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Abstract: In this paper, bright-dark, multi solitons, and other solutions of a (3 + 1)-dimensional
cubic-quintic complex Ginzburg–Landau (CQCGL) dynamical equation are constructed via
employing three proposed mathematical techniques. The propagation of ultrashort optical solitons
in optical fiber is modeled by this equation. The complex Ginzburg–Landau equation with broken
phase symmetry has strict positive space–time entropy for an open set of parameter values. The exact
wave results in the forms of dark-bright solitons, breather-type solitons, multi solitons interaction,
kink and anti-kink waves, solitary waves, periodic and trigonometric function solutions are achieved.
These exact solutions have key applications in engineering and applied physics. The wave solutions
that are constructed from existing techniques and novel structures of solitons can be obtained by
giving the special values to parameters involved in these methods. The stability of this model is
examined by employing the modulation instability analysis which confirms that the model is stable.
The movements of some results are depicted graphically, which are constructive to researchers for
understanding the complex phenomena of this model.

Keywords: modified extended simple equation and exp(−φ(ξ))-expansion methods; proposed
F-expansion method; cubic-quintic complex Ginzburg–Landau equation; multi solitons; periodic
solutions; solitary wave solutions

1. Introduction

The nonlinear Schrödinger’s equations (NLSEs) are well-known models in nonlinear partial
differential equations (PDEs) to govern the optical soliton propagation [1–13]. Since the 19th century,
many researchers have focused on the PDEs with complex variables [14]. Succi was the pioneer
who proposed the complex distribution of the Gross–Pitaevski model through utilizing a lattice
Boltzmann model for Bose–Einstein condensation in 1998. After that, expanding this model to a
higher-dimensional equation was described [15,16]. The authors in [17] proposed one more complex
division for NLSE wherein the function of the wave is separated into phase angle and amplitude.

From NLSEs, the cubic-quintic complex Ginzburg–Landau model is a continuing estimate
to the dynamics of the area in a passively mode-locked laser. It is admitted that this model is
constructive in demonstrating imperative phenomena—for example, erbium-doped fiber amplifiers
and propagation of ultra-short pulses in optical transmission lines having spectral filtering. In physics,
the generalized quintic complex Ginzburg–Landau equation (GQCGLE) was utilized fruitfully in
the formation of other non-equilibrium procedures. In the model, the quintic term explains the
physical significance that is absent in existing models in a previous study [18]. It occurs in various
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branches of science and plays an important role in practical applications including fluid dynamics,
nonlinear optics, mathematical biology, hydro dynamical stability problems, condensed matter physics,
Bose–Einstein condensates, chemical reactions, super conductivity, and quantum field theories [19–23].
It demonstrates prosperous dynamics and has turned into an example for alterations to the chaos of
spatio-temporal. In Refs. [24,25], some other aspects regarding the various forms of Ginzburg–Landau
models are described. This model as well occurs in the investigation of chemical systems studied via
reaction–diffusion equations. The GQCGLE Model also plays the part of a simplified form in fluid
dynamic equations. Recently, numerous researchers have concentrated on this model that involve
localized complex forms in optical media—for example, necklace–ring solitons, vortex solitons, and so
on [26–28].

Complex Ginzburg–Landau models of higher dimensions from complex lattice Boltzmann models
were proposed by the authors [29–31]. These problems were built on the complex lattice Boltzmann
equations. In physics and applied mathematics, the different forms of complex Ginzburg–Landau
equations have attained great attention from researchers, as universal models where the most
interesting solutions are dissipative solitons. In optical lattices of nonlinear self-localized structures,
one- and two-dimensional arrays frequently assigned as discrete solitons have been forecasted and
examined [32]. In [20], mathematical and physical features of the equations based on GQCGLE
were reviewed. As numerical tools, the lattice Boltzmann method (LBM) has been broadly used in
several study areas for examining fluid dynamics in the previous decade. The key theme behind
using a lattice Boltzmann technique is to implement a straightforward mesoscopic equation of a
fluid flow, generally concerning some distinct particle velocities that are not enough for describing
properly the macroscopic flow pattern as the macroscopic PDEs are improved from the mesoscopic
equation preserving preferred physical quantities and the principal to accurate fluxes of the preserved
quantities [33–35]. Different self-interaction potentials were engineered in order to obtain nontrivial
analytic results, with the purpose of testing the robustness of regarding the soliton as the ground state
of the hairy sector, and its key role in the microscopic counting of hairy black hole entropy [36].

In recent years, NLSEs have attracted much attention from the constructing solitons and
numerical solutions due to them being widely used to explain nonlinear complex phenomena.
Several conventional techniques are extracted to obtain exact solutions such as the Tanh and Sech
methods, the inverse scattering method, the extended tanh method, the Hirota bilinear and Darbox
transform methods, the Bäcklund transform method, the generalized F-expansion technique, the Jacobi
elliptic function expansion technique, the reduced differential transform method, the modified direct
algebraic technique, variational iteration methods, and several others [28–35,37–41]. The authors
in [40] have been working on CGLEs using different techniques like the modified simple equation
method. Inspired from the above works, we intend to construct a new soliton solution of the CQCGLE
model using a modified extended simple equation method. The soliton profile is sensitive to entropy,
i.e., due to the changes in the entropy amplitude and the width of solitons. It is also observed that the
increasing ion temperature and increasing magnetic field affect the shape of the soliton.

In the current paper, the aim is to construct the novel analytical solutions in different forms such
as dark-bright solitons, multi solitons, kink and anti-kink waves, solitary wave, and trigonometric
function solutions of (3 + 1)-dimensional CQCGLE via the modified extended simple equation method
(MESEM), exp(−φ(ξ))-expansion method and proposed F-Expansion method. The achieved solutions
are exact and more general. The modulational instability (MI) analysis is discussed by employing
standard stability analysis that confirms that the model is stable and the achieved solutions are
also stable.

