (3D) meshes in intelligent manufacturing,
digital animation, virtual reality, digital cities and other fields, more and more processing techniques
are being developed for 3D meshes, including watermarking, compression, and simplification, which
will inevitably lead to various distortions. Therefore, how to evaluate the visual quality of 3D mesh is
becoming an important problem and it is necessary to design effective tools for blind 3D mesh quality
assessment. In this paper, we propose a new Blind Mesh Quality Assessment method based on Graph
Spectral Entropy and Spatial features, called as BMQA-GSES. 3D mesh can be represented as graph
signal, in the graph spectral domain, the Gaussian curvature signal of the 3D mesh is firstly converted
with Graph Fourier transform (GFT), and then the smoothness and information entropy of amplitude
features are extracted to evaluate the distortion. In the spatial domain, four well-performing spatial
features are combined to describe the concave and convex information and structural information of
3D meshes. All the extracted features are fused by the random forest regression to predict the objective
quality score of the 3D mesh. Experiments are performed successfully on the public databases and the
obtained results show that the proposed BMQA-GSES method provides good correlation with human
visual perception and competitive scores compared to state-of-art quality assessment methods.

Keywords: blind mesh quality assessment; graph signal processing; graph spectral entropy features;
spatial features

1. Introduction

As three-dimensional (3D) meshes can provide very realistic visual information for users, the
applications of 3D mesh in intelligent manufacturing, digital animation, virtual reality, digital cities,
and other fields are becoming more and more widespread [1]. However, 3D meshes can be compressed,
simplified, embedded with watermarks, etc., in practical applications [2,3], which inevitably leads to
visual distortions of the 3D mesh. Therefore, how to better assess 3D mesh visual quality of the 3D
mesh to provide a standard for measuring the performance of compression, simplification and other
technologies is a critical problem that needs to be solved [4]. In fact, 3D mesh quality assessment can
be divided into subjective and objective quality assessment methods. Subjective assessment results are
close to the subjective visual perception of human eyes, but this method is time-consuming, laborious,
too expensive, and prone to cause errors due to artificial uncertainties. Therefore, it is necessary
to propose an objective quality assessment method that has good consistency with the subjective
perception of human eyes.

Generally, 3D mesh quality assessment (MQA) methods can be divided into full-reference (FR),
reduced-reference (RR), and non-reference (NR), with the NR method also being referred to as the
blind method [5]. Up until now, most of the existing objective 3D MQA methods have mainly been FR
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or RR. Among the FR methods, Hausdorff Distance (HD) [6] calculates and compares the absolute
distance between the distorted and reference 3D meshes, and does not pay attention to the variability
of 3D meshes, so the consistency with human subjective visual perception is poor. Karni et al. [7] used
the information of vertex coordinate positions and combined the geometric Laplacian operator of
the vertex coordinates to calculate the geometric distance between the distorted and the reference 3D
meshes. Later, Karni’s method was improved by Sorkine et al. [8]; they gave greater weight to the
geometric Laplacian operator. Corsini et al. [9] proposed a method based on global roughness variation
to evaluate the visual quality of the watermarked 3D mesh, in which the roughness of the 3D mesh
was defined as the variance of the difference between reference 3D mesh and its smoothed version.

Gelasca et al. changed the definition of roughness, that is, they adopted the variance of the
dihedral angles between adjacent faces in a multi-resolution way to represent the roughness, and
proposed a method called as 3DWPM2 [10]. Lavoué et al. [11] proposed a mesh structural distortion
measure (MSDM) method; they extended the Structure Similarity index of 2D images (SSIM) to the 3D
meshes, compared the difference between the reference and the distorted 3D meshes by comparing
three characteristics of curvature. Later, Lavoué et al. extended the work on the basis of [11], proposing
MSDM2 [12], which mainly considered the problem of multi-scale. Vasa et al. [13] introduced the
visual concealment effect and proposed a mesh error based on the dihedral angle (DAME) method.
Among the RR methods, Wang et al. [14] proposed the fast mesh perceptual distance (FMPD) method,
which is based on local roughness, that is, local roughness is analyzed, and local roughness and overall
roughness are adjusted in the method. Abouelaziz et al. [15] proposed two RR MQA methods (called
as KLD Gamma and KLD Weibull, respectively) using the statistical distribution of dihedral angles
between the distorted and reference 3D meshes. With respect to the NR method, Abouelaziz et al. [16]
defined an index for calculating the surface roughness and proposed a blind mesh quality assessment
(BMQA) method (called as NR-SVR) based on the Gamma statistical model. Abouelaziz et al. [17]
proposed a blind MQA (BMQA) method using a convolutional neural network (CNN) based on the
extraction of visual representative features.

The methods mentioned above mostly belong to FR or RR, and need to refer to the full or partial
information of the original 3D mesh to calculate the geometric distance or extract some features
containing perceptual information to evaluate the 3D mesh visual quality. However, in most cases,
the reference 3D mesh is not available. Therefore, it is crucial to develop BMQA methods. In addition,
the features extracted by the various methods mentioned above are mainly the spatial features, such as
the Hausdorff distance, curvature, dihedral angle, and so on [18]. However, the similarity and
correlation between the vertices of the 3D mesh cannot be well reflected in the spatial features, and the
results show that the consistency of these methods with human visual perception needs to be improved.
Therefore, it is important to explore new features that can well describe the characteristics of the
distorted 3D mesh in other transform domains. Recently, there has been massive progress in research
on sensor networks, traffic transportation networks, communication networks and biological brain
networks [19], and the theory of graph signal processing (GSP) has been proposed [20]. Related studies
have shown that these GSP analysis tools can be used to solve various irregular signal processing
problems in the spectral domain [21,22]. Therefore, in this paper, Graph Fourier transform (GFT) [23] is
firstly used to convert the signal in the spatial domain into the graph spectral domain. Then, efficient
graph spectral features are extracted and adopted to sparsely represent the distortion of the 3D mesh to
reveal the underlying shape characteristics of the 3D mesh in the graph spectral domain. Finally, some
improved spatial features are combined and a new BMQA method is proposed. The main contributions
in this paper are summarized as follows:

(1) Most of the existing 3D MQA methods are not blind. We propose a new BMQA method based
on Graph Spectral Entropy and spatial features, referred to as BMQA-GSES. New features in
the graph spectral domain and spatial domain are defined and extracted for BMQA. The graph
spectral features of 3D mesh can reveal the underlying shape information, while the spatial
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features of the 3D mesh can simulate the external information of the 3D mesh that can be directly
perceived by human eyes.

