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Abstract: In this paper, we introduce a new class of robust model selection criteria. These criteria are
defined by estimators of the expected overall discrepancy using pseudodistances and the minimum
pseudodistance principle. Theoretical properties of these criteria are proved, namely asymptotic
unbiasedness, robustness, consistency, as well as the limit laws. The case of the linear regression
models is studied and a specific pseudodistance based criterion is proposed. Monte Carlo simulations
and applications for real data are presented in order to exemplify the performance of the new
methodology. These examples show that the new selection criterion for regression models is a good
competitor of some well known criteria and may have superior performance, especially in the case of
small and contaminated samples.

Keywords: model selection; minimum pseudodistance estimation; Robustness

1. Introduction

Model selection is fundamental to the practical applications of statistics and there is a substantial
literature on this issue. Classical model selection criteria include, among others, the Cp-criterion,
the Akaike Information Criterion (AIC), based on the Kullback-Leibler divergence, and the Bayesian
Information Criterion (BIC) as well as a General Information Criterion (GIC) which corresponds to
a general class of criteria which also estimates the Kullback-Leibler divergence. These criteria have
been proposed respectively in [1–4], and represent powerful tools for choosing the best model among
different candidate models that can be used to fit a given data set. On the other hand, many classical
procedures for model selection are extremely sensitive to outliers and to other departures from the
distributional assumptions of the model. Robust versions of classical model selection criteria, which
are not strongly affected by outliers, have been proposed for example in [5–7]. Some recent proposals
for robust model selection are criteria based on divergences and minimum divergence estimators.
We recall here, the Divergence Information Criteria (DIC) based on the density power divergences
introduced in [8], the Modified Divergence Information Criteria (MDIC) introduced in [9] and the
criteria based on minimum dual divergence estimators introduced in [10].

The interest on statistical methods based on divergence measures has grown significantly in
recent years. For a wide variety of models, statistical methods based on divergences have high model
efficiency and are also robust, representing attractive alternatives to the classical methods. We refer
to the monographs [11,12] for an excellent presentation of such methods, for their importance and
applications. The pseudodistances that we use in the present paper were originally introduced in [13],
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where they are called “type-0” divergences, and corresponding minimum divergence estimators
have been studied. They are also presented and extensively studied in [14] where they are called
γ-divergences, as well as in [15] in the context of decomposable pseudodistances. Like divergences,
the pseudodistances are not mathematical metrics in the strict sense of the term. They satisfy
two properties, namely the nonnegativity and the fact that the pseudodistance between two probability
measures equals to zero if and only if the two measures are equal. The divergences are moreover
characterized by the information processing property, that is, the complete invariance with respect to
statistically sufficient transformations of the observation space. In general, a pseudodistance may not
satisfy this property. We have adopted the term pseudodistance for this reason, but in literature we
can also encounter the other terms mentioned above.

The pseudodistances that we consider in this paper have also been used to define robustness and
efficiency measures, as well as the corresponding optimal robust M-estimators following the Hampel’s
infinitesimal approach in [16]. The minimum pseudodistance estimators for general parametric
models have been studied in [15] and consist of minimizing an empirical version of a pseudodistance
between the assumed theoretical model and the true model underlying the data. These estimators have
the advantage of not requiring any prior smoothing and conciliate robustness with high efficiency,
providing a high degree of stability under model misspecification, often with a minimal loss in model
efficiency. Such estimators are also defined and studied in the case of the multivariate normal model,
as well as for linear regression models in [17,18], where applications for portfolio optimization models
are also presented.

In the present paper we propose new criteria for model selection, based on pseudodistances
and on minimum pseudodistance estimators. These new criteria have robustness properties,
are asymptotically unbiased, consistent and compare well with some other known model selection
criteria, even for small samples.

The paper is organized as follows—Section 2 is devoted to minimum pseudodistance estimators
and to their asymptotic properties, which will be needed in the next sections. Section 3 presents new
estimators of the expected overall discrepancy using pseudodistances, together with corresponding
theoretical properties including robustness, consistency and limit laws. The new asymptotically
unbiased model selection criteria are presented in Section 3.3, where the case of the univariate normal
model and the case of linear regression models are investigated. Applications based on Monte Carlo
simulations and on real data, illustrating the performance of the new methodology in the case of linear
regression models, are included in Section 4.

2. Minimum Pseudodistance Estimators

The construction of new model selection criteria is based on using the following family of
pseudodistances (see [15]). For two probability measures P and Q admitting densities p and q
respectively with respect to the Lebesgue measure, the family of pseudodistances of order γ > 0 is
defined by

Rγ(P, Q) =
1

γ + 1
ln
(∫

pγdP
)
+

1
γ(γ + 1)

ln
(∫

qγdQ
)
− 1

γ
ln
(∫

pγdQ
)

(1)

and satisfies the limit relation
lim
γ→0

Rγ(P, Q) = R0(P, Q), (2)

where R0(P, Q) :=
∫

ln q
p dQ is the modified Kullback-Leibler divergence.

Let (Pθ) be a parametric model indexed by θ ∈ Θ, where Θ is a d-dimensional parameter space,
and pθ be the corresponding densities with respect to the Lebesgue measure λ. Let X1, . . . , Xn be
a random sample on Pθ0 , θ0 ∈ Θ. For γ > 0 fixed, a minimum pseudodistance estimator of the
unknown parameter θ0 from the law Pθ0 is defined by replacing the measure Pθ0 in the pseudodistance
Rγ(Pθ , Pθ0) by the empirical measure Pn pertaining to the sample, and then minimizing this empirical
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quantity with respect to θ on the parameter space. Since the middle term in Rγ(Pθ , Pθ0) does not
depend on θ, these estimators are defined by

θ̂n = arg min
θ∈Θ

{
1

γ + 1
ln
(∫

pγ+1
θ dλ

)
− 1

γ
ln

(
1
n

n

∑
i=1

pγ
θ (Xi)

)
,

}
(3)

or equivalently as

θ̂n = arg max
θ∈Θ
{Cγ(θ)

−1 · 1
n

n

∑
i=1

pγ
θ (Xi)}, (4)

where Cγ(θ) = (
∫

pγ+1
θ dλ)γ/(γ+1). Denoting h(x, θ) := Cγ(θ)−1 · pγ

θ (x), these estimators can be
written as

θ̂n = arg max
θ∈Θ

1
n

n

∑
i=1

h(Xi, θ). (5)

The optimum given above need not be uniquely defined.
On the other hand,

arg max
θ∈Θ

∫
h(x, θ)dPθ0(x) = θ0 (6)

and here θ0 is the unique optimizer, since Rγ(Pθ , Pθ0) = 0 implies θ = θ0.
Define

Rγ(θ0) := max
θ∈Θ

∫
h(x, θ)dPθ0(x) =

∫
h(x, θ0)dPθ0(x).

An estimator of Rγ(θ0) is defined by

R̂γ(θ0) := max
θ∈Θ

∫
h(x, θ)dPn(x) = max

θ∈Θ

1
n

n

∑
i=1

h(Xi, θ) =
1
n

n

∑
i=1

h(Xi, θ̂n). (7)

The following regularity conditions of the model will be assumed throughout the rest of the paper.
(C1) The density pθ(x) has continuous partial derivatives with respect to θ up to the third order

(for all x λ-a.e.).
(C2) There exists a neighborhood Nθ0 of θ0 such that the first-, the second- and the third- order

partial derivatives with respect to θ of h(x, θ) are dominated on Nθ0 by some Pθ0 -integrable functions.

