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Abstract: In this work, the dependence of reversal potentials and zero-current fluxes on diffusion
coefficients are examined for ionic flows through membrane channels. The study is conducted for
the setup of a simple structure defined by the profile of permanent charges with two mobile ion
species, one positively charged (cation) and one negatively charged (anion). Numerical observations
are obtained from analytical results established using geometric singular perturbation analysis of
classical Poisson–Nernst–Planck models. For 1:1 ionic mixtures with arbitrary diffusion constants,
Mofidi and Liu (arXiv:1909.01192) conducted a rigorous mathematical analysis and derived an
equation for reversal potentials. We summarize and extend these results with numerical observations
for biological relevant situations. The numerical investigations on profiles of the electrochemical
potentials, ion concentrations, and electrical potential across ion channels are also presented for
the zero-current case. Moreover, the dependence of current and fluxes on voltages and permanent
charges is investigated. In the opinion of the authors, many results in the paper are not intuitive,
and it is difficult, if not impossible, to reveal all cases without investigations of this type.
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1. Introduction

Ion channels are proteins found in cell membranes that create openings in the membrane to
allow cells to communicate with each other and with the outside to transform signals and to conduct
tasks together [1,2]. They have an aqueous pore that becomes accessible to ions after a change in the
protein structure that makes ion channels open. Ion channels permit the selective passage of charged
ions formed from dissolved salts, including sodium, potassium, calcium, and chloride ions that carry
electrical current in and out of the cell.

To unravel how ion channels operate, one needs to understand the physical structure of ion
channels, which is defined by the channel shape and the spatial distribution of permanent and
polarization charge. The shape of a typical ion channel is often approximated as a cylindrical-like
domain with a non-uniform cross-sectional area. Within a large class of ion channels, amino acid side
chains are distributed mainly over a “short” and “narrow” portion of the channel, with acidic side
chains contributing permanent negative charges and basic side chains contributing permanent positive
charges, analogous to the doping of semiconductor devices, e.g., bipolar PNP and NPN transistors.

The spatial distribution of side chains in a specific channel defines the permanent charge of
the channel. The spatial distribution of permanent charge forms (most of) the electrical structure of
the channel protein. The spatial distribution of mass forms the structure studied so successfully by
molecular and structural biologists. Ions that move through channels are often only an Angstrom or
so away from the permanent charges residing on acid and base side chains. In addition, electrical
forces are in general much stronger than entropic forces. Thus, in most cases, the electrical structure is
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more important in determining how ions go through a channel than the mass structure. Sometimes,
the dielectric properties (“polarization”) of the protein contribute a charge that is significant. Then, the
spatial distribution of dielectric properties becomes an important part of the electrical structure.

The most basic function of ion channels is to regulate the permeability of membranes for a given
species of ions and to select the types of ions and to facilitate and modulate the diffusion of ions across
cell membranes. At present, these permeation and selectivity properties of ion channels are usually
determined from the current–voltage (I–V) relations measured experimentally [2,3]. Individual fluxes
carry more information than the current, but it is expensive and challenging to measure them [4,5].
Indeed, the measurement of unidirectional fluxes by isotopic tracers allowed the early definition of
channels and transporters and is a central subject in the history of membrane transport, as described in
textbooks—for example, [6–9]. The precise definition and use of unidirectional fluxes are dealt with at
length in the paper [5]. The I–V relation defines the function of the channel structure, namely the ionic
transport through the channel. That transport depends on driving forces expressed mathematically as
boundary conditions. The multi-scale feature of the problem with multiple physical parameters allows
the system to have great flexibility and to exhibit vibrant phenomena/behaviors—a great advantage
of “natural devices” [10]. On the other hand, the same multi-scale feature with multiple physical
parameters presents an extremely challenging task for anyone to extract meaningful information
from experimental data, also given the fact that the internal dynamics cannot be measured with
present techniques. The general inverse problem is challenging, although specific inverse problems
have been successfully solved with surprisingly little difficulty using standard methods and software
packages [11].

To understand the importance of the relation of current and permanent charges, that is, the I–Q
relation, we point out that the role of permanent charges in ionic channels is similar to the role of
doping profiles in semiconductor devices. Semiconductor devices are similar to ionic channels in the
way that they both use atomic-scale structures to control macroscopic flows from one reservoir to
another. Ions move a lot like quasi-particles move in semiconductors. In a crude sense, holes and
electrons are the cations and anions of semiconductors. Semiconductor technology depends on the
control of migration and diffusion of quasi-particles of charge in transistors and integrated circuits.
Doping is the process of adding impurities into intrinsic semiconductors to modulate its electrical,
optical, and structural properties [12,13]. In a crude sense, doping provides the charges that acid and
base side chains provide in a protein channel.

Ion channels are almost always passive and do not require a source of chemical energy (e.g., ATP
hydrolysis) in order to operate. Instead, they allow ions to flow passively driven by a combination of the
transmembrane electrical potential and the ion concentration gradient across the membrane. For other
fixed physical quantities, the total current I = I(V ,Q) depends on the transmembrane potential V and
the permanent chargeQ. For fixedQ, a reversal potential V = Vrev(Q) is a transmembrane potential that
produces zero current I(Vrev(Q),Q) = 0. Similarly, for fixed transmembrane potential V , a reversal
permanent charge Q = Qrev(V) is a permanent charge that produces zero current I(V ,Qrev(V)) = 0.

The Goldman–Hodgkin–Katz (GHK) equation for reversal potentials involving multiple ion
species [14,15] is used to determine the reversal potential across ion channels. The GHK equation is
an extension of the Nernst equation—the latter is for one ion species. The classical derivations were
based on the incorrect assumption that the electric potential Φ(X) is linear in X—the coordinate along
the length of the channel. This assumption is particularly unfortunate because it is the change in the
shape of the electrical potential Φ(X) that is responsible for so many of the fascinating behaviors of
transistors or ionic systems [16–21]. There was no substitute for GHK equations until authors of [22,23]
recently offered equations derived from self-consistent Poisson–Nernst–Planck (PNP) systems, to the
best of our knowledge.

In this work, focusing on basic understanding of possible effects of unequal diffusion coefficients
and, as a starting point, we will use the classical PNP model with a piecewise constant permanent
charge and a cylinder-like channel with variable cross-sectional area. The classical PNP model treats
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ions as point charges. Among many limitations, gating and selectivity cannot be captured by the
simple classical PNP model. However, the basic finding on reversal potentials and their dependence
on permanent charges and on ratios of diffusion constants seems important and some are non-intuitive
and deserving of further investigation. In the future, more structural detail and more correlations
between ions should be taken into considerations in PNP models such as those including various
potentials for ion-to-ion interaction accounting for ion sizes effects and voids [24–32].