(2) Inspired by GSP, the Gaussian curvature signal is transformed from the spatial domain to the
graph spectral domain by GFT in the proposed method. In addition, the signal smoothness
and information entropy of amplitude features under different frequency components are then
extracted in the graph spectral domain as underlying shape features of 3D mesh.

(3) Considering that the concavity, convexity and the structural information of the distorted 3D mesh
will change, four spatial features are combined on the base of extracting the graph spectral features.

The rest of this paper is organized as follows. Section 2 introduces the motivation of this
paper. Section 3 describes the details of the proposed BMQA-GSES method. Section 4 analyzes the
performances of all the features of the proposed method and compares it with state-of-art quality
assessment methods. Section 5 concludes the paper.

2. Motivation

The shape representation of 3D mesh depends largely on the coordinate of the vertices of the 3D
mesh and the distribution of triangular structures. Figure 1 shows two types of distorted 3D meshes,
i.e., the distorted 3D mesh with random noise in Figure 1a and the distorted 3D mesh smoothed by
a smoothing filter in Figure 1b. From Figure 1, it can be seen that the distorted 3D meshes change
significantly in the spatial domain. On the one hand, the surface of the model in Figure 1a is significantly
more uneven, while the surface of the 3D model in Figure 1b is smoother. On the other hand, the
coordinate of every vertex and the distribution of triangular structure of the distorted mesh will change
after being processed in various ways, resulting in distortion of the overall shape of the 3D mesh.
At present, most 3D MQA methods focus on spatial features, and they work to a certain extent because
the human eye can be prone to directly perceiving changes in the 3D mesh in the spatial domain.
However, the similarity and correlation between the vertices of the 3D mesh cannot be well reflected in
the spatial features only, and the results show that the consistency of these methods with human visual
perception needs to be improved. Therefore, it is important to explore more effective features that can
better describe the characteristics of the distorted 3D mesh in graph spectral domains.
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3D mesh smoothed by smoothing filter.

Recently, there has been massive progress in research on sensor networks, traffic transportation
networks, communication networks, and biological brain networks, which has caused a lot of
researchers to pay attention to the irregular signals and data of these networks. In general, irregular
signals can be denoted by the graphs of vertices, edges, and weights [24]. Therefore, graph signal
processing (GSP) theory was proposed to deal with the irregular graph signals [20]. In this study field,
the regular time-domain or spatial domain operators, theorems and tools can also be extended to the
vertex domain, including Fourier transform, frequency-selective filter and vertex-frequency analysis,
etc. Some GSP tools can be used to solve various irregular signal processing problems [25].
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In fact, the signal for the vertices of 3D mesh can be regarded as an irregular graph signal, which
indicates that GSP theory can provide a new way to describe the distortion of 3D mesh. As shown
in Figure 2, the relevant features of 3D mesh can be described as one-dimensional signals on the
vertices, which can be transformed by GSP theory into other domains, and then the new features can
be extracted from these domains. Therefore, the purpose of this paper is to transform the irregular
graph signal in the spatial domain of the 3D mesh into the graph spectral domain through the Graph
Fourier transform (GFT), so as to extract some new graph spectral features for appropriate graph
spectral features can sparsely represent the distortion of the 3D mesh and reveal the underlying shape
characteristics of the 3D mesh. In addition, for the sake of reflecting the distorted 3D mesh more
effectively, the improved spatial features are combined to establish a new BMQA method.
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3. The Proposed BMQA-GSES Method

Based on the analysis above, a new BMQA method, called as BMQA-GSES, is proposed and its
specific framework is shown in Figure 3. The method proposed in this paper mainly includes two
aspects: graph spectral features and spatial features. In the graph spectral domain, the Gaussian
curvature signal of the 3D mesh is transformed to the graph spectral domain by GFT. Then, the signal
smoothness and the information entropy of amplitude features under different frequency components
are extracted to describe the characteristics of the distorted 3D mesh. In the spatial domain, features
with concave, convex and structural information of 3D mesh are extracted. Specifically, the features
of shape index and curvedness are used to measure the concave and convex characteristic of the 3D
mesh, while the features of dihedral angle and the distribution of the triangular topology structure of
3D mesh are used to measure structural characteristic of the 3D mesh. All these graph spectral and
spatial features are fused and learned along with the subjective scores using random forest regression
to build the quality prediction model, BMQA-GSES, of the 3D mesh.
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3.1. Graph Spectral Features Analysis

Appropriate graph spectral features can sparsely represent the distortion of 3D mesh and reveal
the underlying shape characteristics of 3D mesh. Therefore, the spectral features are extracted prior to
describe information that cannot be directly perceived by human eyes. To be specific, the Gaussian
curvature signal is firstly defined on the weighted graph of the 3D mesh, because it has been proved
that the Gaussian curvature has good performance in the spatial domain [26] and it has also been
found that the performance can be greatly improved when Gaussian curvature signal is transformed
from the spatial domain to the graph spectral domain by GFT.