(C3) The integrals
∫
[ ∂2

∂θ2 h(x, θ)]θ=θ0dPθ0(x) and
∫
[ ∂

∂θ h(x, θ)]θ=θ0 [
∂
∂θ h(x, θ)]tθ=θ0

dPθ0(x) exist.

Theorem 1. Assume that conditions (C1), (C2) and (C3) are fulfilled. Then

(a) Let B :=
{

θ ∈ Θ; ‖θ − θ0‖ ≤ n−1/3
}

. Then, as n → ∞, with probability one, the function θ 7→
1
n ∑n

i=1 h(Xi, θ) attains a local maximal value at some point θ̂n in the interior of B, which implies that the
estimator θ̂n is n1/3-consistent.

(b)
√

n
(

θ̂n − θ0

)
converges in distribution to a centered multivariate normal random variable with

covariance matrix
V = S−1MS−1, (8)

where S := −
∫
[ ∂2

∂θ2 h(x, θ)]θ=θ0dPθ0(x) and M :=
∫
[ ∂

∂θ h(x, θ)]θ=θ0 [
∂
∂θ h(x, θ)]tθ=θ0

dPθ0(x).

(c)
√

n
(

R̂γ(θ0)− Rγ(θ0)
)

converges in distribution to a centered normal variable with variance σ2(θ0) =∫
h(x, θ0)

2dPθ0(x)−
(∫

h(x, θ0)dPθ0(x)
)2.

We refer to [15] for details regarding these estimators and for the proofs of the above
asymptotic properties.
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3. Model Selection Criteria Based on Pseudodistances

Model selection is a method for selecting the best model among candidate models that can be
used to fit a given data set. A model selection criterion can be considered as an approximately unbiased
estimator of the expected overall discrepancy, a nonnegative quantity which measures the distance
between the true unknown model and a fitted approximating model. If the value of the criterion is
small, then the approximated candidate model can be chosen. In the following, by applying the same
methodology used for AIC, we construct new criteria for model selection using pseudodistances (1)
and minimum pseudodistance estimators.

Let X1, . . . , Xn be a random sample from the distribution associated with the true model Q with
density q and let pθ be the density of a candidate model Pθ from a parametric family (Pθ), where
θ ∈ Θ ⊂ Rd.

3.1. The Expected Overall Discrepancy

For γ > 0 fixed, we consider the quantity

Wθ =
1

γ + 1
ln
(∫

pγ+1
θ dλ

)
− 1

γ
ln
(∫

pγ
θ qdλ

)
, (9)

which is the same as the pseudodistance Rγ(Pθ , Q) without the middle term that remains constant
irrespectively of the model (Pθ) used.

The target theoretical quantity that will be approximated by an asymptotically unbiased estimator
is given by

E[W
θ̂n
] = E[Wθ |θ = θ̂n], (10)

where θ̂n is a minimum pseudodistance estimator defined as in (3). The same pseudodistance is used
for both Wθ and θ̂n. The quantity (10) can be seen as an average distance between Q and (Pθ) up to
a constant and is called the expected overall discrepancy between Q and (Pθ).

The next Lemma gives the gradient vector and the Hessian matrix of Wθ and is useful for the
evaluation of E[W

θ̂n
] through Taylor expansion.

Throughout this paper, for a scalar function ϕθ(·), the quantity ∂
∂θ ϕθ(·) denotes the d-dimensional

gradient vector of ϕθ(·) with respect to the vector θ and ∂2

∂θ2 ϕθ(·) denotes the corresponding d× d
Hessian matrix. We also use the notations ϕ̇θ and ϕ̈θ for the first and the second order derivatives of
ϕθ with respect to θ.

We assume the following conditions allowing derivation under the integral sign:
(C4) There exists a neighborhood Nθ of θ such that

∫
sup
t∈Nθ

∥∥∥∥ ∂

∂t
pγ+1

t

∥∥∥∥dλ < ∞,
∫

sup
t∈Nθ

∥∥∥∥ ∂

∂t
[pγ

t ṗt]

∥∥∥∥dλ < ∞.

(C5) There exists a neighborhood Nθ of θ such that

∫
sup
t∈Nθ

∥∥∥∥ ∂

∂t
pγ

t

∥∥∥∥ qdλ < ∞,
∫

sup
t∈Nθ

∥∥∥∥ ∂

∂t
[pγ−1

t ṗt]

∥∥∥∥ qdλ < ∞.

Lemma 1. Under (C4) and (C5), the gradient vector and the Hessian matrix of Wθ are

∂

∂θ
Wθ =

∫
pγ

θ ṗθdλ∫
pγ+1

θ dλ
−
∫

pγ−1
θ ṗθqdλ∫
pγ

θ qdλ
(11)
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∂2

∂θ2 Wθ =
[γ
∫

pγ−1
θ ṗθ ṗt

θdλ +
∫

pγ
θ p̈θdλ]

∫
pγ+1

θ dλ− (γ + 1)
∫

pγ
θ ṗθdλ(

∫
pγ

θ ṗθdλ)t

(
∫

pγ+1
θ dλ)2

−
[(γ− 1)

∫
pγ−2

θ ṗθ ṗt
θqdλ +

∫
pγ−1

θ p̈θqdλ]
∫

pγ
θ qdλ− γ

∫
pγ−1

θ ṗθqdλ(
∫

pγ−1
θ ṗθqdλ)t

(
∫

pγ
θ qdλ)2

.

When the true model Q belongs to the parametric model (Pθ), hence Q = Pθ0 and q = pθ0 ,
the gradient vector and the Hessian matrix of Wθ simplify to[

∂

∂θ
Wθ

]
θ=θ0

= 0 (12)[
∂2

∂θ2 Wθ

]
θ=θ0

= Mγ, (θ0) (13)

where

Mγ(θ0) :=
(
∫

pγ−1
θ0

ṗθ0 ṗt
θ0

dλ)(
∫

pγ+1
θ0

dλ)− (
∫

pγ
θ0

ṗθ0 dλ)(
∫

pγ
θ0

ṗθ0dλ)t

(
∫

pγ+1
θ0

dλ)2
. (14)

In the following Propositions we suppose that the true model Q belongs to the parametric model
(Pθ), hence Q = Pθ0 , q = pθ0 and θ0 is the value of the parameter corresponding to the true model
Q = Pθ0 . We also say that θ0 is the true value of the parameter.

Proposition 1. When the true model Q belongs to the parametric model (Pθ), assuming that (C4) and (C5) are
fulfilled for q = pθ0 and θ = θ0, the expected overall discrepancy is given by

E[W
θ̂n
] = Wθ0 +

1
2

E[(θ̂n − θ0)
t Mγ(θ0)(θ̂n − θ0)] + E[Rn], (15)

where Rn = o(‖θ̂n − θ0‖2), Mγ(θ0) is given by (14).

3.2. Estimation of the Expected Overall Discrepancy

In this section, we introduce an estimator of the expected overall discrepancy, under the hypothesis
that the true model Q belongs to the parametric model (Pθ). Hence, Q = Pθ0 and the unknown
parameter θ0 will be estimated by a minimum pseudodistance estimator θ̂n.