This paper is organized as follows. An introduction is given in Section 1. The mathematical model
is described in Section 2. The important steps of the projected techniques are explained in Section 3.
Section 4 applies the proposed methods on (3 + 1)-dimensional CQCGLE. In Section 5, the stability of
this model is discussed by using modulation instability analysis. The discussion of results and their
Physical Interpretations are explained in Section 6. The conclusions are revealed in Section 7.
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2. Mathematical Model

The (3 + 1)-dimensional CQCGLE [42] has the form of

i
∂q
∂z

+

(
1
2
− iη

)(
∂2q
∂x2 +

∂2q
∂y2 +

∂2q
∂t2

)
+ iγq + (1− iλ) |q|2q− (ν− iµ) |q|4q = 0. (1)

This model involves the derivative ∂
∂z which is spatial, and the system evolution depends on the z

coordinate. The λ is the coefficient that accounts for the linear gain (λ > 0) or loss (λ < 0), η shows
effective diffusion, λ is used here for the cubic gain coefficient, and µ accounts for the coefficient
of quintic-loss. All parameters in this model are positive for knowing the physical meaning of
these coefficients. In Equation (1), the term γq + (1− iλ) |q|2Q − (ν− iµ) |q|4q can be observed as
source term.

3. Elucidation of Proposed Methods

In this portion, we will explain the algorithm of MESEM and the exp(−φ(ξ))-expansion scheme
for seeking the solitons solutions of nonlinear PDEs in this section. We suppose a common nonlinear
PDE, say in four independent variables x, y, z and t, is

F
(
q, qt, qx, qy, qz, qtt, qxx, qyy, qzz, . . .

)
= 0, (2)

where F is a polynomial function with respect to some specific variables that involve nonlinear and
linear terms of advanced order derivatives, and the q(x, y, z, t) is an unknown function. By utilizing
transformation, the q(x, y, z, t) can be converted to a polynomial function through which the complex
variable can be combined into real variables.

Consider the transformation for reducing independent variables into a unique variable as

q(x, y, z, t) = ψ(ξ), ξ = k1x + k2y + k3z + ωt, (3)

where k1, k2, k3 are different wavelengths and ω shows frequency. Through employing
transformation (3), Equation (2) is transformed into ODE as

G
(
ψ, ψ′, ψ′′, ψ′′′, . . .

)
= 0, (4)

where G is a polynomial and “(′)” indicates derivative of ψ with respect to ξ.

3.1. Modified Extended Simple Equation Technique

The main steps of proposed technique are:
Step 1: We suppose the solution of Equation (4) has the form of:

ψ(ξ) =
N

∑
i=0

Ai

(
φ′

φ

)i

+
N−1

∑
j=0

Bj

(
φ′

φ

)j ( 1
φ

)
, (5)

where Ai and Bj are real constants to be determined later. In addition, φ(ξ) satisfies the below second
order equation

φ′′(ξ) + Ωφ(ξ) = ρ, (6)
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where Ω and ρ are arbitrary constants. Equation (6) gives three kinds of general solutions having two
arbitrary parameters as follows:

φ(ξ) =


A1cosh(

√
−Ωξ) + A2sinh(

√
−Ωξ) + ρ

Ω , Ω < 0,

A1cosh(
√

Ωξ) + A2sinh(
√

Ωξ) + ρ
Ω , Ω > 0,

µ
2 ξ2 + A1ξ + A2, Ω = 0.

(7)

(
φ′

φ

)2

=



(
ΩA2

1 −ΩA2
2 −

ρ2

Ω

) (
1
φ

)2
−Ω + 2ρ

Ω , Ω < 0,(
ΩA2

1 + ΩA2
2 −

ρ2

Ω

) (
1
φ

)2
−Ω + 2ρ

Ω , Ω >, 0(
A2

1 − 2ΩA2
) ( 1

φ

)2
+ 2ρ

Ω , Ω = 0,

(8)

where the constants A1 and A2 are arbitrary.
Step 2: N is determined via utilizing the balancing principle among the terms of highest order

derivative and the nonlinear in Equation (4), and is positive.
Step 3: Putting Equation (5) along with Equation (6) into Equation (4) and equating the

coefficients of different powers of 1
φι(ξ)

and ( φ′(ξ)
φ(ξ)

) ( 1
φι(ξ)

) to zero capitulates a set of equations.
By using Mathematica software, these sets of equations are resolved, and then the value of parameters
are obtained.

Step 4: Substituting the values of parameters obtained in Step 3 and general solutions (7) of
Equation (6) into Equation (5), solutions of Equation (3) can then be obtained in a concise way.

3.2. Exp(−φ(ξ))-Expansion Method

The main steps of this technique are:
Step 1: We suppose the solution of Equation (4) has the form:

ψ(ξ) =
N

∑
i=−N

B−i(exp(−φ(x)))i, (9)

where Bi are real constants to be determined later. In addition, φ(ξ) satisfies the below second
order equation

φ′(ξ) = exp(−φ(x)) + a exp(φ(x)) + b, (10)

where a and b are arbitrary constants. Equation (6) gives five kinds of general solutions as
Type I When a 6= 0, b2 − 4a > 0,

φ(ξ) = ln

−
√

b2 − 4a tanh
(√

b2−4a
2 (ξ + c)

)
+ b

2a

 . (11)

Type II When a 6= 0, b2 − 4a < 0,

φ(ξ) = ln

√4a− b2 tan
(√

4a−b2

2 (ξ + c)
)
− b

2a

 . (12)

Type III When a = 0, b 6= 0 & b2 − 4a > 0,

φ(ξ) = − ln
(

b
exp(b(ξ + c))− 1

)
. (13)
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Type IV When a 6=, b 6= 0 & b2 − 4a = 0,

φ(ξ) = ln
(
−2b(ξ + c) + 2

b2(ξ + c)

)
. (14)

Type V When a = 0,= 0 & b2 − 4a = 0,

φ(ξ) = ln(ξ + c). (15)

Step 2: N is determined via using the balancing principle among the terms of highest order
derivative and the nonlinear in Equation (4), and is positive.

Step 3: Substituting Equation (9) along with Equation (10) into Equation (4) and equating the
coefficients of different powers of (exp(−φ(x)))i to zero capitulates a set of equations. By using
Mathematica software, these sets of equations are resolved, and then the value of parameters
are obtained.

Step 4: Substituting the values of parameters obtained in Step 3 and general solutions (11) to (15)
of Equation (10) into Equation (9), solutions of Equation (3) can be then be obtained in a concise way.