To analyze the graph spectral features of the 3D mesh, the construction of weighted graph is the
premise. The 3D mesh can be represented by undirected, connected, weighted graph G = {v, ε, W},
where v represents vertices of 3D mesh, ε represents edges of 3D mesh, and W is weighted adjacency
matrix of 3D mesh. If there is an edge e = (i, j) connecting vertices vi and vj, the entry Wi,j represents
the weight of the edge; otherwise, Wi,j = 0. Figure 4a shows an example weighted graph, and its
corresponding matrix is shown in Figure 4b.
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In this paper, the weight, Wi,j, of an edge connecting vertices vi and vj is expressed by a threshold
Gaussian kernel weighting function

Wi, j =

exp(−
[dist(vi,v j)]

2

2σ2 ) if (vi, v j) ∈ ε

0 otherwise
(1)

where dist(i, j) represents a distance between the vertices vi and vj, and σ is the variance of the distance.
The smoothness can reveal the intrinsic structure of the graph signal to a certain extent. Let fGC be

the Gaussian curvature signal on the weighted graph, then the smoothness can be defined to describe
the intrinsic structural characteristics of the graph signal. The edge derivative of a signal fGC with
respect to edge e = (i, j) at the vertex vi is defined as

∂ fGC

∂e

∣∣∣∣∣
i
=

√
Wi, j

[
fGC(v j) − fGC(vi)

]
(2)

where fGC (vi) is the Gaussian curvature signal at vi, and is expressed as

fGC(vi) = kmax(vi) × kmin(vi) (3)

where kmax (vi) and kmin (vi) represent the maximum and minimum values of the principal curvature of
vi, respectively.

Then, the local variation at vi can be computed by

‖∇i fGC‖2 =

 ∑
e∈ε s.t.e=(i, j) for some j∈v

(
∂ fGC
∂e

∣∣∣∣
i

)2


1
2

=

 ∑
j∈Ni

Wi, j
[

fGC(v j) − fGC(vi)
]2


1
2

(4)

Thus, the smoothness FS of the Gaussian curvature signal fGC on the weighted graph G can be
defined by

FS =
∑
i∈v

‖∇i fGC‖
1
2 =

∑
i∈v

∑
j∈Ni

Wi, j
[

fGC(v j) − fGC(vi)
]2


1
2

(5)

To illustrate the effectiveness of smoothness in 3D mesh, Figure 5 shows the comparison results
of the smoothness of Gaussian curvature signals corresponding to the different distortion degrees
of four 3D meshes. As shown in Figure 6, four 3D meshes are derived from the public LIRIS/EPFL
general-purpose database [9]. Firstly, as far as the 3D mesh is concerned, the structures of “Dinosaur”
and “Armadillo” are relatively rough. Therefore, the smoothness calculated by these two 3D meshes is
relatively large, in other words, the global variance of the model is relatively large, which is consistent
with the performance of human visual perception. Secondly, for each particular model, the smoothness
decreases with the decrease of roughness. Therefore, the smoothness of the Gaussian curvature signal
can be better used to simulate the distortion of 3D mesh. Finally, although the relevant work has
confirmed that Gaussian curvature can well reflect the concave and convex information of the model
in spatial domain, Gaussian curvature is calculated independently based on each isolated vertex,
which cannot accurately measure the correlation and similarity between the vertices of the model,
and the smoothness of the signal can exactly solve this problem. Therefore, the smoothness FS of
the signal fGC is adopted to describe the distorted 3D mesh in the proposed method. In general, the
irregular signals are denoted by the graphs of vertices, edges, and weights. In this research area,
the conventional time-domain or spatial domain operators, theorems and tools are extended to the
vertex domain, including Fourier transform, frequency-selective filter and vertex-frequency analysis
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etc. The theoretical and practical tools for this GSP analysis can be adopted to solve various irregular
signal processing problems [23]. Therefore, in the proposed method, the GFT is used to transform the
irregular Gaussian curvature signal from spatial domain into graph spectral domain, and then the
relevant graph spectral features are extracted to reveal the underlying shape information of 3D mesh
and describe the distortion of 3D mesh.
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Figure 7 depicts the transformation of the graph signal from spatial domain into graph spectral
domain, and the specific description is given in the supplementary section at the end of this section.
For a 3D mesh, its Laplacian matrix L is defined as follows

L = D−W (6)

where W is the weight matrix, D is the degree matrix that can be calculated as follows

Di,i =
N∑

j=1

Wi, j (7)

L is a sparse, symmetric, positive and semi-definite matrix, and has q̃ non-negative eigenvalues
{λq; q = 0, 1, . . . , q, . . . , q̃), and 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λq̃. Thus, σ(L) =

{
λ0,λ1, · · · ,λq̃

}
represents the

frequency component of the whole spectrum. The problem of eigenvalue decomposition can be solved
by many methods. In our method, the Lanczos method [27] is adopted to compute the eigenvectors U
of sparse matrices L, where U = [u1, u2, u3, · · · , uq̃].
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The classical Fourier transform can be expressed by

f̂ (ξ) =
〈

f , e2πiξt
〉
=

∫
R

f (t)e−2πiξtdt (8)

where ξ denotes frequency.
Analogously, the GFT f̂GC of the graph signal of any function fGC ∈ RN defined at the vertice can

be expressed as

f̂GC(λq) =
N∑

i=1

fGC(vi) u∗q (9)

where eigenvector u∗q is a conjugate form of eigenvector uq.
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In classical Fourier analysis, eigenvalues
{
(2πξ)2