For a given θ ∈ Θ, a natural estimator of Wθ is defined by

Qθ :=
1

γ + 1
ln
(∫

pγ+1
θ dλ

)
− 1

γ
ln

(
1
n

n

∑
i=1

pγ
θ (Xi)

)
. (16)

Lemma 2. Assuming (C4), the gradient vector and the Hessian matrix of Qθ are given by

∂

∂θ
Qθ =

∫
pγ

θ ṗθdλ∫
pγ+1

θ dλ
− ∑n

i=1 pγ−1
θ (Xi) ṗθ(Xi)

∑n
i=1 pγ

θ (Xi)

∂2

∂θ2 Qθ =
[γ
∫

pγ−1
θ ṗθ ṗt

θdλ +
∫

pγ
θ p̈θdλ]

∫
pγ+1

θ dλ− (γ + 1)
∫

pγ
θ ṗθdλ(

∫
pγ

θ ṗθdλ)t

(
∫

pγ+1
θ dλ)2

−

−
[(γ− 1)∑n

i=1 pγ−2
θ (Xi) ṗθ(Xi) ṗθ(Xi)

t + ∑n
i=1 pγ−1

θ (Xi) p̈θ(Xi)]∑n
i=1 pγ

θ (Xi)

(∑n
i=1 pγ

θ (Xi))2

+
γ(∑n

i=1 pγ−1
θ (Xi) ṗθ(Xi))(∑n

i=1 pγ−1
θ (Xi) ṗθ(Xi))

t

(∑n
i=1 pγ

θ (Xi))2
.
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Proposition 2. When the true model Q belongs to the parametric model (Pθ), by imposing the conditions
(C1)-(C5), it holds

E[Qθ0 ] = E[Q
θ̂n
] +

1
2

E[(θ0 − θ̂n)
t Mγ(θ0)(θ0 − θ̂n)] + E[Rn], (17)

where Rn = o(‖θ̂n − θ0‖2).

The following result allows to define an asymptotically unbiased estimator of the expected
overall discrepancy.

Proposition 3. When the true model Q belongs to the parametric model (Pθ), under (C1)-(C5), it holds

E[W
θ̂n
] = E[Q

θ̂n
] + E[(θ0 − θ̂n)

t Mγ(θ0)(θ0 − θ̂n)] +

+
1

2γn

1−
∫

p2γ+1
θ0

dλ(∫
pγ+1

θ0
dλ
)2

+ E [Rn] +
1
γ

E
[
R′n
]

, (18)

where Rn = o(‖θ̂n − θ0‖2) and R′n = o(‖ 1
n ∑n

i=1 pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ‖2).

3.2.1. Limit Properties of the Estimator Q
θ̂n

Under the hypothesis that the true model Q belongs to the family of models (Pθ), hence Q = Pθ0 ,
we prove the consistency and the asymptotic normality for the estimator Q

θ̂n
.

Note that

Q
θ̂n

=
1

γ + 1
ln
(∫

pγ+1
θ̂n

dλ

)
− 1

γ
ln

(
1
n

n

∑
i=1

pγ

θ̂n
(Xi)

)
(19)

= − ln

 1
n ∑n

i=1 p
θ̂n
(Xi)

(
∫

pγ+1
θ̂n

dλ)
γ

γ+1

 1
γ

= − ln[R̂γ(θ0)]
1
γ , (20)

where
∫

pγ+1
θ̂n

dλ =
[∫

pγ+1
θ dλ

]
θ=θ̂n

and R̂γ(θ0) is given by (7).

First we prove that R̂γ(θ0) is a consistent estimator of Rγ(θ0). Indeed, using Theorem 1 and the
fact that

∫
∂
∂θ h(x, θ0)dPθ0(x) = 0, a Taylor expansion of 1

n ∑n
i=1 h(Xi, θ) in θ̂n around θ0 gives

R̂γ(θ0) =
1
n

n

∑
i=1

h(Xi, θ0) + oP(n−1/2). (21)

Using the weak law of large numbers,

1
n

n

∑
i=1

h(Xi, θ0) = Rγ(θ0) + oP(1). (22)

Combining (21) and (22), we obtain that R̂γ(θ0) converges to Rγ(θ0) in probability.

Then, using the continuous mapping theorem, since g(t) = − ln t
1
γ is a continuous function,

we get

Q
θ̂n

= − ln[R̂γ(θ0)]
1
γ → − ln[Rγ(θ0)]

1
γ = Wθ0

in probability.
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On the other hand, using the asymptotic normality of the estimator R̂γ(θ0) (according to
Theorem 1 (c)) together with the univariate delta method, we obtain the asymptotic normality of Q

θ̂n
.

The Proposition below summarizes the above asymptotic results.

Proposition 4. Under (C1)-(C3), when Q = Pθ0 , it holds

(a) Q
θ̂n

converges to Wθ0 in probability.

(b)
√

n(Q
θ̂n
−Wθ0) converges in distribution to a centered univariate normal random variable with

variance σ2(θ0)
γ2Rγ(θ0)2 , σ2(θ0) being defined in Theorem 1.

3.2.2. Robustness Properties of the Estimator Q
θ̂n

The influence function is a useful tool for describing robustness of an estimator. Recall that,
a map T defined on a set of probability measures and parameter space valued is a statistical functional
corresponding to an estimator θ̂n of the parameter θ, whenever θ̂n = T(Pn), where Pn is the empirical
measure associated to the sample. The influence function of T at Pθ is defined by

IF(x; T, Pθ) :=
∂T(P̃εx)

∂ε

∣∣∣∣∣
ε=0

,

where P̃εx := (1− ε)Pθ + εδx, ε > 0, δx being the Dirac measure putting all mass at x. The gross error
sensitivity of the estimator is defined by

γ∗(T, Pθ) = sup
x
‖IF(x; T, Pθ)‖.

Whenever the influence function is bounded with respect to x, the corresponding estimator is called
B-robust (see [19]).

In what follows, for a given γ > 0, we derive the influence function of the estimator Q
θ̂n

.
The statistical functional associated with this estimator, which we denote by U, is defined by

U(P) :=
1

γ + 1
ln
(∫

pγ+1
T(P)dλ

)
− 1

γ
ln
(∫

pγ
T(P)dP

)
,

where T is the statistical functional corresponding to the used minimum pseudodistance estimator
estimator θ̂n, namely

T(P) := arg sup
θ

Cγ(θ)
−1
∫

pγ
θ dP

where Cγ(θ) = (
∫

pγ+1
θ dλ)γ/(γ+1).

Due to the Fisher consistency of the functional T, according to (6), we have T(Pθ0) = θ0 which
implies that U(Pθ0) = Wθ0 .

Proposition 5. When Q = Pθ0 , the influence function of Q
θ̂n

is given by

IF(x; U, Pθ0) =
1
γ

1−
pγ

θ0
(x)∫

pγ+1
θ0

dλ

 . (23)

Note that the influence function of the estimator Q
θ̂n

does not depend on the estimator θ̂n,
but depends on the used pseudodistance. Usually, pγ

θ0
(x) is bounded with respect to x and therefore

Q
θ̂n

is a robust estimator with respect to Wθ0 .
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Figure 1. Influence functions in the case of the normal model.