3.3. Proposed F-Expansion Method

The main steps of proposed technique are:
Step 1: We suppose the solution of Equation (4) has the form:

ψ(ξ) =
N

∑
i=0

Ai (a + F(ξ))i +
−N

∑
j=−1

B−j (a + F(ξ))j , (16)

where Ai, B−j and a are real constants. In addition, F(ξ) satisfies the ODE

F′(ξ) = d0 + d1F(ξ) + d2F2(ξ) + d3F3(ξ), (17)

where di i = 0, 1, 2, 3 are arbitrary constants.
Step 2: N is a positive integer which is determined via utilizing the balancing principle among

the terms of highest order derivative and the nonlinear in Equation (4).
Step 3: Putting Equations (16) along with (17) into (4) and equating the coefficients of different

powers of Fj(ξ)

(a+F(ξ))k to zero capitulates a set of equations. By using Mathematica software, these sets of

equations are resolved, and then the value of parameters are obtained.
Step 4: Substituting the values of parameters obtained in the previous step and solutions of

Equation (17) into Equation (16), solutions of Equation (3) can then be obtained.

4. Solitons Solutions of (3 + 1)-Dimensional Cubic-Quintic Complex Ginzburg–Landau Equation

In this part, we will apply modified extended SEM and exp(−φ(ξ))-expansion scheme to get
a soliton solution. As the Equation (1) is complex, assume the solution in a traveling wave form
as follows:

q(x, y, z, t) = ψ(ξ)eiP, P = α1x + α2y + α3z + τt + ε. (18)

Substitute Equation (18) into Equation (1) and make separate imaginary and real parts as

(τ2 + α2
1 + α2

2 + 2α3)ψ− 2ψ3 + 2νψ5 − 4η[(τω + k1α1 + k2α2)ψ
′ − (ω2 + k2

1 + k2
2)ψ
′′ = 0. (19)

(−2γ− 2ητ2 − 2ηα2
1)ψ− 2ηα2

2 + 2λψ3 − 2µψ5 − (2τω + 2k3 + 2k1α1 + 2k2α2)ψ
′ + 2η(ω2 + k2

1 + k2
2)ψ
′′ = 0 (20)
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Using Equation (20) in Equation (19), we have

((τ2 + α2
1 + α2

2 + 2α3)− 4ν(γ + ητ2 + ηα2
2))ψ− 4η((τω + k1α1 + k2α2) + (τω + 2k3 + 2k1α1 + 2k2α2))ψ

′.
−((ω2 + k2

1 + k2
2)− 4νη(ω2 + k2

1 + k2
2))ψ

′′ − (2 + 4νλ)ψ3 = 0.
(21)

4.1. Solitons Solutions by Extended SEM

In this sub-part, extended SEM is employed to construct the solution of Equation (1). Apply a
homogeneous balance principle on Equation (21) and assume the solution as

ψ(ξ) = A0 + A1
φ′(ξ)

φ(ξ)
+ B0

1
φ(ξ)

. (22)

Substituting Equation (22) along Equation (6) in Equation (21) and setting the coefficients to zero of(
φ′(ξ)
φ(ξ)

)j 1
φk(ξ)

, we obtain a set of equations in parameters B0, A0, A1, λ, η, and ν. This algebraic set of
equations is solved by utilizing Mathematica 9. The following cases are achieved as
Case 1: If Ω > 0,

Set 1:

A0 = B0 = 0, k2 = ±
√
−k2

1 −ω2, k3 =
3α2

√
−k2

1 −ω2 − α1k1 − 2τω

2
, a2 = −

√
ρ2 − a2

1Ω2

Ω
,

α3 =
Ω
(
α2

2(4ην− 1)− α2
1 + 4γν + 4ηντ2 − τ2)+ 2A2

1(2λν + 1)
(
2ρ−Ω2)

2Ω
. (23)

Set 2:

A0 = ± A1
√

2ρ−Ω2
√

Ω
, k2 = −

√
−k2

1 −ω2, k3 =
3α2
√
−k2

1−ω2−α1k1−2τω
2 , a2 = −

√
ρ2−a2

1Ω2

Ω ,

B0 = 0, α3 =
Ω(α2

2(4ην−1)−α2
1+4γν+4ηντ2−τ2)+8A2

1(2λν+1)(2ρ−Ω2)
2Ω .

(24)

Set 3:

A0 =
3B0

(
Ω2
ρ −4

)
2Ω , A1 = 0, α3 =

2ρ2Ω2(α2
2(4ην−1)−α2

1+4γν+τ2(4ην−1))+9B2
0(2λν+1)(Ω2−4ρ)

2

4ρ2Ω2 ,

k2 = ±
√

9B2
0(2λν+1)(Ω2−4ρ)+ρ2Ω(1−4ην)(k2

1+ω2)
ρ2(Ω−4ηνΩ)

, a2 = −
√

4ρ2(2Ω2−9ρ)−9a2
1Ω2(Ω2−4ρ)

3
√

Ω4−4ρΩ2
,

k3 = ±
3α2

√
Ω(ρ2Ω(4ην−1)(k2

1+ω2)−9B2
0(2λν+1)(4ρ−Ω2))

2
√

ρ2Ω2(1−4ην)
− α1k1 − 2τω.