}
∈R

in (8) carry a specific concept about frequency,
that is, for ξ close to zero (low frequencies), the related complex exponential eigenfunctions are
relatively smooth and oscillate slowly, while for ξ far away from zero (high frequencies), the related
complex exponential eigenfunctions oscillate faster. Similarly, in graphical signals, the graph Laplacian
eigenvalues and the graph Laplacian eigenvectors provide a similar concept of frequency. For the
connected weighted graph constructed by 3D meshes, the Laplacian eigenvectors of the graph associated
with low frequency changes relatively slowly in the graph, that is, if an edge connected by two vertices
has a large weight, the values of the eigenvectors at those positions may be similar, which means that
these locations of the model are relatively smooth. The eigenvectors associated with larger eigenvalues
vary more dramatically, and the values on the vertices which are connected by these edges with larger
weights are more likely to be different, which also means that these locations of the model are relatively
rough. Therefore, the graph spectral features are adopted to describe the roughness of the 3D mesh.
Related studies have shown that the information entropy can be used to analyze the characteristics of
signals [28,29], and it has been found that information entropy of amplitudes corresponding to the
different frequency components can efficiently and concisely reflect the distortion of 3D mesh in this
paper. Therefore, in the proposed method, the information entropy of amplitudes of the signal fGC in
the graph spectral domain is used as the graph spectral feature, FAM, reflecting the distortion of the 3D
mesh, expressed as follow

FAM = −

q̃∑
q=1

P( f̂GC(λq)) log P( f̂GC(λq)) (10)

where P represents the probability that the amplitude of signal fGC appearing in the spectral domain.
As a supplement, the process of graph signal transformation from vertex domain to graph spectral

domain is described in detail in this part. The specific steps are as follows:
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(1) The Gaussian curvature on each vertex of the 3D mesh is firstly calculated, denoted as signal
fGC(vi);

(2) The weighted graph G = {v,ε,W} is then used to represent 3D mesh, where v represents vertices
of 3D mesh, ε represents edges of 3D mesh, and W is weighted adjacency matrix of 3D mesh;

(3) The graph Laplacian matrix L can be calculated from (6) and (7). The graph Laplacian matrix
is sparse and has very large dimensions because the 3D mesh is composed of a lot of vertices.
Therefore, the Lanczos method is used to calculate the eigenvectors U and eigenvalues E of the
sparse matrix L;

(4) The Gaussian curvature signal is transformed by GFT based on the obtained eigenvector U,
i.e., (9). Since there is a one-to-one correspondence between the eigenvalues and the eigenvectors,
the corresponding amplitude f̂GC of each eigenvalue can be obtained. The eigenvalues of the GFT
replace the concept of frequency in the classical Fourier transform, so the eigenvalues and the
corresponding amplitudes constitute the graph spectrum of 3D mesh.

(5) The information entropy of amplitudes under different frequency components is extracted to
describe the characteristics of 3D mesh in the graph spectral domain.

3.2. Spatial Features Analysis

From Figure 2, it can be found that the distorted 3D mesh will vary greatly in the spatial domain.
The surface of the distorted 3D mesh with random noise is uneven, while the surface of the distorted
3D mesh smoothed by a smoothing filter is very smooth. Therefore, in the case of considering the
graph spectral features, some excellent spatial features are also combined in this paper. In spatial
domain, the features with concave, convex and structural information of 3D mesh are extracted to
simulate human visual perception. Specifically, the features of shape index and curvedness are used to
measure the concave and convex characteristic of the 3D mesh, while the features of dihedral angle
and the distribution of the triangular topology structure of 3D mesh are used to measure structural
characteristic of the 3D mesh.

3.2.1. Concave and Convex Feature Analyses

It is obvious that the roughness of 3D mesh has a great correlation with the visual quality of 3D
mesh. The surface of rough 3D mesh is often uneven, while the surface of smooth 3D mesh tends to be
relatively smooth. Thus, these features of shape index and the curvedness are used to describe the
degree of the roughness of 3D mesh to further predict the objective quality score of 3D mesh.

For a model composed of discrete surfaces, such as 3D mesh, the coordinate positions of the
discrete vertices and the topological structure between the discrete vertices are used to calculate the
approximate value of the curvature of the discrete surface. At present, there are many curvature
estimation methods for 3D mesh. Among them, the normal cycle theory [30] is used in this paper
to estimate curvature tensor for its high accuracy. Then, the curvature tensor T(v) of any vertex v in
domain B can be expressed as

T(v) =
1
|B|

∑
edges e

β(e)|e∩ B|e e
T

(11)

where |B| is the area of B, e is the edge that is completely or partially contained within the domain B,
β(e) is the angle between the normal vectors of two adjacent triangular faces to the edge e, |e∩B| is the
length of the edge e located in B, and e and eT are the unit vector in the direction of e and its transpose,
respectively, as shown in Figure 8. In the proposed method, B is set to be the 1-ring of each vertex v.
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The largest eigenvalue, kmax, and the smallest eigenvalue, kmin, can be obtained by constructing
the curvature tensor, T(v). kmax and kmin, respectively, represent the maximum principal curvature and
minimum principal curvature of the vertex. Then, the shape index, SI, and the curvedness, C, can be
expressed as follows

SI = −
2
π

arctan
kmax + kmin
kmax − kmin

(12)

C =

√
k2

min + k2
max

2
(13)

Figure 9 shows visual maps of the shape index in the vertex domain of the armadillo model.
Figure 9a depicts a distorted 3D mesh with the distortion of random noise, while Figure 9b depicts
a distorted 3D mesh with the distortion of smooth. In addition, the color scale from bottom to top
represents that the value of shape index is getting larger and larger. Obviously, the visual mapping
of the model in Figure 9a,b are significantly different, because the surface of the distorted 3D mesh
in Figure 9a is very rough and the surface of the distorted 3D mesh in Figure 9b is too smooth.
In addition, the shape indexes of different distortion types of different levels are listed in Table 1. It can
be concluded that the shape index can well measure the roughness of the 3D mesh surface, and it has
good consistency with human visual perception. To improve the efficiency of the proposed method,
the generalized Gaussian distribution (GGD) are used to extract the estimated parameters (µ, σ, α) of
shape index distribution curve instead of a lot of original data to represent shape index characteristic,
then, the final shape index feature vector is obtained by

FSI = [SIµ, SIσ, SIα] (14)

where SIµ, SIσ and SIα represent the mean, variance and scale parameter of shape index, respectively.
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Table 1. Comparison of the mean shape index.