For comparison at the level of the influence function, we consider the AIC criterion which is
defined by

AIC = −2 ln(L(θ̂n)) + 2d,

whereL(θ̂n) is the maximum value of the likelihood function for the model, θ̂n the maximum likelihood
estimator and d the dimension of the parameter. The statistical functional corresponding to the statistic
−2 ln(L(θ̂n)) is

V(P) = −2
∫

ln pT(P)dP

where T here is the statistical functional corresponding to the maximum likelihood estimator.
The influence function of the functional V is given by

IF(x; V, Pθ0) = 2
[∫

ln pθ0 dPθ0 − ln pθ0(x)
]

. (24)

This influence function is not bounded with respect to x, therefore the statistic −2 ln(L(θ̂n)) is
not robust.

For example, in the case of the univariate normal model, for a positive γ, the influence function (23)
writes as

IF(x; U, Pθ0) =
1
γ

(
1−

√
γ + 1 · exp

(
−γ

2

(
x−m

σ

)2
))

(25)

while the influence function (24) writes as

IF(x; V, Pθ0) =

(
x−m

σ

)2
− 2m2

σ2 − 1 (26)

(here θ0 = (m, σ)). For all the pseudodistances, the influence function (25) is bounded with respect
to x, therefore the selection criteria based on the statistic Q

θ̂n
will be robust. On the other hand,

the influence function (26) is not bounded with respect to x, showing the non robustness of AIC
in this case. Moreover, the gross error sensitivities corresponding to these influence functions are
γ∗(U, Pθ0) =

1
γ and γ∗(V, Pθ0) = ∞. These results show that, in the case of the normal model, when γ

increases the gross error sensitivity decreases. Therefore, larger values of γ are associated with more
robust procedures. For the particular case m = 0 and σ = 1, the influence functions (25) and (26) are
represented in Figure 1.
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3.3. Model Selection Criteria Using Pseudodistances

3.3.1. The Case of Univariate Normal Family

The criteria that we propose in this section correspond to the case where the candidate model
is a univariate normal model from the family of normal models (Pθ) indexed by θ = (µ, σ). We also
suppose that the true model Q belongs to (Pθ).

In the case of the univariate normal model, Mγ(θ0) defined in (14) expresses as

Mγ(θ0) =
(γ + 1)2

(2γ + 1)3/2 A(γ)V−1, (27)

where V is the asymptotic covariance matrix given by (8) and the matrix A(γ) is given by

A(γ) =

(
1 0

0 3γ2+4γ+2
2(2γ+1)

)
.

For small positive values of γ, the matrix A(γ) can be approximated by the identity matrix I.
According to Theorem 1,

√
n(θ̂n − θ0) is asymptotically multivariate normal and then the statistic

n(θ0 − θ̂n)tV−1(θ0 − θ̂n) has approximately a χ2
d distribution. For large n, it holds

E[(θ0 − θ̂n)
t Mγ(θ0)(θ0 − θ̂n)] ≈

(γ + 1)2

(2γ + 1)3/2 ·
d
n

. (28)

Also, for the normal model, it holds∫
p2γ+1

θ0
dλ(∫

pγ+1
θ0

dλ
)2 =

γ + 1√
2γ + 1

. (29)

Therefore, (18) becomes

E[W
θ̂n
] ∼= E[Q

θ̂n
] +

(γ + 1)2

(2γ + 1)3/2 ·
d
n
+

1
2γn

[
1− γ + 1√

2γ + 1

]
+ E [Rn] +

1
γ

E
[
R′n
]

. (30)

Using the central limit theorem and asymptotic properties of θ̂n given in Theorem 1, the following
hold

n · o(‖θ̂n − θ0‖2) = oP(1), (31)

n · o(‖ 1
n

n

∑
i=1

pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ‖2) = oP(1). (32)

Using (30), (31) and (32) we obtain:

Proposition 6. For the univariate normal family, an asymptotically unbiased estimator of the expected overall
discrepancy is given by

Q
θ̂n
+

(γ + 1)2

(2γ + 1)3/2 ·
d
n
+

1
2γn

[
1− γ + 1√

2γ + 1

]
, (33)

where θ̂n is a minimum pseudodistance estimator given by (3).
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Under the hypothesis that (Pθ) is the univariate normal model, as we supposed in this subsection,
the function h writes as

h(x, θ) = (
√

γ + 1)γ/(γ+1) · (σ
√

2π)−γ/(γ+1) · exp

(
−γ

2

(
x−m

σ

)2
)

(34)

and it can be easily checked that all the conditions (C1)–(C5) are fulfilled. Therefore we can use all
results presented in the preceding subsections, such that Proposition 6 is fully justified.

Moreover, the selection criteria based on (33) are consistent on the basis of Proposition 4. It should
also be noted that the bias correction term in (33) decreases slowly as the parameter γ increases staying
always very close to zero (∼ 10−2). As expected, the larger the sample size the smaller the bias
correction. As we saw in Section 3.2.2, since the gross error sensitivity of Q

θ̂n
is γ∗(U, Pθ0) =

1
γ , larger

values of γ are associated with more robust procedures. On the other hand, the approximation of A(γ)

with the identity matrix is realized for values of γ close to zero. Thus, positive values of γ smaller than
0.5 for example could represent choices satisfying the robustness requirement and the approximation
of A(γ) through the identity matrix, approximation which is necessary to construct the criterion in
this case.

3.3.2. The Case of Linear Regression Models

In the following, we adapt the pseudodistance based model selection criterion in the case of linear
regression models. Consider the linear regression model

Y = α + βtX + e (35)

where e ∼ N (0, σ) and e is independent of X. Suppose we have a sample given by the i.i.d. random
vectors Zi = (Xi, Yi), i = 1, ..., n, such that Yi = α + βtXi + ei.

We consider the joint distribution of the entire data and write a pseudodistance between the
theoretical model and the true model corresponding to the data. Let Pθ , θ := (α, β, σ), be the probability
measure associated to the theoretical model given by the random vector Z = (X, Y) and Q the
probability measure associated to the true model corresponding to the data. Denote by pθ , respectively
by q the corresponding densities. For γ > 0, the pseudodistance between Pθ and Q is defined by

Rγ(Pθ , Q) :=
1

γ + 1
ln
(∫

pγ
θ (x, y)dPθ(x, y)

)
+

1
γ(γ + 1)

ln
(∫

qγ(x, y)dQ(x, y)
)
−

− 1
γ

ln
(∫

pγ
θ (x, y)dQ(x, y)

)
. (36)

Similar to [18], since the middle term above does not depend on Pθ , a minimum pseudodistance
estimator of the parameter θ0 = (α0, β0, σ0) is defined by

θ̂n = (α̂n, β̂n, σ̂n) = arg min
α,β,σ

{
1

γ + 1
ln
(∫

pγ
θ (x, y)dPθ(x, y)

)
− 1

γ
ln
(∫

pγ
θ (x, y)dPn(x, y)

)}
, (37)

where Pn is the empirical measure associated with the sample. This estimator can be written as

θ̂n = (α̂n, β̂n, σ̂n) = arg min
α,β,σ

{
1

γ + 1
ln
(∫

φ
γ+1
σ (e)de

)
− 1

γ
ln

(
1
n

n

∑
i=1

φ
γ
σ (Yi − α− βtXi)

)}
, (38)

where φσ is the density of the random variable e ∼ N (0, σ). Then, the estimator Q
θ̂n

can be written as

Q
θ̂n

= minα,β,σ

{
1

γ+1 ln
(

1
(σ
√

2π)γ
√

γ+1

)
− 1

γ ln
(

1
n ∑n

i=1
1

(σ
√

2π)γ
· exp

(
− γ

2σ2 (Yi − α− βtXi)
2
))}

. (39)
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In order to construct an asymptotic unbiased estimator of the expected overall discrepancy in the
case of the linear regression models, we evaluated the second and the third terms from (18).