There have been great achievements in analyzing the PNP models for ionic flows through ion
channels [5,28,33–36], etc. Although mathematical analysis plays a powerful and unique role to
explain mechanisms of observed biological phenomena and to discover new phenomena, numerical
simulations are needed to fit actual experimental data and study cases where analytical solutions do
not exist. Furthermore, numerical observations may give clues for more theoretical investigations.
Indeed, numerical and analytical studies are linked; any progress in one catalyzes work in the other.

This paper is a mathematical study on some aspects of ionic flows via the PNP models. It uses
established mathematical methods and analytical results [23,33] that are derived without further
assumption from their underlying physical models. The numerical results, throughout the paper,
are gained from the algebraic systems (15), (22), (23) and (27), obtained from reduced matching
systems of analytical results in [23,33]. The nonlinear algebraic systems are then solved by the
MATLAB R© (Version 9.5) function fsolve that uses the trust–region dogleg algorithm. The trust–region
algorithm is a subspace trust–region method and is based on the interior-reflective Newton method
described in [37]. Our numerical results indicate that current–voltage and current-permanent charge
and even zero-current relations depend on a rich interplay of boundary conditions and the channel
geometry arising from the mathematical properties analyzed in [23,33,34,38]. Although the work here
is presented in the context of biological ion channels, it is clear that the results apply to the artificial
channels that are now being studied for their engineering applications.

The highlights of our studies in this paper as well as in [23,33,34,38] applied to the setup of this
paper include:

(i) a mathematically derived system for the zero-current condition (see System (15)) that can be used
to determine the reversal potential in terms of other parameters (see Display (22));

(ii) an examination on how the reversal potential depends on permanent charge: its sign and its
monotonicity in permanent charge (see Section 2.2); and a comparison between this reversal
potential and that from GHK in the special setting (see Section 2.3);

(iii) a characterization of monotonic dependencies of the reversal potential on the ratio of diffusion
coefficients in terms of different conditions on the boundary concentrations (see Section 2.2),
as well as effects of un-equal diffusion coefficients on signs of zero-current flux and its dependence
on permanent charge (see Section 2.1);

(iv) numerical spatial profiles under the zero current condition of the concentrations and electric
potential, and hence the profiles of the electrochemical potentials for several choices of permanent
charges that reveal special features of permanent charge effects (see Section 2.4, particularly,
Remark 3);

(v) numerical and analytical studies of I–V and I–Q relations, and zero-voltage current and its rich
dependence on permanent charge (see Section 3.3).

Furthermore, there are several qualitatively important but non-intuitive results discussed in
this work. These qualitative results may be helpful in guiding experimentation and some might not be
apparent in intuitive thinking about ion channel behavior. Here are some examples:

a. The zero-current flux J has the same sign as that of l − r (see Section 2.1).
b. The magnitude of the ratio between of the two diffusion coefficients affects the monotonicity of

the zero-current flux J in Q (see Section 2.1).
c. I–Q curves are not monotonic in general (see Section 3.2).
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d. Rich phenomena of interplay between boundary conditions and diffusion coefficients in terms of
monotonicity of zero-voltage current on permanent charge (Section 3.3).

To this end, we would like to emphasize that applying the geometric analysis allows us to identify
and formulate quantities and properties that are crucial to biology, while also providing quantitative
and qualitative understanding and predictions.

This paper is organized as follows. The classical PNP model for ionic flows is recalled in Section 1.1
to prepare the stage for investigations in later sections. In Section 2, we study zero current problems to
investigate the corresponding fluxes and reversal potentials Vrev. In particular, we compare a special
case of the reversal potential with the GHK equation. Some other numerical observations are also
provided to study profiles of relevant physical quantities in Section 2.4. In Section 3, we first recall the
analytical results in [33] when diffusion constants are also involved. Then, numerical observations are
provided to examine behaviors of current, voltage, and permanent charge with respect to each other in
some general cases. Some concluding remarks are provided in Section 4.

1.1. Poisson–Nernst–Planck Models for Ionic Flows

The PNP system of equations has been analyzed mathematically to some extent, but the equations
have been simulated and computed to a much larger extent [39–43]. One can see from these
simulations that macroscopic reservoirs must be included in the mathematical formulation to describe
the actual behavior of channels [24,44]. For an ionic mixture of n ion species, the PNP type model is,
for k = 1, 2, ..., n,

Poisson: ∇ ·
(

εr(
−→
X )ε0∇Φ

)
= −e0

( n

∑
s=1

zsCs +Q(
−→
X )
)

,

Nernst-Planck: ∂tCk +∇ ·
−→J k = 0, −−→J k =

1
kBT
Dk(
−→
X )Ck∇µk,

(1)

where
−→
X ∈ Ω with Ω being a three-dimensional cylindrical-like domain representing the channel

of length L̂ (nm = L̂ × 10−9m), Q(−→X ) is the permanent charge density of the channel (with unit
1M = 1Molar = 1mol/L = 103mol/m3 ), εr(

−→
X ) is the relative dielectric coefficient (with unit 1),

ε0 ≈ 8.854× 10−12 F m−1 is the vacuum permittivity, e0 ≈ 1.602× 10−19C (coulomb) is the elementary
charge, kB ≈ 1.381 × 10−23JK−1 is the Boltzmann constant, T is the absolute temperature (T ≈
273.16 K =kelvin, for water); Φ is the electric potential (with the unit V = Volt = JC−1), and, for the
k-th ion species, Ck is the concentration (with unit M), zk is the valence (the number of charges per
particle with unit 1), and µk is the electrochemical potential (with unit J = CV) depending on electrical
potential Φ and concentrations Ck. The flux density

−→J k(
−→
X ) (with unit mol m−2s−1) is the number of

particles across each cross-section in per unit time, Dk(
−→
X ) is the diffusion coefficient (with unit m2/s),

and n is the number of distinct types of ion species (with unit 1).
Ion channels have narrow cross-sections relative to their lengths. Therefore, three-dimensional

PNP type models can be reduced to quasi-one-dimensional models. The authors of [45] first offered
a reduced form, and, for a particular case, the reduction is precisely verified by the mathematical
analysis of [46]. The quasi-one-dimensional steady-state PNP type is, for k = 1, 2, ..., n,

1
A(X)

d
dX

(
εr(X)ε0A(X)

dΦ
dX

)
=− e0

(
n

∑
s=1

zsCs +Q(X)

)
,

dJk
dX

= 0, −Jk =
1

kBT
Dk(X)A(X)Ck

dµk
dX

,

(2)
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where X is the coordinate along the channel, A(X) is the area of cross-section of the channel over
location X, and Jk (with unit mol s−1) is the total flux through the cross-section. Equipped with
System (2), we impose the following boundary conditions, for k = 1, 2, · · · , n,

Φ(0) = V , Ck(0) = Lk > 0; Φ(L̂) = 0, Ck(L̂) = Rk > 0. (3)