Noise Smooth

Level Low Medium High Low Medium High
Armadillo −0.2032 −0.1828 −0.1616 −0.2480 −0.2678 −0.2798

Venus −0.1742 −0.1505 −0.1318 −0.2292 −0.2505 −0.2594
Dinosaur −0.2655 −0.2456 −0.2233 −0.2813 −0.2815 −0.2836

Rocker −0.0691 −0.0656 −0.0622 −0.0837 −0.0859 −0.0878

Figure 10 shows visual maps of the curvedness in the vertex domain of the Venus model. Figure 10a
is a distorted 3D mesh with the distortion of random noise, while Figure 10b is a distorted 3D mesh
with the distortion of smooth. In addition, the color scale from bottom to top represents that the
value of curvedness is getting larger and larger. It is obvious that there are extremely different on
the curvedness of the distorted 3D mesh in Figure 10a,b. On the one hand, the curvature of the most
vertices in Figure 10a is larger than the corresponding vertices in Figure 10b. On the other hand, the
curvature of some rough areas such as the hair is larger than the smooth areas such as the cheek, which
can indicate that the curvedness can also measure the roughness of the 3D mesh surface, and it also
maintains good consistency with the subjective perception of human eyes. Similarly, the GGD are
adopted to extract the estimated parameters (µ, σ, α) of curvedness distribution curve to represent
curvedness characteristic in this part, then, the final curvedness feature vector is obtained by

FC = [Cµ, Cσ, Cα] (15)

where Cµ, Cσ and Cα represent the mean, variance and scale parameter of curvedness.
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3.2.2. Structural Feature Analyses

3D mesh model is composed by a lot of vertices and triangular topological surfaces. Compared
with the reference 3D mesh, the triangular topological structure of the distorted 3D mesh will change
significantly. Thus, two steps are taken in this paper. The first is to count dihedral angle information of
the triangular topology of the 3D mesh, the second is to calculate the area of each triangular topology
of the 3D mesh. In the first step, the normal vector nt of each face of the 3D mesh is calculated, and
then the dihedral angles of two adjacent faces t1, t2 can be obtained by following formula.

Dt1,t2 = arccos(nt1 · nt2) (16)

where nt1 ,nt2 represents the normal vector of two adjacent faces t1, t2, respectively.
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In this part, the mean and variance of dihedral angles are calculated as the structural features to
describe deviation degree of the triangular topology of the model, and the dihedral angles feature
vector, FDA, in spatial domain is expressed as

FDA = [Dµ, Dσ] (17)

where Dµ and Dσ denote the mean and variance parameters of the dihedral angles, respectively.
In fact, rough 3D meshes usually need a lot of small-area triangular topologies to present highly

curved surface shapes, while smooth 3D meshes allow large-area triangular topologies to present a
relatively flat surface shapes. Therefore, we perform histogram statistics on the triangular topological
area of 3D mesh, and the GGD are adopted to extract the estimated parameters (µ, σ, α) of triangular
topological area to represent triangular topological area feature, and the rough feature vector, FA,
is expressed as

FA = [Aµ, Aσ, Aα] (18)

where Aµ, Aσ and Aα represent the mean, variance and scale parameter of triangular topological area,
respectively. In addition, the triangular topological area can be obtained by a common mathematical
formula for calculating the area of a triangle.

3.3. Pooling Strategy

Random forest (RF) regression is used to fuse multi-dimensional features in the proposed
BMQA-GSES method. RF is a machine learning algorithm with fast training speed that is not easy
to overfit. Each decision tree in the forest can judged independently, and the mean value of all the
decision trees is taken as the final output of the RF [31].

In this paper, a set of 13-dimensional feature vectors are extracted to jointly predict the quality
of the distorted 3D mesh. In the process of training, the extracted features and their corresponding
subjective scores of the training 3D meshes are used to construct the 3D mesh quality prediction model,
that is, BMQA-GSES. In the process of testing, the extracted features of the testing 3D meshes are
inputted into the prediction model, which outputs the final quality score Q, expressed by

Q = model(FS, FAM, FSI, FC, FDA, FA) (19)

where model () is the quality prediction model trained by RF.

4. Experimental Results and Discussion

To verify the effectiveness of the proposed BMQA-GSES method, a series of experiments were
performed in the public LIRIS/EPFL general-purpose database [11], which has been widely used for
performance testing of 3D MQA methods. The LIRIS/EPFL general-purpose database consists of 88 3D
meshes, including 4 reference 3D meshes and the corresponding 84 distorted 3D meshes. Every 3D
mesh consists of 40,000 to 50,000 vertices and 80,000 to 90,000 triangular meshes. The reference 3D
meshes are Armadillo, Venus, Dinosaur and Rocker, respectively, as shown in Figure 11. The distorted
3D meshes contain two types of distortion: random noise and smooth distortion. The subjective MOS
of each distorted 3D mesh are available online, ranging from 0 (best quality) to 10 (worst quality).