For values of γ close to 0 (γ smaller than 0.3), we found the following approximation of the matrix
Mγ(θ0)

Mγ(θ0) '
(γ + 1)2

(2γ + 1)3/2 V−1

(
I 0

0 3γ2+4γ+2
2γ+1 ,

)
(40)

where V is the asymptotic covariance matrix of θ̂n and I is the identity matrix. We refer to [15] for
the asymptotic properties of the minimum pseudodistance estimators in the case of linear regression
models. Since

√
n(θ̂n − θ0) is asymptotically multivariate normal distributed, using the χ2 distribution,

we obtain the approximation

E[(θ̂n − θ0)
t Mγ(θ0)(θ̂n − θ0)] '

1
n
· (γ + 1)2

(2γ + 1)3/2

[
(d− 1) +

3γ2 + 4γ + 2
2(γ + 1)(2γ + 1)

]
. (41)

Also, the third term in (18) is given by

1
2γn

[
1−

(
γ + 1√
2γ + 1

)d
]

. (42)

Then, according to Proposition 3, an asymptotically unbiased estimator of the expected overall
discrepancy is given by

Q
θ̂n
+

1
n
· (γ + 1)2

(2γ + 1)3/2

[
(d− 1) +

3γ2 + 4γ + 2
2(γ + 1)(2γ + 1)

]
+

1
2γn

[
1−

(
γ + 1√
2γ + 1

)d
]

, (43)

where Q
θ̂n

is given by (39). Note that, using the asymptotic properties of θ̂n and the central limit

theorem, the last two terms in (18) of Proposition 3 are oP(
1
n ).

When we compare different linear regression models, as in Section 4 below, we can ignore the
terms depending only on n and γ in (43). Therefore, we can use as model selection criterion the
simplified expression

Q
θ̂n
+

(γ + 1)2

(
√

2γ + 1)3 ·
d
n
− 1

2γn

(
γ + 1√
2γ + 1

)d
, (44)

which we call Pseudodistance based Information Criterion (PIC).

4. Applications

4.1. Simulation Study

In order to illustrate the performance of the PIC criterion (44) in the case of linear regression
models, we performed a simulation study using for comparison the model selection criteria AIC, BIC
and MDIC. These criteria are defined respectively by

AIC = n log σ̂2
p + 2 (p + 2)

BIC = n log σ̂p
2 + (p + 2) log n,

where n the sample size, p the number of covariates of the model and σ̂2
p the classical unbiased

estimator of the variance of the model,

MDIC = nMQθ̂ + (2π)−α/2(1 + α)2+p/2 p



Entropy 2020, 22, 304 12 of 24

with α = 0.25 and

MQθ̂ = −
[
(1 + α−1)

1
n

n

∑
n=1

f α
θ̂
(Xi)

]
,

where θ̂ is a consistent estimate of the vector of unknown parameters involved in the model with p
covariates and fθ̂ is the associated probability density function. Note that MDIC is based on the well
known BHHJ family of divergence measures indexed by a parameter α > 0 and on the minimum
divergence estimating method for robust parameter estimation (see [20]). The value of α = 0.25 was
found in [9] to be an ideal one for a great variety of settings. The above three criteria have been chosen
to be used in this comparative study with PIC not only due to their popularity, but also due to their
special characteristics. Indeed, AIC is the classical representative of asymptotically efficient criteria,
BIC is known to be consistent, while MDIC is associated with robust estimations (see e.g., [20–23]).

Let X1, X2, X3, X4 be four variables following respectively the normal distributions N (0, 3),
N (1, 3), N (2, 3) and N (3, 3). We consider the model

Y = a0 + a1X1 + a2X2 + ε

with a0 = a1 = a2 = 1 and ε ∼ N (0, 1). This is the uncontaminated model. In order to evaluate the
robustness of the new PIC criterion, we also consider the contaminated model

Y = d1(a0 + a1X1 + a2X2 + ε) + d2(a0 + a1X1 + a2X2 + ε∗)

where ε∗ ∼ N (5, 1) and d1, d2 ∈ [0, 1] such that d1 + d2 = 1. Note that for d1 = 1 and d2 = 0 the
uncontaminated model is obtained.

The simulated data corresponding to the contaminated model are

Yi = d1(1 + X1,i + X2,i + εi) + d2(1 + X1,i + X2,i + ε∗i ),

for i = 1, . . . , n, where X1,i, X2,i, εi, ε∗i are values of the variables X1, X2, ε, ε∗ independently generated
from the normal distributions N (1, 3), N (2, 3), N (0, 1), N (5, 1) correspondingly.

With a set of four possible regressors there are 24 − 1 = 15 possible model specifications that
include at least one regressor. These 15 possible models constitute the set of candidate models in our
study. More precisely, this set contains the full model (X1, X2, X3, X4) given by

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + ε

as well as all 14 possible subsets of the full model consisting of one (Xj1), two (Xj1 , Xj2) and three
(Xj1 , Xj2 , Xj3 ) of the four regressors X1, X2, X3 and X4, with j1 6= j2 6= j3, ji ∈ {1, 2, 3, 4} and i = 1, 2, 3 .

In our simulation study, for several values of the parameter γ associated with the pseudodistance,
we compared the new criterion PIC with the other model selection criteria. Different levels of
contamination and different sample sizes have been considered. In the examples presented in this
work, d1 ∈ {0.8, 0.9, 0.95, 1} and n ∈ {20, 50, 100}. Additional examples for n = 30, 75, 200, 500 have
been analyzed (results not shown) with similar findings (see below). For each setting, fifty experiments
were performed in order to select the best model among the available candidate models. In the
framework of each of the fifty experiments, on the basis of the simulated observations, the value of
each of the above model selection criteria was calculated for each of the 15 possible models. Then,
for each criterion, the 15 candidate models were ranked from 1st to 15th according to the value of the
criterion. The model chosen by a given criterion is the one for which the value of the criterion is the
lowest among all the 15 candidate models.

Tables 1–12 present the proportions of models selected by the considered criteria. Among the 15
candidate models only 4 were chosen at least once. These four models are the same in all instances
and appear in the 2nd column of all Tables.
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For small sample sizes (n = 20, n = 30) the criteria PIC and MDIC yield the best results. When
the level of contamination is 10% or 20%, the PIC criterion yields very good results and beats the
other competitors almost all the time. When the level of contamination is small, for example 5% or
when there is no contamination, the two criteria are comparable, in the sense that in many cases the
proportions of selected models by the two criteria are very close, so that sometimes PIC wins and
sometimes MDIC wins. Tables 1–4 present these results for n = 20, but similar results are obtained for
n = 30, too.

For medium sample sizes (n = 50, n = 75), the criteria PIC and BIC yield the best results.
The results for n = 50 are given in Tables 5–8. Note that the PIC criterion yields the best results for
0% and 10% contamination. For the other levels of contamination, there are values of γ for which
PIC is the best among all the considered criteria. On the other hand, in most cases when BIC wins,
the proportions of selections of the true model by BIC and PIC are close.