(25)

Exact Solutions of Equation (1) from solutions Sets (23), (24) and (25) are constructed as

q1 = −
A1

(√
−Ω

√
ρ2 − a2

1Ω2 cos
(

ξ
√
−Ω

)
+ a1Ω3/2 sin

(
ξ
√

Ω
))

−
√

ρ2 − a2
1Ω2 sin

(
ξ
√
−Ω

)
+ a1Ω cos

(
ξ
√

Ω
)
+ ρ

eiP. (26)

q2 =
A1√

Ω

±√2ρ−Ω2 −
λΩ

(√
ρ2 − a2

1Ω2 cos
(

ξ
√

Ω
)
+ a1Ω sin

(
ξ
√

Ω
))

−λ
√

ρ2 − a2
1Ω2 sin

(
ξ
√

Ω
)
+ a1λΩ cos

(
ξ
√

Ω
)
+ ρΩ

 eiP. (27)

q3 = B0

Ω

 1

a2Ω sin
(

ξ
√

Ω
)
+ a1Ω cos

(
ξ
√

Ω
)
+ ρ

+
3

2ρ

− 6
Ω

 eiP. (28)

Case 2: If Ω < 0,
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Set 1:

A0 = B0 = 0, k2 = −
√
−k2

1 −ω2, k3 =
3α2

√
−k2

1 −ω2 − α1k1 − 2τω

2
, a2 = ±

√
a2

1Ω2 − ρ2

Ω
,

α3 =
Ω
(
α2

2(4ην− 1)− α2
1 + 4γν + 4ηντ2 − τ2)+ 2A2

1(2λν + 1)
(
2ρ−Ω2)

2Ω
. (29)

Set 2:

A0 = ± A1
√

2ρ−Ω2
√

Ω
, k2 = −

√
−k2

1 −ω2, k3 =
3α2
√
−k2

1−ω2−α1k1−2τω
2 , a2 = −

√
a2

1Ω2−ρ2

Ω ,

B0 = 0, α3 =
Ω(α2

2(4ην−1)−α2
1+4γν+4ηντ2−τ2)+8A2

1(2λν+1)(2ρ−Ω2)
2Ω .

(30)

Set 3:

A0 =
3B0

(
Ω2
ρ −4

)
2Ω , A1 = 0, α3 =

2ρ2Ω2(α2
2(4ην−1)−α2

1+4γν+4ηντ2−τ2)+9B2
0(2λν+1)(Ω2−4ρ)

2

4ρ2Ω2 ,

k2 = ∓
√

Ω(ρ2Ω(4ην−1)(k2
1+ω2)−9B2

0(2λν+1)(4ρ−Ω2))
ρ2Ω2(1−4ην)

, a2 = −
√

9a2
1(4ρΩ2−Ω4)+4ρ2(2Ω2−9ρ)

3
√

4ρΩ2−Ω4
,

k3 = ∓
3α2

√
ρ2Ω(4ην−1)(k2

1+ω2)−9B2
0(2λν+1)(4ρ−Ω2)

2
√

ρ2(1−4ην)
− α1k1 − 2τω.

(31)

Solitons solutions of Equation (1) from solutions (29), (30), and (31) as:

q4 =
A1λ
√
−Ω

(
a1Ω sinh

(
ξ
√
−Ω

)
−
√

a2
1Ω2 − ρ2 cosh

(
ξ
√
−Ω

))
−λ
√

a2
1Ω2 − ρ2 sinh

(
ξ
√
−Ω

)
+ a1λΩ cosh

(
ξ
√
−Ω

)
+ ρΩ

eiP. (32)

q5 = A1

 λ
√
−Ω

(
a1Ω sinh

(
ξ
√
−Ω

)
−
√

a2
1Ω2 − ρ2 cosh

(
ξ
√
−Ω

))
−λ
√

a2
1Ω2 − ρ2 sinh

(
ξ
√
−Ω

)
+ a1λΩ cosh

(
ξ
√
−Ω

)
+ ρΩ

±
√

2ρ−Ω2
√

Ω

 eiP. (33)

q6 = B0

 λ

a2λ sinh
(

ξ
√
−Ω

)
+ a1λ cosh

(
ξ
√
−Ω

)
+ ρ

+
3Ω
2ρ
− 6

Ω

 eiP. (34)

Case 3: If Ω = 0,

Set 1:

A0 = 0, B0 = ±
√

A2
1
(
a2

1 − 2a2
2ρ
)
, k3 = 1

2

(
3α2

√
A2

1(8λν+4)−(4ην−1)(k2
1+ω2)√

4ην−1
− α1k1 − 2τω

)
,

α3 =
α2

2(4ην−1)−α2
1+4γν+τ2(4ην−1)

2 , k2 = −
√

A2
1(8λν+4)−(4ην−1)(k2

1+ω2)√
4ην−1

.

(35)

Set 2:

A0 = B0 = 0, a1 =
√

2a2
√

ρ, α3 =
1
2

(
α2

2(4ην− 1)− α2
1 + 4γν + τ2(4ην− 1)

)
,

k2 = ±

√
A2

1(8λν + 4)− (4ην− 1)
(
k2

1 + ω2
)√

4ην− 1
,

k3 =
1
2

∓3α2

√
A2

1(8λν + 4)− (4ην− 1)
(
k2

1 + ω2
)√

4ην− 1
− α1k1 − 2τω

 . (36)
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Set 3:

A0 = B0 = 0, α3 = 1
2 , α2

2(4ην− 1)− α2
1 + 4γν + τ2(4ην− 1), k2 = ∓

√
A2

1(8λν+4)−(4ην−1)(k2
1+ω2)√

4ην−1
,

k3 = 1
2

(
±

3α2

√
A2

1(8λν+4)−(4ην−1)(k2
1+ω2)√

4ην−1
− α1k1 − 2τω

)
, a1 = −

√
2a2
√

ρ.
(37)

Solitons solutions of Equation (1) from solutions (35), (36) and (37) are constructed as

q7(ξ) =
2
(

A1 (a1 + ξρ)±
√

A2
1
(
a2

1 − 2a2
2ρ
))

2a1ξ + 2a2 + ξ2ρ
eiP. (38)

q8(ξ) =
2A1

(√
2a2
√

ρ + ξρ
)

2a2

(√
2ξ
√

ρ + 1
)
+ ξ2ρ

eiP. (39)

q9 =
2A1

(
ξρ−

√
2a2
√

ρ
)

a2

(
2− 2

√
2ξ
√

ρ
)
+ ξ2ρ

eiP. (40)

4.2. Solitons Solutions by the Exp(−φ(ξ))-Expansion Method

In this sub-part, the exp(φ(ξ))-expansion method is employed to construct the solution of
Equation (1). Apply the homogeneous balance principle on Equation (21) and assume the solution as

ψ(ξ) =
B−1

exp(−φ(ξ))
+ B0 + B1 exp(−φ(ξ)). (41)

Substituting Equation (41) along Equation (10) in Equation (21) and setting the coefficients to zero of
(exp(−φ(x)))i, we obtain a set of equations in parameters B−1, B0, B1, λ, η, a, b and ν. This algebraic
set of equations are solved by utilizing Mathematica 9. The following sets are achieved as