One often uses the electroneutrality conditions on the boundary concentrations because the
solutions are made from electroneutral solid salts,

n

∑
s=1

zsLs =
n

∑
s=1

zsRs = 0. (4)

The electrochemical potential µk(X) for the k-th ion species consists of the ideal component
µid

k (X) and the excess component µex
k (X), i.e., µk(X) = µid

k (X) + µex
k (X). The excess electrochemical

potential µex
k (X) accounts for the finite size effect of ions. It is needed whenever concentrations

exceed, say 50 mM, as they almost always do in technological and biological situations and often reach
concentrations 1M or more. The classical PNP model only deals with the ideal component µid

k (X),
which reflects the collision between ions and water molecules and ignores the size of ions; that is,

µk(X) = µid
k (X) = zke0Φ(X) + kBT ln

Ck(X)

C0
, (5)

where C0 is a characteristic concentration of the problems, and one may consider

C0 = max
1≤k≤n

{
Lk, Rk, sup

X∈[0,L̂]
|Q(X)|

}
. (6)

For given V ,Q(X), Lk’s and Rk’s, if (Φ(X), Ck(X),Jk) is a solution of the boundary value problem
(BVP) (2) and (3), then the electric current I is

I = e0

n

∑
s=1

zsJs. (7)

For an analysis of the BVP (2) and (3), we work on a dimensionless form. Set

D0 = max
1≤k≤n

{ sup
X∈[0,L̂]

Dk(X)} and ε̄r = sup
X∈[0,L̂]

εr(X).

Let

ε2 =
ε̄rε0kBT
e2

0 L̂2C0
, ε̂r(x) =

εr(X)

ε̄r
, x =

X
L̂

, h(x) =
A(X)

L̂2
, Dk(x) =

Dk(X)

D0
,

Q(x) =
Q(X)

C0
, φ(x) =

e0

kBT
Φ(X), ck(x) =

Ck(X)

C0
, µ̂k =

1
kBT

µk, Jk =
Jk

L̂C0D0
.

(8)

In terms of the new variables, the BVP (2) and (3) becomes, for k = 1, 2, · · · , n,

ε2

h(x)
d

dx

(
ε̂r(x)h(x)

d
dx

φ

)
=−

n

∑
s=1

zscs −Q(x),

dJk
dx

= 0, −Jk =h(x)Dk(x)ck
d

dx
µ̂k,

(9)
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with the boundary conditions

φ(0) = V =
e0

kBT
V , ck(0) = lk =

Lk
C0

; φ(1) = 0, ck(1) = rk =
Rk
C0

. (10)

Remark 1. The actual dimensional forms of quantities have been used for all figures throughout the paper,
that is,

Ck =C0ck (M), Q = C0Q (M), µk =
(
e0Φ + kBT ln(Ck/C0)

)
(J),

Φ =
kBT
e0

φ (V), Jk = L̂C0D0 Jk (mol/s), I = L̂C0D0e0 I (A),
(11)

and we take C0 = 10 M, L̂ = 2.5 nm and D0 = 2.032× 10−9 m2/s, and, for diffusion constants [31],

Dk =1.334× 10−9 m2/s for Na+, or

Dk =2.032× 10−9 m2/s for Cl−, or

Dk =0.792× 10−9 m2/s for Ca2+.

(12)

1.2. Setup of the Problem

We now designate the case we will study in this paper. We will investigate a simple setup,
the classical PNP model (9) with ideal electrochemical potential (5), and the boundary conditions (10).
More precisely, we assume

(A0) The ionic mixture consists of two ion species with valences z1 = −z2 = 1;
(A1) Dk(x) = Dk for k = 1, 2 is a constant and ε̂(x) = 1;
(A2) Electroneutrality boundary conditions (4) hold;
(A3) The permanent charge Q is piecewise constant with one nonzero region; that is, for a partition

0 < a < b < 1 of [0, 1],

Q(x) =

{
Q1 = Q3 = 0, x ∈ (0, a) ∪ (b, 1),
Q2 = 2Q0, x ∈ (a, b),

(13)

where Q0 is a constant.

We assume that ε > 0 in System (14) is small. The assumption is reasonable since, if L̂ = 2.5 nm =

2.5× 10−9 m and C0 = 10 M, then ε ≈ 10−3 [47]. The assumption that ε is small enables one to treat
System (14) of the dimensionless problem as a singularly perturbed problem that can be analyzed
by the theory of geometrical singular perturbations (GSP). GSP uses the modern invariant manifold
theory from nonlinear dynamical system theory to study the entire structure, i.e., the phase space
portrait of the dynamical system, and is not to be confused with the classical singular perturbation
theory that uses, for example, matched asymptotic expansions.

We rewrite the classical PNP system (9) into a standard form of singularly perturbed systems and
turn the boundary value problem to a connecting problem. We refer the readers to the papers [33]
and [36] (with insignificantly altered notations) for details. Denote the derivative with respect to x by
overdot and introduce u = εφ̇. System (9) becomes, for k = 1, 2,

εφ̇ =u, εu̇ = −
2

∑
s=1

zscs −Q(x)− ε
hx(x)
h(x)

u,

εċk =− zkcku− ε
Jk

Dkh(x)
, J̇k = 0.

(14)

System (14) will be treated as a dynamical system with the phase space R7 and the independent
variable x is viewed as time for the dynamical system.
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A GSP framework for analyzing BVP of the classical PNP systems was developed first in [33,35]
for ionic mixtures with two types of ion species. The model of ion channel properties involves coupled
nonlinear differential equations. Until accomplished, it was not apparent that any analytical results
could be found, let alone the powerful ones provided by geometrical singular perturbation. This GSP
framework was extended to an arbitrary number of types of ion species successfully only when
two special mathematical structures of the PNP system were revealed [36]. One special structure is a
complete set of integrals (or conserved quantities) for the ε = 0 limit fast (or inner) system that allows a
detailed analysis of a singular layer component of the full problem. It should pointed out that most
of the integrals are NOT conserved for the physical problem since, no matter how small it is, ε is
NOT zero. The GSP allows one to make conclusion about the BVP for ε > 0 small from information
of ε = 0 limit systems. The other special structure is that a state-dependent scaling of the independent
variable turns the nonlinear limit slow (or outer) system to a linear system with constant coefficients.
The coefficients do depend on unknown fluxes to be determined as a part of the whole problem,
and this is the mathematical reason for the rich dynamics of the problem. As a consequence of the
framework, the existence, multiplicity, and spatial profiles of the singular orbits—zeroth order in ε

approximations of the BVP—are reduced to a system of nonlinear algebraic equations that involves
all relevant quantities altogether. This system of nonlinear algebraic equations defines the physical
framework of the problem precisely. The system shows explicitly what has been guessed implicitly
“everything interacts with everything else” and, in the cases analyzed in this paper, the system shows
quantitatively how those interactions occur. This geometric framework with its extensions to include
some of the effects of ion size [28,29,32] has produced a number of results that are central to ion channel
properties [5,23,30,34,38,48]; for example, it was shown in [34] that a positive permanent charge may
enhance anion flux as well as cation flux; and, in order to optimize effects of the permanent charge, the channel
should have a short and narrow neck within which the permanent charge is confined; and, it was shown in [38]
that large permanent charge is responsible for the declining phenomenon—decreasing flux with increasing
transmembrane electrochemical potential. We refer the readers to the aforementioned papers for more
details on geometric singular perturbation framework for PNP as well as concrete applications to ion
channel problems.