When the sample size is large (n = 100, n = 200, n = 500), BIC generally yields better results
than PIC which stays relatively close behind, but sometimes BIC and PIC have the same performance.
Tables 9–12 present the results obtained for n = 100.

Thus, the new PIC criterion works very well for small to medium sample sizes and for levels of
contamination up to 20%, but falls behind BIC for large sample sizes. Note that for contaminated data,
PIC with γ = 0.15 prevails in most of the considered cases. On the other hand, for uncontaminated
data, it is PIC with γ = 0.2 that prevails in all the considered instances. It is also worth mentioning that
PIC with γ = 0.3 appears to behave very satisfactorily in most cases irrespectively of the proportion
of contamination (0%–20%) and the sample size. Observe also that in all cases, AIC has the highest
overestimation rate which is somehow expected (see [24]).

Although the consistency is the main focus of the applications presented in this work, one should
point out that if prediction is part of the objective of a regression analysis, then model selection carried
out using criteria such as the ones used in this work, have desirable properties. In fact, the case
of finite-dimensional normal regression models has been shown to be associated with satisfactory
prediction errors for criteria such as AIC and BIC (see [25]). Furthermore, it should be pointed out
that in many instances PIC has a behavior quite similar to the above criteria by choosing the same
models. Also, according to the presented simulation results, the proportion of choosing the true model
by PIC is always better than the proportion of choosing the true model by AIC (even in the case of non
contaminated data) and sometimes it is better than the proportion of choosing the true model by BIC.
These results imply a satisfactory prediction ability for the proposed PIC criterion.

In conclusion, the new PIC criterion is a good competitor of the well known model selection
criteria AIC, BIC and MDIC and may have superior performance especially in the case of small and
contaminated samples.
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Table 1. Proportions of selected models by the considered criteria (n = 20, d1 = 0.8).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 90 84 88 84 92 90 86
X1, X2, X3


(10)


(16)


(12)


(16)


(8)


(10)


(14)

X1, X2, X4
X1, X2, X3, X4

AIC X1, X2 62 56 52 56 66 56 60
X1, X2, X3


(38)


(44)


(48)


(44)


(34)


(44)


(40)

X1, X2, X4
X1, X2, X3, X4

BIC X1, X2 74 76 60 74 72 68 70
X1, X2, X3


(26)


(24)


(40)


(26)


(28)


(32)


(30)

X1, X2, X4
X1, X2, X3, X4

MDIC X1, X2 86 86 64 78 84 80 74
X1, X2, X3


(14)


(14)


(36)


(22)


(16)


(20)


(26)

X1, X2, X4
X1, X2, X3, X4

Table 2. Proportions of selected models by the considered criteria (n = 20, d1 = 0.9).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 80 84 90 82 82 80 80
X1, X2, X3


(20)


(16)


(10)


(18)


(18)


(20)


(20)

X1, X2, X4
X1, X2, X3, X4

AIC X1, X2 60 52 56 62 64 54 52
X1, X2, X3


(40)


(48)


(44)


(38)


(36)


(46)


(48)

X1, X2, X4
X1, X2, X3, X4

BIC X1, X2 76 70 78 72 84 76 76
X1, X2, X3


(24)


(30)


(22)


(28)


(16)


(24)


(24)

X1, X2, X4
X1, X2, X3, X4

MDIC X1, X2 86 76 88 74 92 78 86
X1, X2, X3


(14)


(24)


(12)


(26)


(8)


(22)


(14)

X1, X2, X4
X1, X2, X3, X4
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Table 3. Proportions of selected models by the considered criteria (n = 20, d1 = 0.95).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 82 88 80 94 82 88 86
X1, X2, X3


(18)


(12)


(20)


(6)


(18)


(12)


(14)

X1, X2, X4
X1, X2, X3, X4

AIC X1, X2 78 50 66 70 66 64 66
X1, X2, X3


(22)


(50)


(34)


(30)


(34)


(36)


(34)

X1, X2, X4
X1, X2, X3, X4

BIC X1, X2 84 64 74 84 84 76 82
X1, X2, X3


(16)


(36)


(26)


(16)


(16)


(24)


(18)

X1, X2, X4
X1, X2, X3, X4

MDIC X1, X2 90 74 82 88 88 80 88
X1, X2, X3


(10)


(26)


(18)


(12)


(12)


(20)


(12)

X1, X2, X4
X1, X2, X3, X4

Table 4. Proportions of selected models by the considered criteria (n = 20, d1 = 1).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 86 86 86 86 88 82 92
X1, X2, X3


(14)


(14)


(14)


(14)


(12)


(18)


(8)

X1, X2, X4
X1, X2, X3, X4

AIC X1, X2 64 74 62 58 64 62 70
X1, X2, X3


(36)


(26)


(38)


(42)


(36)


(38)


(30)

X1, X2, X4
X1, X2, X3, X4

BIC X1, X2 78 90 78 80 82 80 74
X1, X2, X3


(22)


(10)


(22)


(20)


(18)


(20)


(26)

X1, X2, X4
X1, X2, X3, X4

MDIC X1, X2 84 92 88 88 88 88 80
X1, X2, X3


(16)


(8)


(12)


(12)


(12)


(12)


(20)

X1, X2, X4
X1, X2, X3, X4
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Table 5. Proportions of selected models by the considered criteria (n = 50, d1 = 0.8).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 86 96 94 90 88 86 90
X1, X2, X3


(14)


(4)


(6)


(10)


(12)


(14)


(10)

X1, X2, X4
X1, X2, X3, X4

AIC X1, X2 74 64 82 62 64 78 72
X1, X2, X3


(26)


(36)


(18)


(38)


(36)


(22)


(28)

X1, X2, X4
X1, X2, X3, X4

BIC X1, X2 94 86 96 86 90 88 90
X1, X2, X3


(6)


(14)


(4)


(14)


(10)


(12)


(10)

X1, X2, X4
X1, X2, X3, X4

MDIC X1, X2 94 82 98 82 86 88 90
X1, X2, X3


(6)


(18)


(2)


(18)


(14)


(12)


(10)

X1, X2, X4
X1, X2, X3, X4

Table 6. Proportions of selected models by the considered criteria (n = 50, d1 = 0.9).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 92 88 92 90 82 94 86
X1, X2, X3


(8)


(12)


(8)


(10)


(18)


(6)


(14)

X1, X2, X4
X1, X2, X3, X4

AIC X1, X2 70 64 62 64 66 74 72
X1, X2, X3


(30)


(36)


(38)


(36)


(34)


(26)


(28)

X1, X2, X4
X1, X2, X3, X4

BIC X1, X2 92 88 82 92 88 88 86
X1, X2, X3


(8)


(12)


(18)


(8)


(12)


(12)


(14)

X1, X2, X4
X1, X2, X3, X4

MDIC X1, X2 92 86 76 88 84 88 86
X1, X2, X3


(8)


(14)


(24)


(12)


(16)


(12)


(14)

X1, X2, X4
X1, X2, X3, X4
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Table 7. Proportions of selected models by the considered criteria (n = 50, d1 = 0.95).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 94 92 92 88 84 90 88
X1, X2, X3


(6)


(8)


(8)


(12)


(16)


(10)


(12)