Set 1:

B−1 = 0, B0 =
bB1

2
, k3 =

−α1k1 − 3α2k2 − 2τω

2
, λ =

(4ην− 1)
(
k2

1 + k2
2 + ω2)− B2

1

2B2
1ν

,

α3 =
1
4

(
−k2

1

(
4a− b2

)
(4ην− 1)− k2

2

(
4a− b2

)
(4ην− 1)− 16aηνω2 + 8α2

2ην + 4aω2

−2α2
1 − 2α2

2 + 4b2ηνω2 − b2ω2 + 8γν + 8ηντ2 − 2τ2
)

. (42)

Set 2:

B0 =
bB−1

2a
, B1 = 0, k3 =

−α1k1 − 3α2k2 − 2τω

2
, λ =

a2(4ην− 1)
(
k2

1 + k2
2 + ω2)− B2

−1

2B2
−1ν

,

α3 =
1
4

(
−k2

1

(
4a− b2

)
(4ην− 1)− k2

2

(
4a− b2

)
(4ην− 1)− 16aηνω2 + 8α2

2ην + 4aω2 − 2α2
1

−2α2
2 + 4b2ηνω2 − b2ω2 + 8γν + 8ηντ2 − 2τ2

)
. (43)

Set 3:

k3 = −α1k1

2
− 3α2k2

2
+
√
−k2

1 − k2
2τ, α3 =

α2
2(4ην− 1)− α2

1 + 4γν + 4ηντ2 − τ2

2
,

λ = − 1
2ν

, ω = −
√
−k2

1 − k2
2. (44)
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Set 4:

B−1 = 0, k3 = −α1k1

2
− 3α2k2

2
+
√
−k2

1 − k2
2τ, α3 =

α2
2(4ην− 1)− α2

1 + 4γν + 4ηντ2 − τ2

2
,

λ = − 1
2ν

, ω = ±
√
−k2

1 − k2
2. (45)

Set 5:

B1 = 0, k3 = −α1k1

2
− 3α2k2

2
+
√
−k2

1 − k2
2τ, α3 =

α2
2(4ην− 1)− α2

1 + 4γν + 4ηντ2 − τ2

2
,

λ = − 1
2ν

, ω = −
√
−k2

1 − k2
2. (46)

Set 6:

B−1 =
2aB0

b
, B1 = 0, α1 = −3α2k2 + 2k3 + 2τω

k1
, λ =

b2(4ην− 1)
(
k2

1 + k2
2 + ω2)− 4B2

0

8B2
0ν

,

α3 =
(

k2
1

(
−k2

2

(
4a− b2

)
(4ην− 1)− 16aηνω2 + α2

2(8ην− 2) + 4aω2 + 4b2ηνω2 − b2ω2 + 8γν

+8ηντ2 − 2τ2
)
+ k4

1

(
−
(

4a− b2
))

(4ην− 1)− 2 (3α2k2 + 2k3 + 2τω)2
)

/4k2
1. (47)

Set 7:

B−1 = 0, B0 =
bB1

2
, α1 = −3α2k2 + 2k3 + 2τω

k1
, λ =

(4ην− 1)
(
k2

1 + k2
2 + ω2)− B2

1

2B2
1ν

,

α3 =
(

k2
1

(
−k2

2

(
4a− b2

)
(4ην− 1)− 16aηνω2 + α2

2(8ην− 2) + 4aω2 + 4b2ηνω2 − b2ω2

+8γν + 8ηντ2 − 2τ2
)
+ k4

1

(
−
(

4a− b2
))

(4ην− 1)− 2 (3α2k2 + 2k3 + 2τω)2
)

/4k2
1. (48)

From set 1, the following five types of solutions of Equation (1) are constructed as

Type I: When a 6= 0, b2 − 4a > 0,

q1(ξ) =
B1

2

b− 4a
√

b2 − 4a tanh
(√

b2−4a
2 (ξ + c)

)
+ b

 eiP. (49)

Type II When a 6= 0, b2 − 4a < 0,

q2(ξ) =
B1

2

b− 4a

b−
√

4a− b2 tan
(√

4a−b2

2 (ξ + c)
)
 eiP. (50)

Type III When a = 0, b 6= 0 & b2 − 4a > 0,

q3(ξ) =
bB1

2

(
2

eb(ξ+c) − 1
+ 1
)

eiP. (51)

Type IV When a 6=, b 6= 0 & b2 − 4a = 0,

q4(ξ) =
bB1

2b (ξ + c) + 2
eiP. (52)
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Type V When a = 0,= 0 & b2 − 4a = 0,

q5(ξ) =
B1

2

(
b +

2
ξ + c

)
eiP. (53)

Similarly, further novel exact solutions of (1) forming other solution sets can be constructed.

4.3. Solitons Solutions by the Proposed F-Expansion Method

In this sub-part, the proposed F-Expansion technique is employed to construct the solitons and
wave solutions of Equation (1). Apply the homogeneous balance principle on Equation (21) and
assume the solution of Equation (21) as

ψ(ξ) = A0 + A1 (a + F(ξ)) +
B1

a + F(ξ)
. (54)

Substituting Equation (54) along Equation (17) in Equation (21) and setting the coefficients to zero of
Fj(ξ)

(a+F(ξ))k , we obtain a set of equations in parameters A0, A1, B1, d0, d1, d2, d3, and ν. This algebraic set

of equations are solved by utilizing Mathematica 9. The following cases of solutions are achieved as

Case 1: If d0 = d2 = 0,

A0 = −aA1, B1 = 0, α3 =
d3
(
γ− α2

1η
)
− A2

1d1(2η + λ)

2d3η
, ν =

1
4η

,

k3 = −
A2

1(2η + λ) + 4d3η2 (α1k1 + 3α2k2 + 2τω)

8d3η2 . (55)

A0 = B1 = a = 0, k3 = −
A2

1(2η + λ) + 4d3η2 (α1k1 + 3α2k2 + 2τω)

8d3η2 ,

ν =
1

4η
, α3 =

d3
(
γ− α2

1η
)
− A2

1d1(2η + λ)