In this paper, we will apply some results and follow the notations in [23,33] for analytical results
where the quantities are all in their dimensionless forms. In addition, for simplicity, we use the letters
l, r and Q0 where l1 = l2 = l, r1 = r2 = r, Q2 = 2Q0.

Remark 2. We remind the readers that the quantities V, l, r, ck, Q, φ, µ̂k, Jk, Dk, and I are dimensionless
quantities corresponding to the dimensional quantities V , L, R, Ck,Q, Φ, µk,Jk,Dk, and I , respectively,
obtained from Display (8). We switch from dimensional form to the dimensionless form and vice versa several
times throughout the paper. Dimensionless variables are convenient for illustrating and analyzing mathematical
and general physical relations. Dimensional variables are necessary for showing how evolution has exploited
those general relations.

2. Zero Current Problems with General Diffusion Constants

In this section, we study how boundary concentrations, electric potential, permanent charges,
and diffusion constants work together to produce current reversal. Throughout this section, in order
to express the effects of diffusion constants on zero-current flux and reversal potential, we study and
compare the results for different cases of diffusion constants where D1 = D2 and where D1 6= D2,
to indicate and emphasize the differences.

Diffusion is the phenomenon through which the spatial distribution of solute particles varies
as a result of their potential energy. It is a spontaneous process that acts to eliminate differences in
concentration and eventually leads a given mixture to a state of uniform composition. Fick’s first
law [49] describes diffusion of uncharged particles by ∂tc = D∂2

xxc, where c is the concentration,
D is the diffusion constant, and t is time. Frequently, the determination of diffusion constants
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involves measuring sets of simultaneous values of t, c, and x. These measured values are then
applied to a solution of Fick’s law to get the diffusion constants. Many techniques are available for
the determination of diffusion constants of ions (charge particles) in aqueous solutions [31,50–53], etc.
When diffusion constants are equal, classical electrochemistry tells that many electrical phenomena
“disappear” altogether, e.g., the “liquid junction” is zero. If the diffusion constants of potassium and
chloride are equal, classical electrochemistry says that KCl acts nearly as an uncharged species. Indeed,
this is the basis for the saturated KCl salt bridge used in a broad range of electrochemical experiments
for many years. Therefore, the equal diffusion constants case is quite degenerate. Experimental
measurements are exclusively performed under isothermal conditions to avoid deviation of D values.
Nevertheless, even diffusion constants of certain ionic species may differ from one method to another,
even when all other parameters are held constant. Everything becomes much more complicated
mathematically when the diffusion constants are not equal, however. This complexity is what makes
many biological and technological devices interesting, useful, and valuable. Some kinds of selectivity
depend on the non-equality of diffusion constants as well.

Applying GSP theory to the classical PNP system (2) for two ion species with diffusion constants
Dk, k = 1, 2, the authors of [23] obtained an algebraic matching system with eleven equations and
eleven unknowns for zero current problems and singular orbits on [0, 1]. They further reduced the
matching system for the case where two ion valences satisfy z1 = −z2. It follows that the reduced
matching system for zero current I = J1 − J2 = 0 when z1 = −z2 = 1 is

G1(A, Q0, θ) = V and G2(A, Q0, θ) = 0, (15)

where
G1(A, Q0, θ) =θ

(
ln

Sa + θQ0

Sb + θQ0
+ ln

l
r

)
− (1 + θ) ln

A
B
+ ln

Sa −Q0

Sb −Q0
,

G2(A, Q0, θ) =θQ0 ln
Sa + θQ0

Sb + θQ0
− N,

(16)

and, A is the geometric mean of concentrations at x = a, that is,

A =
√

c1(a)c2(a), (17)

B =
1− β

α
(l − A) + r, Sa =

√
Q2

0 + A2, Sb =
√

Q2
0 + B2, N = A− l + Sa − Sb, (18)

and

θ =
D2 − D1

D2 + D1
, α =

H(a)
H(1)

, β =
H(b)
H(1)

where H(x) =
∫ x

0

1
h(s)

ds. (19)

Note that, if h(x) is uniform, then H(x) is the ratio of the length with the cross-section area of
the potion of the channel over [0, x]. The original of this quantity H(x) has its root in Ohm law for
resistance of a uniform resistor. It turns out that the quantities α and β together with the value Q0

are key characteristics for the shape and the permanent charge of the channel structure (see Section 4
in [34] for more detailed and concrete results about the roles of α and β on the fluxes).

To this end, we recall three relevant results from [23] on which most of our analytical and
numerical studies are based.

For fixed Q0 and θ, A can actually be solved from G2(A, Q0, θ) = 0, where G2 is defined in
Display (16) with the properties stated in the next theorem.

Theorem 1 (Theorem 3.4 in [23]). The solution A = A(Q0, θ) of G2(A, Q0, θ) = 0 satisfies

(a) A(0, θ) = (1− α)l + αr and limQ0→±∞ A(Q0, θ) = l,
(b) if l > r, then l > A(Q0, θ) > A∗ > B(Q0, θ) > r,
(c) if l < r, then l < A(Q0, θ) < A∗ < B(Q0, θ) < r,
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(d) if θQ0 ≥ 0, then ∂Q0 A(Q0, θ) has the same sign as that of (l − r)Q0,

where A∗ =
(1− β)l + αr

1− β + α
.

For fixed Q0 and θ, the reversal potential Vrev = Vrev(Q0, θ) can also be determined and enjoy
properties stated in the next two theorems. Recall that we denote J1 = J2 by J.

Theorem 2 (Theorem 4.2 in [23]). For the reversal potential Vrev = Vrev(Q0, θ), one has

(i) if l > r, then J > 0, and, hence, − 1
z1

ln
l
r
< Vrev(Q0, θ) <

1
z1

ln
l
r

;

(ii) if l < r, then J < 0, and, hence,
1
z1

ln
l
r
< Vrev(Q0, θ) < − 1

z1
ln

l
r

;

(iii) Vrev(0, θ) =
θ

z1
ln

l
r

and limQ0→±∞ Vrev(Q0, θ) = ± 1
z1

ln
l
r

.