The proposed BMQA-GSES method has been compared with some influential and effective FR, RR
and NR methods in our experiments. According to the standards recommended by Recommendation
ITU-T P.1401 [32], the Pearson linear correlation coefficient (rp) and the Spearman rank order correlation
coefficient (rs) are selected as the criteria to measure the performance of the proposed method
(BMQA-GSES). Among them, rp can reflect the linear correlation between subjective and objective
scores, while rs can reflect the consistency between subjective and objective scores. For an excellent
objective MQA method, rp and rs should all be close to 1. In this paper, we randomly divide the
database randomly into two 3D mesh sets, 80% of data is used for training and the other 20% is used
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for testing. To eliminate performance bias, random selection of the training and testing sets is repeated
1000 times, and the median performance indices for cases are adopted as the final results.
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4.1. Graph Spectral and Spatial Features Analysis

In the proposed method, the graph spectral and spatial features are considered. The signal
smoothness and the information entropy of amplitude features constitute the graph spectral feature,
i.e., [FS, FAM], and shape index, curvedness, dihedral angle and the distribution triangular topological
area constitute the spatial feature, i.e., [FSI, FC, FDA, FA]. Although the promising performance of the
proposed quality evaluation model has been proved, the specific role of different feature is unkown.
Therefore, it is necessary to analyze the performance of each feature separately in the paper. For this
purpose, the performance results for every feature when used alone to learn the regression model are
shown in Table 2.

From Table 2, the following observations can be derived. Firstly, graph spectral features include
signal smoothness FS and the information entropy of amplitude FAM. Signal smoothness can reveal
the intrinsic structure of graph signal to some extent. The 3D mesh with higher smoothness tends to be
rougher, while the 3D mesh with lower smoothness tends to be smoother. In addition, the experimental
results also show that the signal smoothness feature has good performance and overcomes the defect
that the spatial signal cannot reflect the correlation and similarity between the vertices of the 3D mesh.
Secondly, the Gaussian curvature signal is transformed by GFT in this paper. The Gaussian curvature
in spatial domain can reflect the concave and convex information of the 3D mesh, but it cannot reveal
the frequency information. Therefore, the information entropy of amplitudes under different frequency
components are extracted in the graph spectral domain which have been proved that can represent the
distortion of the 3D mesh, i.e., the low-frequency signal can represent the distortion information of the
smoother region of the 3D mesh, and the high-frequency signal can represent the distortion information
of the rough region of the 3D mesh. The experimental results show that the information entropy
of amplitude features extracted in this paper can better reflect the surface distortion of the model.
In addition, the performance of the method is improved to a certain extent when combining another
graph spectral feature. Thirdly, in the case of considering the graph spectral features, some excellent
spatial features are also combined in this paper. Shape index and curvedness can simulate human
subjective visual perception information in spatial domain, i.e., concave and convex information of 3D
mesh, while the dihedral angle of 3D mesh and the distribution of the triangular topology area can
reflect the structure of 3D mesh, i.e., dihedral angle information and the distribution of the triangular
topology area can reflect the change of the topology. Although any of the spatial features can play an
important role alone, the ingenious combination of the four features can achieve better performance
in the spatial domain. Finally, we observed that although the quality can be predicted well by using
the features of the graph spectral domain or the spatial domain alone, the performance is further
improved when all features are combined. This makes us believe that the graph spectral features and
the spatial features are complementary to each other and should be simultaneously considered for
objective quality assessment of 3D meshes.
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Table 2. Performance of different features on the LIRIS/EPFL general-purpose database (%).

Feature Types Features
Armadillo Venus Dinosaur Rocker Whole

Database

rp rs rp rs rp rs rp rs rp rs

Graph spectral domain FS 98.2 80.0 89.2 73.8 94.9 80.0 97.3 94.9 79.4 52.6
FAM 97.0 80.0 90.8 80.0 71.9 40.0 98.3 80.0 94.8 62.4

Spatial domain

FSI 90.7 40.0 96.5 80.0 90.6 73.8 96.4 94.9 40.4 23.1
FC 98.1 80.0 95.2 80.1 96.7 80.0 97.5 80.0 83.9 57.3

FDA 98.6 80.0 98.5 80.0 98.1 75.5 93.5 94.8 84.9 87.0
FA 96.5 79.9 94.5 79.9 98.2 80.0 96.9 80.1 82.2 86.6

All 98.7 80.0 98.8 80.1 99.2 80.4 99.5 99.9 90.5 87.9

4.2. Overall Performance Comparison

The proposed method is compared with some other state-of-the-art methods on the LIRIS/EPFL
general-purpose database and the LIRIS masking database, as listed in Table 3. Table 3 describes the
principles used by all compared methods. HD [6], GL2 [8], MSDM [11], MSDM2 [12] and DAME [13]
are the FR MQA methods, 3DWPM1 [9], 3DWPM2 [10], FMPD [14], KLD Gamma [15] KLD Weibull [15]
are the RR MQA methods, and NR-SVR [16] is the NR MQA method. The results of different methods
are presented in Table 4. From Table 4, we make the following observations. Firstly, the classical
methods such as HD, which are based on geometric distances, generally do not predict the visual
quality of 3D mesh well, and they also ignore human visual perception characteristics. Secondly,
the proposed method in this paper shows good performance for the most independent models and
the whole database, especially for the whole database, the performance of the proposed method is
obviously better than that of other methods. Figure 12 shows the scatter diagrams of the distorted
3D meshes corresponding to each geometry model that are used as testing 3D meshes. For example,
in Figure 12a, the testing set is composed of all of the Armadillo’s distorted 3D meshes, while all the
remaining distorted 3D meshes make up the training set. From the figures, it can be seen that the
Prediction-MOS pairs are fitted well by the logistic function. However, most of the MQA methods in
Table 4 are the FR MQA methods which require the original 3D mesh as the reference. By contrast, the
proposed BMQA-GSES method is a blind one which potentially has wider application scopes. Thirdly,
most existing 3D MQA methods only consider the characteristics of the spatial domain, while the
proposed method, BMQA-GSES, takes into account the characteristics of other domains to describe the
distortion information more comprehensively. The experimental results also show that the combined
features of different transform domains achieve better performance. Fourthly, both proposed method
and the method NR-SVR [16] perform better than the FR and RR MQA methods, although they are
the blind methods. This phenomenon conveys an important message that it is possible to achieve
better performance by blind MQA methods than those FR MQA ones. Finally, with respect to the blind
MQA methods, the proposed BMQA-GSES method delivers higher rp and rs values than the method in
NR-SVR [16].
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Table 3. List of 3D MQA methods in the experiments.