2d3η
. (56)

The solitons solutions of Equation (1) from solutions (55) and (56) are constructed as

q11 (ξ) =
A1
√

d1ed1ξ√
1− d3e2d1ξ

ei(α1x+α2y+α3z+tτ+ε), d1 > 0. (57)

q12 (ξ) =
A1
√
−d1√

e−2d1ξ + d3
ei(α1x+α2y+α3z+tτ+ε), d1 < 0. (58)

q13 (ξ) =
A1
√

d1ed1ξ√
1− d3e2d1ξ

ei(α1x+α2y+α3z+tτ+ε), d1 > 0. (59)

q14 (ξ) =
A1
√
−d1√

e−2d1ξ + d3
ei(α1x+α2y+α3z+tτ+ε), d1 < 0. (60)
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Case 2: If d0 = d3 = 0,

A0 = 0, B1 = 0, α3 =
A2

1d2
1(2λν + 1) + 2d2

2
(
α2

2(4ην− 1)− α2
1 + 4γν + τ2(4ην− 1)

)
4d2

2
,

a =
d1

2d2
, k3 =

1
2

3α2

√
A2

1(2λν + 1)− d2
2(4ην− 1)

(
k2

1 + ω2
)√

d2
2(4ην− 1)

− α1k1 − 2τω

 ,

k2 = −

√
A2

1(2λν + 1)− d2
2(4ην− 1)

(
k2

1 + ω2
)√

d2
2(4ην− 1)

. (61)

A0 = 0, B1 = −
A1d2

1
4d2

2
, α3 =

d2
2
(
α2

2(4ην− 1)− α2
1 + 4γν + τ2(4ην− 1)

)
− A2

1d2
1(2λν + 1)

2d2
2

,

a =
d1

2d2
, k3 =

1
2

3α2

√
A2

1(2λν + 1)− d2
2(4ην− 1)

(
k2

1 + ω2
)√

d2
2(4ην− 1)

− α1k1 − 2τω

 ,

k2 = −

√
A2

1(2λν + 1)− d2
2(4ην− 1)

(
k2

1 + ω2
)√

d2
2(4ην− 1)

. (62)

A0 =
A1

2

(
d1

d2
− 2a

)
, α3 =

A2
1d2

1(2λν + 1) + 2d2
2
(
α2

2(4ην− 1)− α2
1 + 4γν + τ2(4ην− 1)

)
4d2

2
,

B1 = 0, k3 =
1
2

3α2

√
A2

1(2λν + 1)− d2
2(4ην− 1)

(
k2

1 + ω2
)√

d2
2(4ην− 1)

− α1k1 − 2τω

 ,

k2 = −

√
A2

1(2λν + 1)− d2
2(4ην− 1)

(
k2

1 + ω2
)√

d2
2(4ην− 1)

. (63)

The solitons of Equation (1) from solutions (61) and (62) are constructed as

q21 (ξ) =
A1d1

(
d2ed1ξ + 1

)
2d2

(
1− d2ed1ξ

) ei(α1x+α2y+α3z+tτ+ε), d1 > 0. (64)

q22 (ξ) =
A1d1

(
1− d2ed1ξ

)
2d2

(
d2ed1ξ + 1

) ei(α1x+α2y+α3z+tτ+ε), d1 < 0. (65)

q23 (ξ) =
2A1d1ed1ξ

1− d2
2e2d1ξ

ei(α1x+α2y+α3z+tτ+ε), d1 > 0. (66)

q24 (ξ) =
2A1d1ed1ξ

d2
2e2d1ξ − 1

ei(α1x+α2y+α3z+tτ+ε), d1 < 0. (67)

Similarly, more generalized results can be constructed of Equation (1) from solution (63).
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Case 3: If d1 = d3 = 0,

A0 = −aA1, α3 =
d2
(
α2

2(4ην− 1)− α2
1 + 4γν + τ2(4ην− 1)

)
− 2A2

1d0(2λν + 1)
2d2

,

B1 = 0, k3 = −1
2

3α2

√
A2

1(2λν + 1)− d2
2(4ην− 1)

(
k2

1 + ω2
)√

d2
2(4ην− 1)

+ α1k1 + 2τω

 ,

k2 =

√
A2

1(2λν + 1)− d2
2(4ην− 1)

(
k2

1 + ω2
)√

d2
2(4ην− 1)

. (68)

A0 = 0, a = 0, α3 =
d2
(
α2

2(4ην− 1)− α2
1 + 4γν + τ2(4ην− 1)

)
− 8A2

1d0(2λν + 1)
2d2

,

B1 = −A1d0

d2
, k3 =

1
2

3α2

√
A2

1(2λν + 1)− d2
2(4ην− 1)

(
k2

1 + ω2
)√

d2
2(4ην− 1)

− α1k1 − 2τω

 ,

k2 = −

√
A2

1(2λν + 1)− d2
2(4ην− 1)

(
k2

1 + ω2
)√

d2
2(4ην− 1)

. (69)

A0 = 0, α3 =
d2
(
α2

2(4ην− 1)− α2
1 + 4γν + τ2(4ην− 1)

)
− 2A2

1d0(2λν + 1)
2d2

,

B1 = 0, a = 0, k2 = −

√
A2

1(2λν + 1)− d2
2(4ην− 1)

(
k2

1 + ω2
)√

d2
2(4ην− 1)

,

k3 =
1
2

3α2

√
A2

1(2λν + 1)− d2
2(4ην− 1)

(
k2

1 + ω2
)√

d2
2(4ην− 1)

− α1k1 − 2τω

 . (70)

The solitons solutions of Equation (1) from solutions (68) and (69) are constructed as

q31 (ξ) =
A1d0 tan

(√
d0d2ξ

)
√

d0d2
ei(α1x+α2y+α3z+tτ+ε), d0d2 > 0. (71)

q32 (ξ) =
A1d0 tanh

(√
−d0d2ξ

)
√
−d0d2

ei(α1x+α2y+α3z+tτ+ε), d0d2 < 0. (72)

q33 (ξ) =
A1d0 tan

(√
d0d2ξ

) (
1− cot2 (√d0d2ξ

))
√

d0d2
ei(α1x+α2y+α3z+tτ+ε), d0d2 > 0. (73)

q34 (ξ) =
A1d0 tanh

(√
−d0d2ξ

) (
coth2 (√−d0d2ξ

)
+ 1
)