X1, X2, X4
X1, X2, X3, X4

AIC X1, X2 70 62 66 68 70 72 58
X1, X2, X3


(30)


(38)


(34)


(32)


(30)


(28)


(42)

X1, X2, X4
X1, X2, X3, X4

BIC X1, X2 96 82 92 86 92 92 86
X1, X2, X3


(4)


(18)


(8)


(14)


(8)


(8)


(14)

X1, X2, X4
X1, X2, X3, X4

MDIC X1, X2 90 78 88 86 86 90 82
X1, X2, X3


(10)


(22)


(12)


(14)


(14)


(10)


(18)

X1, X2, X4
X1, X2, X3, X4

Table 8. Proportions of selected models by the considered criteria (n = 50, d1 = 1).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 94 90 80 84 90 94 88
X1, X2, X3


(6)


(10)


(20)


(16)


(10)


(6)


(12)

X1, X2, X4
X1, X2, X3, X4

AIC X1, X2 64 68 62 68 66 64 62
X1, X2, X3


(34)


(32)


(38)


(32)


(34)


(36)


(38)

X1, X2, X4
X1, X2, X3, X4

BIC X1, X2 86 86 86 90 86 94 82
X1, X2, X3


(14)


(14)


(14)


(10)


(14)


(6)


(18)

X1, X2, X4
X1, X2, X3, X4

MDIC X1, X2 84 84 82 88 84 90 82
X1, X2, X3


(16)


(16)


(18)


(12)


(16)


(10)


(18)

X1, X2, X4
X1, X2, X3, X4
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Table 9. Proportions of selected models by the considered criteria (n = 100, d1 = 0.8).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 94 94 94 92 88 88 94
X1, X2, X3


(6)


(6)


(6)


(8)


(12)


(12)


(6)

X1, X2, X4
X1, X2, X3, X4

AIC X1, X2 70 82 78 70 68 68 72
X1, X2, X3


(30)


(18)


(22)


(30)


(32)


(32)


(28)

X1, X2, X4
X1, X2, X3, X4

BIC X1, X2 90 96 98 90 96 94 88
X1, X2, X3


(10)


(4)


(2)


(10)


(4)


(6)


(12)

X1, X2, X4
X1, X2, X3, X4

MDIC X1, X2 86 96 92 86 92 90 88
X1, X2, X3


(14)


(4)


(8)


(14)


(8)


(10)


(12)

X1, X2, X4
X1, X2, X3, X4

Table 10. Proportions of selected models by the considered criteria (n = 100, d1 = 0.9).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 88 92 96 88 88 88 86
X1, X2, X3


(12)


(8)


(4)


(12)


(12)


(12)


(14)

X1, X2, X4
X1, X2, X3, X4

AIC X1, X2 68 72 78 66 70 78 60
X1, X2, X3


(32)


(28)


(22)


(34)


(30)


(22)


(40)

X1, X2, X4
X1, X2, X3, X4

BIC X1, X2 98 98 96 88 92 94 92
X1, X2, X3


(2)


(2)


(4)


(12)


(8)


(6)


(8)

X1, X2, X4
X1, X2, X3, X4

MDIC X1, X2 90 90 96 84 82 90 82
X1, X2, X3


(10)


(10)


(4)


(16)


(18)


(10)


(18)

X1, X2, X4
X1, X2, X3, X4
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Table 11. Proportions of selected models by the considered criteria (n = 100, d1 = 0.95).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 90 88 92 90 98 96 92
X1, X2, X3


(10)


(12)


(8)


(10)


(2)


(4)


(8)

X1, X2, X4
X1, X2, X3, X4

AIC X1, X2 70 78 78 66 82 68 68
X1, X2, X3


(30)


(22)


(22)


(34)


(18)


(32)


(32)

X1, X2, X4
X1, X2, X3, X4

BIC X1, X2 96 92 92 94 96 94 88
X1, X2, X3


(4)


(8)


(8)


(6)


(4)


(6)


(12)

X1, X2, X4
X1, X2, X3, X4

MDIC X1, X2 90 88 82 90 94 84 88
X1, X2, X3


(10)


(12)


(18)


(10)


(6)


(16)


(12)

X1, X2, X4
X1, X2, X3, X4

Table 12. Proportions of the selected models by the considered criteria (n = 100, d1 = 1).

Criteria Variables γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2 γ = 0.25 γ = 0.3

PIC X1, X2 94 96 92 92 96 90 94
X1, X2, X3


(6)


(4)


(8)


(8)


(4)


(10)


(6)

X1, X2, X4
X1, X2, X3, X4

AIC X1, X2 78 74 72 74 70 62 74
X1, X2, X3


(22)


(26)


(28)


(26)


(30)


(38)


(26)

X1, X2, X4
X1, X2, X3, X4

BIC X1, X2 96 100 92 96 94 90 100
X1, X2, X3


(4)


(8)


(4)


(6)


(10)

X1, X2, X4
X1, X2, X3, X4

MDIC X1, X2 94 92 86 90 86 80 94
X1, X2, X3


(6)


(8)


(14)


(10)


(14)


(20)


(6)

X1, X2, X4
X1, X2, X3, X4

4.2. Real Data Example

In order to illustrate the proposed method, we used the Hald cement data (see [26]) which
represent a popular example for multiple linear regression. This example concern the heat evolved
in calories per gram of cement Y as a function of the amount of each of four ingredient in the mix:
tricalcium aluminate (X1), tricalcium silicate (X2), tetracalcium alumino-ferrite (X3) and dicalcium
silicate (X4). The data are presented in Table 13.
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Table 13. Hald cement data.

X1 X2 X3 X4 Y

7 26 6 60 78.5
1 29 15 52 74.3

11 56 8 20 104.3
11 31 8 47 87.6
7 52 6 33 95.9

11 55 9 22 109.2
3 71 17 6 102.7
1 31 22 44 72.5
2 54 18 22 93.1

21 47 4 26 115.9
1 40 23 34 83.8

11 66 9 12 113.3
10 68 8 12 109.4

Since 4 variables are available, there are 15 possible candidate models (involving at least one
regressor) for this data set. Note that the 4 single-variable models should be excluded from the analysis,
because cement involves a mixture of at least two components that react chemically (see [27], p. 102).
The model selection criteria that have been used are PIC for several values of γ, AIC, BIC and MDIC
with α = 0.25. Table 14 shows the model selected by each of the considered criteria.

Table 14. Selected models by model selection criteria.

Criteria Variables

PIC, γ = 0.05 X1, X2, X4
PIC, γ = 0.15 X1, X2, X4
PIC, γ = 0.2 X1, X2, X3
PIC, γ = 0.25 X1, X2, X4
PIC, γ = 0.3 X1, X2, X4

AIC X1, X2, X4
BIC X1, X2

MDIC X1, X2, X3

Observe that, in this example, PIC behaves similarly to AIC and MDIC having a slight tendency
of overestimation. Note that for this specific dataset the collinearity is quite strong with X1 and X3

as well as X2 and X4 being seriously correlated. It should be pointed out that the model (X1, X2, X4)

is chosen not only by AIC and PIC, but also by Cp Mallows’ criterion ([1]) with (X1, X2, X3) coming
very close second. Note further that (X1, X2, X4) has also been chosen by cross validation ([28], p. 33)
and PRESS ([26], p. 325). Finally, it is worth noticing that these two models share the highest adjusted
R2 values which are almost identical (0.976 for (X1, X2, X4) and 0.974 for (X1, X2, X3)) making the
distinction between them extremely hard. Thus, in this example, the new PIC criterion gives results as
good as other recognized classical model selection criteria.