Theorem 3 (Theorem 4.4 in [23]). For any given θ ∈ (−1, 1), one has

(i) if θ = 0, then Vrev(Q0, θ) is increasing in Q0 for l > r and decreasing in Q0 for l < r;
(ii) if θ > 0, then, for Q0 ≥ 0, Vrev(Q0, θ) is increasing in Q0 for l > r and decreasing in Q0 for l < r;
(iii) if θ < 0, then, for Q0 ≤ 0, Vrev(Q0, θ) is increasing in Q0 for l > r and decreasing in Q0 for l < r.

In what follows, numerical simulations are conducted with the help of analysis on System (15).
The combination of numerics and analysis gives a better understanding of the zero-current problems
and compliments some analytical results obtained in [23]. For our numerical simulations, we choose
a = 1/3, b = 2/3 in Display (13) and h(x) = 1 for simplicity and for definiteness.

2.1. Zero-Current Flux J = J1 = J2.

We aim to clarify the relationships of ion fluxes with permanent charge and diffusion constants
when current is zero.

Recall that fluxes J1 and J2 are equal for this case and let J denote it. For any permanent charge
Q = 2Q0, once a solution (A, V) of System (15) is obtained, it follows from matching equations
(see Appendix in [23]) that J is given by

J = −6D1D2(A− l)
(D1 + D2)

= −6D1D2(r− B)
(D1 + D2)

. (20)

2.1.1. Sign of Zero-Current Flux J

It was observed in [22] that the Nernst–Planck equation in Display (9) (with dimensionless
quantities) gives, for k = 1, 2,

Jk
Dk

∫ 1

0

1
h(x)ck(x)

dx = zkV + ln
l
r

. (21)

Therefore, the sign of flux Jk depends only on the boundary conditions l, r and V. Note that
Equation (21) holds for any condition, not just zero-current condition.

For zero-current problem, V = Vrev depends on l, r, D1, D2, and Q as well, in general. Thus,
the sign of zero-current flux J seems to depend on all quantities and to be difficult to figure out. It is
not the case. A consequence of Display (20) together with Theorem 1 is that:

The zero-current f lux J has the same sign as that o f l − r
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The latter follows directly from Theorem 1 that, for zero-current, l− A has the same sign as that of
l − r. This is consistent with observations in Figure 1 where D1 = 1.334× 10−9 m2/s is fixed, and D2

varies from the same value to D2 = 2.032× 10−9 m2/s, and to a random large value.
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Figure 1. The function J = J (Q) for various values of ρ = D2/D1: The left panel for L = 2 mM and
R = 5 mM; the right panel for L = 5 mM and R = 2 mM.

2.1.2. Dependence of Zero-Current Flux J on Q0 and Dk’s

Concerning the dependence of the zero-current flux J on Q0, we have the following:

(i) If D1 = D2, then the zero-current flux J is an even function in Q0, and it is monotonic for Q0 > 0.

In this case, θ = 0 and, hence, it follows from Theorem 1 that A is an even function in Q0 and is
monotonic in Q0 for Q0 > 0, and thus is the zero-current flux J from Display (20).

(ii) If D1 6= D2, then the zero-current flux J is not an even function in Q0 and the monotonicity of the
zero-current flux J in Q0 seems to be more complicated.

In this case, it can be seen that G2 in Display (16) is not an even function in Q0, and, hence,
the zero-current flux J is not. We would like to point out that, it follows from [38], for fixed
ρ = D2/D1, no matter how large, one always has J → 0 as Q0 → ±∞ that is consistent with the
observations in Figure 1.

(iii) Another fascinating result is that the magnitude of ρ = D2/D1 affects the monotonicity of the
zero-current flux J in Q0.

In this case, if one fixes D1, and let D2 increases from small values to D2 → ∞, (i.e., ρ → ∞),
then it follows from Display (20) that there is a meaningful change in the monotonicity of the
zero-current flux J, for small values of Q0 that is not intuitive.

Let us consider the case where L < R and Q0 < 0 is small. Recall that A is the geometric mean of
concentrations at x = a. It follows from System (15) and (16) that, as Q0 increases,

(a) A increases if ρ ≈ 1 (that is θ ≈ 0), and consequently the zero-current flux J decreases;
(b) A decreases if ρ� 1 (that is θ � 1), and, hence, the zero-current flux J increases.

Thus, depending on the size of ρ, the zero-current flux J may increase or decrease in Q0 < 0,
which is also consistent with the observations in Figure 1. The analysis for the case with L > R
is similar.

It seems likely that the engineering, like evolution, will use these mathematical properties to
control the qualitative properties of channels, technological, and biological.
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2.2. Reversal Potential Vrev.

Experimentalists have long identified reversal potential as an essential characteristic of ion
channels [54,55]. Reversal potential is the potential at which the current reverses direction, i.e.,
V = Φ(0)−Φ(L̂) that produces zero current I . Using dimensionless form of quantities (see Remark 2),
it follows from System (15) and (16) (where there are two ion species with valences z1 = −z2 = 1) that
for general permanent charge Q = 2Q0 6= 0 with arbitrary diffusion constants [23], the variable A
(the geometric mean of concentrations at x = a) can be solved uniquely from G2 = 0 in System (15),
and the reversal potential is then

Vrev = θ
(

ln
Sa + θQ0

Sb + θQ0
+ ln

l
r

)
− (1 + θ) ln

A(Q0, θ)

B(Q0, θ)
+ ln

Sa −Q0

Sb −Q0
, (22)

where B, Sa, Sb, and θ are defined in Displays (18) and (19).

2.2.1. Range of Reversal potential Vrev

For fixed l, r, and for any given Q0, it follows from Theorem 2 that there exists a unique reversal
potential Vrev such that Vrev ≤ | ln l

r |. As Q0 → ±∞, then Vrev gets close to the boundary values, i.e.,
Vrev → ± ln l

r .

2.2.2. Zero Reversal Potential

One particular case is when the reversal potential is zero. To examine under what conditions one
obtains Vrev = Vrev(Q0) = 0, it follows Theorem 2 that,

(i) if D1 = D2, then Vrev(Q0) = 0 for Q0 = 0,
(ii) if D1 < D2, then there is a Q0 < 0, such that Vrev(Q0) = 0,
(iii) if D1 > D2, then there is a Q0 > 0, such that Vrev(Q0) = 0.

Considering the second case above, the observations in Figure 2 show that, as ρ = D2/D1

increases, magnitude of the corresponding Q0 becomes larger. In fact, as ρ→ ∞, then Q0 → −∞.
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Figure 2. The function V = Vrev(Q): The left panel for L = 2 mM and R = 5 mM; the right panel for
L = 5 mM and R = 2 mM.