√
−d0d2

ei(α1x+α2y+α3z+tτ+ε), d0d2 < 0. (74)

Similarly, more results can be constructed of Equation (1) from solutions (63).
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Case 4: If d3 = 0,

A0 =
B1(d1−2ad2)

2(a(ad2−d1)+d0)
, k2 = −

√
B2

1(2λν+1)−(a(ad2−d1)+d0)
2(4ην−1)(k2

1+ω2)√
(a(ad2−d1)+d0)2(4ην−1)

,

A1 = 0, k3 = 1
2

(
3α2

√
B2

1(2λν+1)−(a2d2−ad1+d0)2(4ην−1)(k2
1+ω2)√

(a(ad2−d1)+d0)2(4ην−1)
− α1k1 − 2τω

)
,

α3 =
(
2a4d2

2
(
α2

2(4ην− 1)− α2
1 + 4γν + τ2(4ην− 1)

)
+ 4a3d1d2

(
α2

2(1− 4ην) + α2
1 − 4ν

(
γ + ητ2)

+τ2)+ d2
1
(
2a2 (α2

2(4ην− 1)− α2
1 + 4γν + τ2(4ην− 1)

)
+ B2

1(2λν + 1)
)
+ 4d0

(
d2
(
a2 (α2

2(4ην

−1)− α2
1 + 4γν + τ2(4ην− 1)

)
− B2

1(2λν + 1)
)
+ ad1

(
α2

2(1− 4ην) + α2
1 − 4ν

(
γ + ητ2)

+τ2))+ d2
0
(
α2

2(8ην− 2)− 2α2
1 + 8γν + 2τ2(4ην− 1)

))
/
(

4 (a (ad2 − d1) + d0)
2
)

.

(75)

A0 =
A1(d1−2ad2)−

√
A2

1(d2
1−4d0d2)

2d2
, k2 = −

√
A2

1(2λν+1)−d2
2(4ην−1)(k2

1+ω2)√
d2

2(4ην−1)
,

B1 = 0, α3 =
2A2

1(d2
1−4d0d2)(2λν+1)+d2

2(α2
2(4ην−1)−α2

1+4γν+τ2(4ην−1))
2d2

2
,

k3 =
(

3
(

4α2ηd2

√
(4ην− 1)

(
A2

1(2λν + 1)− d2
2(4ην− 1)

(
k2

1 + ω2
))

+ A2
1

√
d2

1 − 4d0d2(4ην

−1)(2λν + 1))− 4d2
2η(4ην− 1) (α1k1 + 2τω)

)
/
(
8d2

2η(4ην− 1)
)

.

(76)

The solitons solutions of Equation (1) from solutions (75) and (76) are constructed as

q41 (ξ) =
B1ei(α1x+α2y+α3z+tτ+ε)

2

 4d2

2ad2 +
√

4d0d2 − d2
1 tan

(√
4d0d2−d2

1
2 ξ

)
− d1

+
d1 − 2ad2

a2d2 − ad1 + d0

)
, 4d0d2 > d2

1. (77)

q42 (ξ) =

A1

√
4d0d2 − d2

1 tan
(√

4d0d2−d2
1

2 ξ

)
− A1

√
d2

1 − 4d0d2

2d2
ei(α1x+α2y+α3z+tτ+ε), 4d0d2 > d2

1. (78)

5. Modulation Instability

Several nonlinear systems reveal instability that results in the modulation of the steady state
owing to the connection among nonlinear and dispersive effects. We examine the MI of model (1)
employing the standard linear stability analysis [3–5,41,43]. The solutions of Equation (1) in the
steady-state form are as

q(x, y, z, t) =
(√

Po + A(x, y, z, t)
)

eiφ(z), φ(z) = δεPoz, (79)

where the Po optical power is normalized. Through using the analysis of linear stability, the perturbation
A(x, y, z, t) is examined. Using Equation (79) in Equation (1) and linearizing, we get

2i
∂A
∂z

+ (1− 2iη)
(

∂2 A
∂x2 +

∂2 A
∂y2 +

∂2 A
∂t2

)
+ 2

(
iγ + 2Po − δεPo − 2iλPo + 3iµP2

o − 3νP2
o

)
A

+2Po (1− iλ + 2iµPo − 2νPo) A∗ = 0. (80)

The above Equation (80) can be resolved easily in wave number domain. However, as A∗ terms (which
shows a complex conjugate), the Fourier terms at ω and −ω are coupled so we seek the solution of
Equation (80) that has a form as follows:

A(x, y, z, t) = α1ei(k1x+k2y+k3z−ωt) + α2e−i(k1x+k2y+k3z−ωt), (81)
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where k1 is normalized wave number and and ω is a frequency of A(x, y, z, t). Substituting
Equation (81) in Equation (80), we obtained a dispersion relation as follows:

k3 = ±

√
−B

(
(2η + i)

(
k2

1 + k2
2 + ω2

)
+ 8iγδλεP3

o + 2(λ + i)Po − 18µνP4
o − 4(µ + iν)P2

o
)

2
. (82)

where B = (2η + i)
(
k2

1 + k2
2 + ω2) + 8iγδλεP3

o − 2(λ + i)Po − 18µνP4
o + 4(µ + iν)P2

o . The above
dispersion relation (82) illustrates that stability of steady state be contingent on self-phase and Raman
scattering. −B

(
(2η + i)

(
k2

1 + k2
2 + ω2)+ 8iγδλεP3

o + 2(λ + i)Po − 18µνP4
o − 4(µ + iν)P2

o
)

> 0,
which shows that the steady state is stable against slight perturbations. In other cases, it becomes
unstable. If −B

(
(2η + i)

(
k2

1 + k2
2 + ω2)+ 8iγδλεP3

o + 2(λ + i)Po − 18µνP4
o − 4(µ + iν)P2

o
)
< 0,

it shows that k3 is imaginary; meanwhile, the perturbation cultivates
exponentially. One can see this straightforwardly for instances of MI when
−B

(
(2η + i)