5. Conclusions

In this work, by applying the same methodology as for AIC to a family of pseudodistances,
we constructed new model selection criteria using minimum pseudodistance estimators. We proved
theoretical properties of these criteria including asymptotic unbiasedness, robustness, consistency,
as well as the limit laws. The case of the linear regression models was studied in detail and specific
selection criteria based on pseudodistance are proposed.

For linear regression models, a comparative study based on Monte Carlo simulations illustrate
the performance of the new methodology. Thus, for small sample sizes, the criteria PIC and MDIC
yield the best results and in many cases PIC wins, for example when the level of contamination is 10%
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or 20%. For medium sample sizes, the criteria PIC and BIC yield the best results. When the sample size
is large, BIC generally yields better results than PIC which stays relatively close behind, but sometimes
BIC and PIC have the same performance.

Based on the results of the simulation study and on the real data example, we conclude that the
new PIC criterion is a good competitor of the well known criteria AIC, BIC and MDIC with an overall
performance which is very satisfactory for all possible settings according to the sample size and
contamination rate. Also PIC may have superior performance, especially in the case of small and
contaminated samples.

An important issue that needs further investigation is the choice of the appropriate value for the
parameter γ associated to the procedure. The findings of the presented simulation study show that,
for contaminated data, the value γ = 0.15 leads to very good results, irrespectively of the sample
size. Also, γ = 0.3 produces overall very satisfactory results, irrespectively of the sample size and
the contamination rate. We hope to explore further and provide a clear solution to this problem, in
a future work. We also intend to extend this methodology to other type of models including nonlinear
or time series models.
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Appendix A

Proof of Proposition 1. Using a Taylor expansion of Wθ around the true parameter θ0 and taking
θ = θ̂n, on the basis of (12) and (13) we obtain

W
θ̂n

= Wθ0 +
1
2
(θ̂n − θ0)

t Mγ(θ0)(θ̂n − θ0) + o(‖θ̂n − θ0‖2). (A1)

Then (15) holds.

Proof of Proposition 2. Using a Taylor expansion of Qθ around to θ̂n and taking θ = θ0, we obtain

Qθ0 = Q
θ̂n
+

[
∂

∂θ
Qθ

]t

θ=θ̂n

(θ0 − θ̂n) +
1
2
(θ0 − θ̂n)

t
[

∂2

∂θ2 Qθ

]
θ=θ̂n

(θ0 − θ̂n) + o(‖θ̂n − θ0‖2). (A2)

Note that
[

∂
∂θ Qθ

]
θ=θ̂n

= 0 by the very definition of θ̂n.
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By applying the weak law of large numbers and the continuous mapping theorem, we get[
∂2

∂θ2 Qθ

]
θ=θ0

−
[

∂2

∂θ2 Wθ

]
θ=θ0

P→ 0 (A3)

and using (13) [
∂2

∂θ2 Qθ

]
θ=θ0

−Mγ(θ0)
P→ 0. (A4)

Then, using the consistency of θ̂n and (A4), we obtain[
∂2

∂θ2 Qθ

]
θ=θ̂n

= Mγ(θ0) + oP(1). (A5)

Consequently,

Qθ0 = Q
θ̂n
+

1
2
(θ0 − θ̂n)

t Mγ(θ0)(θ0 − θ̂n) + o(‖θ̂n − θ0‖2) (A6)

and we deduce (17).

Proof of Proposition 3. Using Proposition 1 and Proposition 2, we obtain

E[W
θ̂n
] = E[Q

θ̂n
] + E[(θ0 − θ̂n)

t Mγ(θ0)(θ0 − θ̂n)]− E[Qθ0 ] + Wθ0 + E[Rn] (A7)

where Rn = o(‖θ̂n − θ0‖2).
In order to evaluate Wθ0 − E[Qθ0 ], note that

Qθ0 −Wθ0 = − 1
γ

[
ln

(
1
n

n

∑
i=1

pγ
θ0
(Xi)

)
− ln

(∫
pγ+1

θ0
dλ

)]
. (A8)

A Taylor expansion of the function ln x around to
∫

pγ+1
θ0

dλ yields

ln

(
1
n

n

∑
i=1

pγ
θ0
(Xi)

)
= ln

(∫
pγ+1

θ0
dλ

)
+

1∫
pγ+1

θ0
dλ

[
1
n

n

∑
i=1

pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ

]
−

−1
2
· 1

(
∫

pγ+1
θ0

dλ)2

[
1
n

n

∑
i=1

pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ

]2

+

+o(‖ 1
n

n

∑
i=1

pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ‖2). (A9)

Then

E[Qθ0 −Wθ0 ] = − 1
γ

E

[
ln

(
1
n

n

∑
i=1

pγ
θ0
(Xi)

)
− ln

(∫
pγ+1

θ0
dλ

)]

= − 1
γ

 1∫
pγ+1

θ0
dλ

E

[
1
n

n

∑
i=1

pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ

]
−

−1
2
· 1

(
∫

pγ+1
θ0

dλ)2
E

( 1
n

n

∑
i=1

pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ

)2
+ E[R′n]


where R′n = o(‖ 1

n ∑n
i=1 pγ

θ0
(Xi)−

∫
pγ+1

θ0
dλ‖2).

On the other hand,
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E

( 1
n

n

∑
i=1

pγ
θ0
(Xi)−

∫
pγ+1

θ0
dλ

)2
 = Var

[
1
n

n

∑
i=1

pγ
θ0
(Xi)

]
=

1
n

Var
[

pγ
θ0
(X)

]
=

1
n

{
E[p2γ

θ0
(X)]− E[pγ

θ0
(X)]2

}
=

∫
p2γ+1

θ0
dλ− (

∫
pγ+1

θ0
dλ)2

n
. (A10)

Consequently,

E[Qθ0 ]−Wθ0 = − 1
2γn

1−
∫

p2γ+1
θ0

dλ(∫
pγ+1

θ0
dλ
)2

− 1
γ

E
[
R′n
]

. (A11)

Using (A7) and (A11), we obtain (18).

Proof of Proposition 5. For the contaminated model P̃εx = (1− ε)Pθ0 + εδx, it holds

U(P̃εx) =
1

γ + 1
ln
(∫

pγ+1
T(P̃εx)

dλ

)
− 1

γ
ln
(∫

pγ

T(P̃εx)
dP̃εx

)
. (A12)

Derivation with respect to ε yields

∂

∂ε
[U(P̃εx)]ε=0 =

1∫
pγ+1

θ0
dλ
·
∫

pγ
θ0

ṗθ0dλ · IF(x; T, Pθ0)−

− 1
γ
· 1∫

pγ+1
θ0

dλ

{
−
∫

pγ+1
θ0

dλ + γ ·
∫

pγ
θ0

ṗθ0dλ · IF(x; T, Pθ0) + pγ
θ0
(x)
}

=
1
γ
·

1−
pγ

θ0
(x)∫

pγ+1
θ0

dλ

 .

Thus we obtain

IF(x; U, Pθ0) =
1
γ

1−
pγ

θ0
(x)∫

pγ+1
θ0

dλ

 . (A13)
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