Type Method Principle

FR

HD [6] Hausdorff distance
GL2 [8] vertex coordinate positions and the Geometrical Laplacian operator

MSDM [11] Local curvature, Contrast, and Structure
MSDM2 [12] Multiscale mesh structural distortion
DAME [13] Dihedral angles

RR

3DWPM1 [9] Global roughness
3DWPM2 [10] Global roughness

FMPD [14] Local roughness analysis and global roughness computation
KLD Gamma [15] Dihedral angles and statistical Gamma distributionmodel
KLD Weibull [15] Dihedral angles and statistical Weibull distribution model

NR
NR-SVR [16] Dihedral angles, visual masking modulation and parameters estimation

The proposed Graph spectral features and spatial features

Table 4. Overall performance comparison on the LIRIS/EPFL general-purpose database (%).

Type Method
Armadillo Venus Dinosaur Rocker Whole

Database

rp rs rp rs rp rs rp rs rp rs

FR

HD [6] 30.2 69.5 0.8 1.6 22.6 30.9 5.5 18.1 11.4 13.8
GL2 [8] 55.5 77.8 77.6 91.0 12.5 30.6 17.1 29.0 42.4 39.3

MSDM [11] 70.0 84.8 72.3 87.6 56.8 73.0 75.0 89.8 75.0 73.9
MSDM2 [12] 85.3 81.6 87.5 89.3 85.7 85.9 87.2 89.6 81.4 80.4
DAME [13] 76.3 60.3 83.9 91.0 88.9 92.8 80.1 85.0 75.2 76.6

RR

3DWPM1 [9] 35.7 65.8 46.6 71.6 35.7 62.7 53.2 87.5 61.8 69.3
3DWPM2 [10] 43.1 74.1 16.4 34.8 19.9 52.4 29.9 37.8 49.6 49.0

FMPD [14] 83.2 75.4 83.9 87.5 88.9 89.6 84.7 88.8 83.5 81.9
KLD Gamma [15] 77.7 71.1 83.4 88.6 70.6 67.9 57.5 78.7 74.0 71.6
KLD Weibull [15] 77.2 67.5 75.4 86.1 70.6 71.3 70.4 77.0 74.1 71.7

NR
NR-SVR [16] 91.5 76.8 88.6 85.7 84.1 78.6 86.6 86.2 87.8 81.5
The proposed 98.7 80.0 98.8 80.1 99.2 80.4 99.5 99.9 90.5 87.9

The proposed method includes 13-dimensional graph spectral and spatial features, which are
complementary with each other to better evaluate the visual quality of 3D mesh. Different from the
most methods that use linear fitting pooling strategy, Random forest (RF) is adopted as the pooling
strategy in our study. RF is a machine-learning algorithm with fast training speed and not easy to
overfitting with a good prediction performance. However, the machine-learning pooling strategy will
take a bit longer time than ordinary linear fitting pooling strategy. Although our method takes a little
more time, the proposed method is highly desirable for the following reasons. Firstly, the performance
of the proposed method is obviously better than other methods. Secondly, the proposed method in this
paper is blind although most of the existing 3D MQA methods are mainly FR. It is very rare to be able
to propose a blind 3D MQA method with such good prediction performance and the blind 3D MQA
method is more widely used than the FR MQA method in practice. Thirdly, the new graph spectral
features are extracts by GSP theory in the paper to describe the characteristics of the distortion 3D
mesh, which can provide a new perspective for subsequent exploration of better 3D MQA methods.



Entropy 2020, 22, 190 16 of 18

Entropy 2020, 22, 190 15 of 18 

 

Table 4. Overall performance comparison on the LIRIS/EPFL general-purpose database (%). 

Type Method 
Armadillo Venus Dinosaur Rocker 

Whole 
Database 

rp rs rp rs rp rs rp rs rp rs 

FR 

HD [6] 30.2 69.5 0.8 1.6 22.6 30.9 5.5 18.1 11.4 13.8 
GL2 [8] 55.5 77.8 77.6 91.0 12.5 30.6 17.1 29.0 42.4 39.3 

MSDM [11] 70.0 84.8  72.3 87.6 56.8 73.0 75.0 89.8 75.0 73.9 
MSDM2 [12] 85.3 81.6 87.5 89.3 85.7 85.9 87.2 89.6 81.4 80.4 
DAME [13] 76.3 60.3 83.9 91.0 88.9 92.8 80.1 85.0 75.2 76.6 

RR 

3DWPM1 [9] 35.7 65.8 46.6 71.6 35.7 62.7 53.2 87.5 61.8 69.3 
3DWPM2 [10] 43.1 74.1 16.4 34.8 19.9 52.4 29.9 37.8 49.6 49.0 

FMPD [14] 83.2 75.4 83.9 87.5 88.9 89.6 84.7 88.8 83.5 81.9 
KLD Gamma [15] 77.7 71.1 83.4 88.6 70.6 67.9 57.5 78.7 74.0 71.6 
KLD Weibull [15] 77.2 67.5 75.4 86.1 70.6 71.3 70.4 77.0 74.1 71.7 

NR 
NR-SVR [16] 91.5 76.8 88.6 85.7 84.1 78.6 86.6 86.2 87.8 81.5 
The proposed 98.7 80.0 98.8 80.1 99.2 80.4 99.5 99.9 90.5 87.9 