2.2.3. Reversal Potential Vrev(Q0) for Q0 = 0

For Q0 = 0, one has Vrev(0) = θ ln l
r from Theorem 2. Therefore,

(i) if D1 = D2, then Vrev(0) = 0,
(ii) if D1 6= D2, then Vrev(0) has the same sign as that of θ(l − r).
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Let us consider the case where D1 < D2. In that case, Vrev(0) has the same sign as that of l − r.
This is reasonable, since, for V = 0, we have |J1| < |J2| (since all but Jk/Dk are independent of Dk in
Equation (21)), and to help |J1| more than |J2| to get J1 = J2 for zero current conditions, one needs
to increase V when l > r

(
and decrease V when l < r

)
, and that is why Vrev(0) > 0 for l > r

(
and

Vrev(0) < 0 for l < r
)
. This is consistent with observations in Figure 2 as well. The analysis for the

other case with D1 > D2 is similar.

2.2.4. Monotonicity of Vrev with Respect to Q

It follows from Theorem 3 that

For θQ > 0, ∂QVrev has the same sign as that o f l − r.

This analytical result does not allow conclusions about the case for θQ < 0, however.
The observations in Figures 2 and 3 show that the result holds for any θ and Q. Thus, we have

Conjecture : Vrev is increasing in Q f or l > r and decreasing in Q f or l < r.

We remark that, in Figure 3, we take L = 20 mM, R = 50 mM, and D1 = 1.334× 10−9 m2/s and
D2 = 2.032× 10−9 m2/s which are diffusion constants of, say, Na+ and Cl−, respectively (see the solid
line), and D1 = 1.334× 10−9m2/s and D2 = 0.792× 10−9m2/s, where D2 is the diffusion constants of
Ca2+ (see the dashed line).
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Figure 3. V = Vrev(Q) decreases when L < R, independent of values of diffusion constants.

2.2.5. Dependence of Vrev on ρ = D2/D1

Let us discuss the dependence of Vrev on ρ = D2/D1 for effects of D1 and D2. It follows from
Proposition 4.6 in [23] that

The reversal potential Vrev is increasing in ρ i f l > r and is decreasing in ρ i f l < r.

This feature reveals a fantastic aspect that is not intuitive immediately. Recall Equation (21). Given
the boundary values and diffusion constants, the values one obtains for all terms in Equation (21)
except Jk are independent of Dk [36]. The relation surely holds for the zero-current condition, i.e.,
J1 = J2 with V = Vrev. Now, let us fix D1 and increase D2 (so ρ is increasing). Then, |J2| increases since
all but J2/D2 in Equation (21) are independent of D2. Consequently, to meet the zero-current condition,
we need to increase |J1|. Intuitively increasing Vrev seems to lead to an increase in |J1|. This intuition
agrees with the result for l > r. However, for the case with l < r, the result is the exact opposite of the
intuitive result. That is, for l < r, it says, as ρ increases, Vrev decreases. This counterintuitive behavior
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could be explained by the fact that c1(x) depends on Vrev, and reducing Vrev could still increase |J1|.
In fact, l < r will result in reducing Vrev, but c1(x) changes in a way that consequently increases |J1|.

To illustrate the counterintuitive behavior, we provide a numerical result in Figure 4. We choose C0,
L̂ andD1 for Na+ as mentioned in Remark 1. Now, suppose thatD1

2 = 0.792× 10−9m2/s, and consider
the boundary concentrations L = 20 mM, R = 50 mM and Q = 1 M. In this case, Vrev = −16.7657 mV
and J = −1.7632× 10−17mol s−1. Now, if we increase D1

2 to D2
2 = 2.032× 10−9m2/s, which is Cl−

diffusion constant, then Vrev = −19.5527 mV and J = −1.8788× 10−17mol s−1. These values make
sense now, based on the above discussion. Note that we just pictured the middle part of the channel in
Figure 4 since the sides are almost identical. One should notice that it is hard to realize, from Figure 4,
how L < R will result in reducing Vrev. The complicated behavior discussed above convinces us that
detailed analytical studies, even for special cases, could be critical for the design and interpretation of
numerical results.
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2
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 D
2
2 = 2.032   10-9 m2/s

Figure 4. Graphs of C1(X) when D1 is fixed, but we increase D2.

2.3. A Comparison with Goldman–Hodgkin–Katz Equation for Vrev.

In this section, we first recall the GHK equation [14,15], which relates the reversal potential with
the boundary concentrations and the permeabilities of the membrane to the ions. If the membrane
is permeable to only one ion, then that ion’s Nernst potential is the reversal potential at which
the electrical and chemical driving forces balance. The GHK equation is a generalization of the
Nernst equation in which the membrane is permeable to more than just one ion. The derivation of
GHK equation assumes that the electric field across the lipid membrane is constant (or, equivalently,
the electric potential φ(x) is linear in x in the PNP model). Under the assumption, the I–V
(current–voltage) relation is given by

I = V
n

∑
k=1

z2
k Dk

rk − lkezkV

1− ezkV .

For the case where n = 2 and z1 = −z2 = 1, the GHK equation for the reversal potential is

VGHK
rev (ρ) = ln

r + ρl
l + ρr

. (23)

The assumption that the electric potential φ(x) is linear is not correct when applied to channels in
proteins. This is because proteins have specialized structure and spatial distributions of permanent
charge (acid and base side chains) and polarization (polar and nonpolar side chains). Experimental
manipulations of the structure of channel proteins show that these properties control the biological function
of the channel. The GHK equation does not contain variables to describe any of these properties and
so cannot account for the biological functions they control. A linear φ(x) is widely believed to make
sense without channel structure presumably, in particular, where Q0 = 0. However, this is not correct
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either. It follows from Formula (22) for Q0 = 0 that the zeroth order in ε approximation of the reversal
potential in this case is

Vrev(0, ρ) =
ρ− 1
ρ + 1

ln
l
r

. (24)

Figure 5 compares Vrev(0, ρ) in Formula (24) with VGHK
rev from the GHK-equation in Display (23).

It can be seen from the left panel that, when l and r are not far away from each other (for example
L = C0l = 20 mM, R = C0r = 50 mM), then the two curves have almost the same behavior. However,
when we reduce L from 20 mM to 1 mM, then the right panel shows a significant difference between
the two graphs.
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Figure 5. Vrev(Q = 0, ρ) vs. VGHK
rev (ρ): The left panel for L = 20 mM and R = 50 mM; the right panel

for L = 1 mM and R = 50 mM.

In Figure 6, we arrange a simple numerical result for the case whereQ 6= 0 to compare the graphs
of Vrev(Q, ρ), obtained from Formula (22), for various values of permanent charge Q. We consider
L = 20 mM, R = 50 mM, and 0 < ρ < 5 for some values of Q, i.e., Q = 0 M, 1 M, 10 M.
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Figure 6. Vrev(Q, ρ) with various values of permanent charges.