(
k2

1 + k2
2 + ω2)+ 8iγδλεP3

o + 2(λ + i)Po − 18µνP4
o − 4(µ + iν)P2

o
)
< 0. Underneath this

condition, the evolution rate of the MI gain spectrum h(k) can be expressed as

h(k1, k2,ω) = 2Img(k1, k2, ω)

=
√
−B

(
(2η + i)

(
k2

1 + k2
2 + ω2

)
+ 8iγδλεP3

o + 2(λ + i)Po − 18µνP4
o − 4(µ + iν)P2

o
)
. (83)

6. Discussion of Results and Their Physical Interpretation

Many achieved results of Equation (1) via a proposed modified extended simple equation,
exp(−φ(ξ))-expansion, and proposed F-expansion methods that are novel and dissimilar from the
constructed results of other techniques [21,30,42]. The main key point to obtain novel results of our
proposed methods is the main body of new proposed solutions (5), (9), (16) and ODEs (6), (10), (17).
Equations (6), (10) and (17) provide a distinct type of results—for example, trigonometric, hyperbolic
trigonometric, rational functions and other solutions through giving dissimilar values of parameters
in these ODEs. The exact wave results in the forms of dark-bright solitons, breather-type and multi
solitons, kink and anti-kink waves, and periodic and trigonometric function solutions are achieved.
The constructed solutions are exact and more general. The authors in [21] discussed the global existence
and small dispersion limit and the authors in [30] constructed the approximate solution of this model.
The researchers in [42] simulated the vortex tori solitons of this dynamical model. Consequently,
our achieved results are innovative and have not been articulated previously.

We demonstrated three-dimensional and two-dimensional structures of some obtained results
for the model (1). In order to observe the physical appearance of this model, the physical structures
are described by giving appropriate values to the parameters. In Figure 1, the structures of results
(26)–(28) are depicted at dissimilar values of parameters: Figure 1A is a multi bright-dark soliton and
its 2-dim is in Figure 1B, Figure 1C is a multi solitons interaction and its 2-dim is in Figure 1D, Figure 1E
is a periodic soliton and its 2-dim is in Figure 1F. In Figure 2, the structures of results (32)–(34) are
depicted at dissimilar values of parameters: Figure 2A is a dark soliton and its 2-dim is in Figure 2B,
Figure 2C is a anti-kink soliton and its 2-dim is in Figure 2D, and Figure 1E is a Bright soliton and and
its 2-dim is in Figure 1F. In Figure 3, the structures of results (49) and (50) are depicted at dissimilar
values of parameters: Figure 3A is a periodic solitary wave and its 2-dim is in Figure 3B, Figure 3C is a
breather-type waves of strange structure and its 2-dim is in Figure 3D.
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Figure 1. The graph of results (26)–(28) are depicted at dissimilar values of parameters and we obtained:
(A) multi bright-dark solitons and its 2-dim in (B), (C) multi solitons interaction and its 2-dim in (D),
(E) periodic solitons and and its 2-dim in (F).
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Figure 2. The graph of results (32)–(34) are depicted at dissimilar values of parameters and we obtained:
(A) dark soliton and its 2-dim in (B), (C) anti-kink soliton and its 2-dim in (D), (E) bright soliton and
and its 2-dim in (F).
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Figure 3. Solitary wave and soliton in various silhouettes are depicted of solutions (49) and (50)
by choosing different values of parameters: (A) periodic solitary wave and its 2-dim in (B), (C)
breather-type waves of strange structure and its 2-dim in (D).

In Figure 4, the structures of results (57) and (59) are depicted at dissimilar values of parameters:
Figure 4A is a bright solitary wave and its 2-dim is in Figure 4B, Figure 4C is an anti-kink soliton and
its 2-dim is in Figure 4D. The structures in Figure 5 are depicted of results (64) and (67) at dissimilar
values of parameters: Figure 5A is a dark compact type soliton and its 2-dim is in Figure 5B, Figure 5C
is a compact type soliton and its 2-dim is in Figure 5D. In Figure 6, the structures are depicted of
results (73) and (78) at dissimilar values of parameters: Figure 6A is a periodic soliton and its 2-dim is
in Figure 6B, Figure 6C is a multi-kink type solitary wave and its 2-dim is in Figure 6D. Figure 7 is the
shape of dispersion relation.
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Figure 4. The graph of results (57) and (59) are depicted at dissimilar values of parameters and we
obtained: (A) bright solitary wave and its 2-dim in (B), (C) anti-kink soliton and its 2-dim in (D).

Figure 5. Cont.
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Figure 5. The structures of results (64) and (67) are depicted at dissimilar values of parameters: (A) dark
compact type soliton and its 2-dim is in (B), (C), compact type soliton and its 2-dim is in (D).

Figure 6. The structures of results (73) and (78) are depicted at dissimilar values of parameters:
(A) periodic soliton and its 2-dim is in (B), (C) multi-kink type solitary wave and its 2-dim is in (D).
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Figure 7. The graph of dispersion relation k3 = k3(k1, k2, ω).

7. Conclusions

Three analytical methods have been successfully employed for (3 + 1)-dimension cubic-quintic
complex Ginzburg–Landau equation and bright-dark solitons, breather-type and multi solitons
interaction, kink and anti-kink solitons, and periodic and other solutions are constructed. The soliton
profile is sensitive to entropy, i.e., due to the changes in the entropy amplitude and the width of
solitons. The propagation of ultrashort optical solitons in optical fiber is modeled by this equation.
The complex Ginzburg–Landau equation with broken phase symmetry has strict positive space–time
entropy for an open set of parameter values. The motivation and purpose of this paper is to provide
analytical methods to explore exact solutions which helps physicians, mathematicians, and engineers
to understand the physical phenomena of this model. The obtained solutions of this article are very
helpful in governing solitons dynamics. The traveling wave solutions can also be attained, which are
constructed from existing techniques by giving special values to parameters involved in the methods.
The model stability is examined by employing the modulation instability analysis, which shows that
the model is stable. The computation work and constructed exact solutions endorse the easiness,
effectiveness, and influence of the current techniques. These powerful techniques can be employed for
several other nonlinear complex PDEs that are arising in mathematical physics.
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