The proposed method includes 13-dimensional graph spectral and spatial features, which are 
complementary with each other to better evaluate the visual quality of 3D mesh. Different from the 
most methods that use linear fitting pooling strategy, Random forest (RF) is adopted as the pooling 
strategy in our study. RF is a machine-learning algorithm with fast training speed and not easy to 
overfitting with a good prediction performance. However, the machine-learning pooling strategy will 
take a bit longer time than ordinary linear fitting pooling strategy. Although our method takes a little 
more time, the proposed method is highly desirable for the following reasons. Firstly, the 
performance of the proposed method is obviously better than other methods. Secondly, the proposed 
method in this paper is blind although most of the existing 3D MQA methods are mainly FR. It is 
very rare to be able to propose a blind 3D MQA method with such good prediction performance and 
the blind 3D MQA method is more widely used than the FR MQA method in practice. Thirdly, the 
new graph spectral features are extracts by GSP theory in the paper to describe the characteristics of 
the distortion 3D mesh, which can provide a new perspective for subsequent exploration of better 3D 
MQA methods. 

  
(a) (b) Entropy 2020, 22, 190 16 of 18 

 

  
(c) (d) 

Figure 12. Scatter plots of each type the 3D mesh. (a) Armadillo, (b) Venus, (c) Dinosaur, (d) Rocker. 

5. Conclusions 

The graph spectral features of three-dimensional (3D) mesh can reveal underlying shape 
information, while the spatial features of 3D mesh can simulate the external information of the 3D 
mesh that can be directly perceived by human eyes. Therefore, a new Blind Mesh Quality Assessment 
method based on Graph Spectral Entropy and Spatial features, called as BMQA-GSES, has been 
proposed based on the analysis of features in graph spectral domain and spatial domain. For graph 
spectral feature analysis, graph signal processing (GSP) is used to extract the signal smoothness and 
the information entropy of amplitudes under different frequency components to characterize the 
distortion of 3D mesh. For spatial feature analysis, the features of shape index and the curvedness 
are used to measure the concave and convex characteristic of the 3D mesh, the features of dihedral 
angles and the distribution of the triangular topology structure of 3D mesh are used to measure 
structural characteristic of 3D mesh. In addition, four spatial features are combined to characterize 
visual distortion of 3D mesh. All the extracted features are fused by the random forest regression to 
predict the objective quality score of the 3D mesh. The experimental results obtained on the public 
databases indicate the good performance of the method BMQA-GSES. However, there are some 
aspects of the proposed BMQA-GSES method requiring further study. For example, there is a lot of 
effective information that can be used in graph spectral domain. However, only the signal 
smoothness and the information entropy of amplitudes information are considered in the proposed 
method, thus, how to combine other useful information, such as phase, to describe the distorted of 
3D mesh is an important problem that can be further studied in the future. In addition, GSP analysis 
tool Graph Fourier transform (GFT) is used to transform the signal from graph spectral domain to 
spatial domain in this paper. Therefore, whether there are other available GSP analysis tools (such as 
DCT) that can be used to describe the relevant information in other transform domains for evaluating 
the quality of 3D meshes is also an important issue that needs further study in the future. 

Author Contributions: Y.L. designed and realized the algorithm and drafted the manuscript. M.Y. and G.J. co-
designed the algorithm and polished the manuscript. K.C. analyzed the experimental results and polished the 
manuscript. F.C. co-designed the algorithm. Z.P. analyzed the experimental results. 

Funding: This work was supported by the Natural Science Foundation of China under Grant Nos. 61671258, 
61871247, 61671412 and 61620106012. It was also sponsored by the K.C. Wong Magna Fund of Ningbo 
University. Mei Yu and Gangyi Jiang are the corresponding authors. 

Conflicts of Interest: The authors declare no conflicts of interest. 
  

Figure 12. Scatter plots of each type the 3D mesh. (a) Armadillo, (b) Venus, (c) Dinosaur, (d) Rocker.

5. Conclusions

The graph spectral features of three-dimensional (3D) mesh can reveal underlying shape
information, while the spatial features of 3D mesh can simulate the external information of the
3D mesh that can be directly perceived by human eyes. Therefore, a new Blind Mesh Quality
Assessment method based on Graph Spectral Entropy and Spatial features, called as BMQA-GSES,
has been proposed based on the analysis of features in graph spectral domain and spatial domain.
For graph spectral feature analysis, graph signal processing (GSP) is used to extract the signal
smoothness and the information entropy of amplitudes under different frequency components to
characterize the distortion of 3D mesh. For spatial feature analysis, the features of shape index and the
curvedness are used to measure the concave and convex characteristic of the 3D mesh, the features
of dihedral angles and the distribution of the triangular topology structure of 3D mesh are used
to measure structural characteristic of 3D mesh. In addition, four spatial features are combined to
characterize visual distortion of 3D mesh. All the extracted features are fused by the random forest
regression to predict the objective quality score of the 3D mesh. The experimental results obtained
on the public databases indicate the good performance of the method BMQA-GSES. However, there
are some aspects of the proposed BMQA-GSES method requiring further study. For example, there
is a lot of effective information that can be used in graph spectral domain. However, only the signal
smoothness and the information entropy of amplitudes information are considered in the proposed
method, thus, how to combine other useful information, such as phase, to describe the distorted of 3D
mesh is an important problem that can be further studied in the future. In addition, GSP analysis tool
Graph Fourier transform (GFT) is used to transform the signal from graph spectral domain to spatial
domain in this paper. Therefore, whether there are other available GSP analysis tools (such as DCT)
that can be used to describe the relevant information in other transform domains for evaluating the
quality of 3D meshes is also an important issue that needs further study in the future.
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