2.4. Profiles of Relevant Physical Quantities

It follows that, for any given Q, once a solution (A, V) of Equations (15) and (16) is determined,
all the other unknowns can be settled, and, hence, the approximation of the solution of boundary value
problem can be obtained. We consider the dimensional form of quantities, and fix (Q, L, R,D1,D2)

to numerically investigate the behavior of Ck(X) and Φ(X) throughout the channel. Figures 7 and 8
graph the cases with small permanent charge Q = 0.1 mM when L = 20 mM, R = 50 mM, D1 =



Entropy 2020, 22, 325 15 of 23

1.334× 10−9 m2/s, and D2 = 2.032× 10−9 m2/s. In this case, we obtain J = −1.2079× 10−16 mol s−1

and Vrev = −4.4820 mV.
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Figure 7. The functions Ck(X) (left) and Φ(X) (right) with Q = 0.1 mM.
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Figure 8. The functions µ1(X) and µ2(X) are increasing for Q = 0.1 mM.

Furthermore, Figures 9 and 10 show graphs of concentrations, electrical potential, and
electrochemical potentials versus X, where L = 20 mM, R = 50 mM, Q = 2 M, and diffusion
constants are the same as the previous one. In this case, we obtain J = −1.8789× 10−17 mol s−1 and
Vrev = −19.5527 mV.

Remark 3. We end this section with a few of the remarks on some important features captured in Figures 7–10.
It follows from the Nernst–Planck equation that µ′k(x) has the same sign as that of µk(1)− µk(0) or the opposite
sign as that of Jk; in particular, µk(x) is always monotonically increasing or decreasing. For the zero-current
situation, the reversal potential depends on ALL other parameters; and so it seems that it would be hard to make
general conclusions about µk(x), for example, about its monotonicity. This is not true. In fact, in Section 2.1,
we have concluded that the sign of zero-current flux J is the same as that of L− R, and, hence, µ′k(x) has the
opposite sign as that of L − R. For the case considered in this part, L = 20 mM < R = 50 mM, one has
J < 0, independent of the value of Q. Therefore, µ′k(x) > 0 for k = 1, 2, and, hence, µk(x)’s are increasing for
zero-current situation when L < R, independent of Q, as shown in Figure 8 for Q = 0.1 mM and in Figure 10
for Q = 1 mM. On the other hand, as one changes the value of Q, the profiles of concentrations ck(x)’s and
electrical potential φ(x) may vary from monotone to non-monotone, as shown between Figure 7 for Q = 0.1 mM
and Figure 9 for Q = 1 M.
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Figure 9. The functions C1(X) and C2(X) (left) and the function Φ(X) (right) for Q = 1 M.

0 0.5 1 1.5 2 2.5
-7

-6.5

-6

-5.5

-5

0 0.5 1 1.5 2 2.5
-5.4

-5.38

-5.36

-5.34

-5.32

-5.3

Figure 10. The functions µ1(X) and µ2(X) are increasing for Q = 1 M.

3. Current–Voltage and Current-Permanent Charge Behaviors

Ionic movements across membranes lead to the generation of electrical currents. The current
carried by ions can be examined through current–voltage relation or I–V curve. In such a case, voltage
refers to the voltage across a membrane potential, and current is the flow of ions through channels in the
membrane. Another important piece of data are current-permanent charge (I–Q) relation. Dependence
of current on membrane potentials and permanent charge is investigated in this section for arbitrary
values of diffusion constants.

To derive the I–V and I–Q relations, we rely on [33] where the authors showed that the set of
nonlinear algebraic equations is equivalent to one nonlinear equation for A, the geometric mean of
concentrations at x = a defined in Equation (17). All other quantities or variables such as fluxes,
profiles of electric potential φ(x) and concentrations ck(x) can then be obtained in terms of A. It is
crucial to realize that this is a specific result, not available for general cases. One can only imagine
that the resulting simplification produces controllable and robust behavior that proved useful as
evolution designed and refined protein channels. The reduction allowed by this composite variable
can be postulated to be a “design principle” of channel construction, in technological (engineering)
language, or an evolutionary adaptation, in biological language. In particular, the current I can be
explicitly expressed in terms of boundary conditions, permanent charge, diffusion constants, and
transmembrane potential in the special case that allows the determination of A. In what follows,
we derive flux and current equations—when diffusion constants are involved as well—in terms of
boundary concentrations, membrane potential, and permanent charge. The I–V, I–Q, J–V, and J–Q
relations are investigated afterward in Section 3.2.
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3.1. Reduced Flux and Current Equations

In this section, for simplicity, in addition to the assumptions at the beginning of the setup section
(Section 1.2), we will also assume that h(x) = 1, a = 1/3 and b = 2/3, in particular, α = 1/3 and
β = 2/3 (see Display (19)). It was shown in [33] that the BVP (9) and (10) can be reduced to the
algebraic equation

η ln
Sb − η

Sa − η
− N = 0, (25)

where B = l − A + r, Sa, Sb and N are defined in Display (18), and

η = Q0 −
Q0

ln Bl
Ar

(
V + ln

l(Sb −Q0)

r(Sa −Q0)

)
+

N
ln Bl

Ar
. (26)

Once A is solved from Equation (25), we can obtain the flux densities and current equations
as follows:

Jk := Jk(V, l, r, D1, D2) =3Dk(l − A)
(

1 + (−1)k η

Q0

)
, for k = 1, 2,

I := I(V, l, r, D1, D2) =J1 − J2 = 3(l − A)
(

D1 − D2 −
η

Q0
(D1 + D2)

)
.

(27)

For any given (l, r, D1, D2, Q0, V), there exists a solution for the flux J and current I. The numerical
results in the next section give us more information on “current–voltage” and “current-permanent
charge” relations.

3.2. Current–Voltage and Current-Permanent Charge Relations

3.2.1. Dependence of Current on Diffusion Constants

Now, we reveal a feature of the theoretical results that is not intuitive. Suppose that (l, r, Q0)

is given (V is still free and is allowed to take any value!). It follows from Display (18) for the
definition of N that there exists an A so that N = 0. It consequently follows from Equation (26) that,

if V = ln
B(Sa −Q0)

A(Sb −Q0)
, then η = 0. Therefore, from Display (27), I = 3(l− A)(D1−D2), which implies

For special values o f parameters (l, r, V, Q0), the sign o f I is determined by the sign o f D1 − D2.

3.2.2. I–V Curves and I–Q Curves

Figure 11 is a numerical simulation from Equations (25) and (26) of the I–V curves for several
values of Q with D1 = 1.334× 10−9 m2/s and D2 = 2.032× 10−9 m2/s. One may suspect, based on
the numerical observations, that the value of current I , obtained from Display (27), is unique for any V ,
and is monotonically increasing in V . However, this may not be correct, in general. This is important
since the opening and closing properties of channels might be thought to arise from non-unique
solutions [16,17].
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Figure 11. The function I = I(V) for L = 20 mM and R = 50 mM.

Now, for I–Q relations, our numerical experiments shows that:
I–Q curves are not monotonic in general.

Recall that Equation (21), in dimensional form, gives

Jk

∫ L̂

0

kBT
DkA(X)Ck(X)

dX = µk(0)− µk(L̂), k = 1, 2.

The sign of Jk is determined by the boundary conditions, independent of the permanent charge.
Nevertheless, as expected and seen in Figure 12, the magnitudes of Jk’s, and, consequently, the sign
and the size of the current I do depend on Q = 2Q0C0 in general. (Here, Q would be the nonzero
value of the permanent charge in dimensional form.) Treating V as a parameter, the current I is a
function of Q. The numerical observations in Figure 12 indicate that,

(i) there exists some V∗ such that, for V > V∗, I(Q) has a unique maximum;
(ii) there exists some V∗ such that, for V < V∗, I(Q) has a unique minimum.

In particular, I–Q curves are not monotonic in general.
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Figure 12. The function I = I(Q) with D1 < D2: The left panel for L = 20 mM and R = 30 mM;
the right panel for L = 30 mM and R = 20 mM.

In addition, we claim based on numerical observations (not proven though) that there exists
V̂(D1,D2) = min{V∗, |V∗|}, such that

(i) for any given V where |V| > V̂ , the corresponding current I is non-monotonic in Q, but
(ii) for any V where |V| < V̂ , the corresponding current I is monotonic in Q.
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In particular, it can be seen in Section 3.3 that current is monotonic in Q for V = 0. In the end, we
would like to mention that the diffusion constants affect the values V∗ and V∗ above.

3.3. Zero-Voltage Current

The different permeability of the membrane determines the zero membrane potential (voltage) to
different types of ions, as well as the concentrations of the ions, the permanent charge, and the shape
of the channel. Denote current I(V; Q), and the fluxes Jk(V; Q), for k = 1, 2, to include the dependence
on Q too. We call I(0; Q) the zero-potential current and Jk(0; Q) the zero-potential fluxes, respectively,
when V = 0. For any given value of membrane potential V, approximation formulas for the current
I(V; Q), for small and large values of permanent charge Q, are provided in [34,38], respectively.

It follows from [34] that, for small values of Q, applying V = 0, zero-potential current Is(0; Q),
and zero-potential fluxes Js

k(0; Q) (in dimensionless forms as mentioned in Remark 2) are

Is(0; Q) =(l − r)
(

D1 − D2
)
− 3

2
(D1 + D2)(l − r)2

(2l + r)(l + 2r) ln l
r

Q + O(Q2),

Js
k(0; Q) =(l − r)Dk + (−1)k 3(l − r)2Dk

2(2l + r)(l + 2r) ln l
r

Q + O(Q2), k = 1, 2.
(28)

For large positive values of Q = 2Q0, with ν = 1/Q0 (where ν is small), it follows from [38] that
zero-potential current Il(ν) = Il(0; Q) and zero-potential fluxes Jl

k(ν) = Jl
k(0; Q) are

Il(ν) =− 6D2
√

lr
(
√

l −
√

r)√
l +
√

r
+

3
2

D1

( l + r√
l +
√

r

)2
(l − r)ν

+
3
2

D2
l + r

(
√

l +
√

r)2
f (l, r)(l − r)ν + O(ν2),

Jl
1(ν) =

3
2

D1

( l + r√
l +
√

r

)2
(l − r)ν,

Jl
2(ν) =6D2

√
lr

√
l −
√

r√
l +
√

r
− 3

2
D2

l + r
(
√

l +
√

r)2
f (l, r)(l − r)ν + O(ν2),

(29)

where
f (l, r) =

2lr
(
√

l +
√

r)2
+ l + r− 1

2
ln l − ln r

l − r
(l + r)2. (30)

It can be readily seen from Equations (28) that, for small values of Q, the zero-potential current
Is(0; Q) is increasing in Q when l < r and is decreasing in Q if l > r.

However, for large values of the permanent charge Q, the zero-potential current Il(0; Q) depends
on Q in a much richer way. To state the results, we need the following lemma.

Lemma 1. There are t1 and t2 with 0 < t1 < 1 < t2 so that f (l, r) > 0 for l/r ∈ (t1, t2) and f (l, r) < 0 for
l/r 6∈ [t1, t2].

Note that
d

dν
Il(0) =

3D2

2

( l + r√
l +
√

r

)2(D1

D2
+

f (l, r)
l + r

)
(l − r).

It follows from Equations (29) and Lemma 1 that, for large values of Q (small values of ν),

(i) if l/r ∈ [t1, t2] (so that f (l, r) ≥ 0), then, for arbitrary D1 and D2, the zero-potential current Il(ν)

is decreasing in ν (increasing in Q) when l/r ∈ [t1, 1), and is increasing in ν (decreasing in Q)
when l/r ∈ (1, t2];

(ii) if l/r 6∈ [t1, t2] (so that f (l, r) < 0), then,
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(a) for D1
D2

+ f (l,r)
l+r > 0, the zero-potential current Il(ν) is decreasing in ν (increasing in Q) for

l < r, and is increasing in ν (decreasing in Q) for l > r;

(b) for D1
D2

+ f (l,r)
l+r < 0, the zero-potential current Il(ν) is increasing in ν (decreasing in Q) for

l < r, and is decreasing in ν (increasing in Q) for l > r.

Figure 13 illustrates some of the above conclusions. In addition, it suggests that the monotonicity
of I(0) holds for all values of permanent charge, not only for small or large values. We emphasize
that the monotonicity of current I with respect to permanent charge Q is just true for zero membrane
potential, i.e., V = 0. Indeed, one should recall from Section 3.2 that, when V 6= 0, then the current I is
not monotonic in Q.
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Figure 13. The function I = I(Q) for V = 0: The left panel for L = 20 mM and R = 30 mM; the right
panel for L = 30 mM and R = 20 mM.

4. Conclusions

In this paper, we first recall the analytical results in [23] for arbitrary diffusion constants.
To investigate the reversal potential problem for which the current is zero, we do numerical
investigations based on the analytical results in [23], where many cases are studied analytically.
We derive several remarkable properties of biological significance, from the analysis of these governing
equations that hardly seem intuitive.

Biophysicists are also interested in the relation of current–voltage (I–V), and current-permanent
charge (I–Q), as well as reversal potential problems. To do that, we first recall the analytical results
in [33], for arbitrary diffusion constants, to drive the flux densities and current equations explicitly. One
way to characterize channels is the current at zero electric potential, that is, when V = 0, which has
practical advantages. Since it is usually easier to measure a large current than a vanishing one,
we analyzed this case as well. Furthermore, we briefly study the special cases of small and large
permanent charge for zero voltage case, based on the analytical results of [34,38], respectively. To
bridge between small and large values of permanent charges, we numerically study I–V and I–Q
relations for this case as well.
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