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Abstract: We set a shortcut-to-adiabaticity strategy to design the trolley motion in a double-pendulum
bridge crane. The trajectories found guarantee payload transport without residual excitation
regardless of the initial conditions within the small oscillations regime. The results are compared
with exact dynamics to set the working domain of the approach. The method is free from instabilities
due to boundary effects or to resonances with the two natural frequencies.

Keywords: shortcuts to adiabaticity; invariant-based engineering; mechatronics

1. Introduction

The concept of adiabaticity is ubiquitous in physics, but it is not fully exploited in mechanical
engineering and control applications. Adiabatic theorems set the existence of approximate adiabatic
invariants, such as the action integral in classical mechanics, when the control parameters of a given
physical system vary slowly enough in time [1].

Adiabaticity is often used to drive systems in a robust manner. An example is a load hanging
as a simple pendulum from a moving trolley on a bridge crane. If the trolley travels slowly enough
between two points, the energy of the pendulum is an adiabatic invariant and stays constant along
different smooth trolley trajectories for the same initial and final points. In particular, the minimum
energy configuration, in which the oscillating mass stays at relative rest with respect to the suspension
point, is preserved. More generally, for other initial states the final energy will not suffer excitations.
However, the intrinsic slowness of such processes may be problematic, either because long operation
times are impractical, or because during a long process time the ideal dynamics can be affected by the
accumulation of random and/or uncontrollable perturbations that spoil the desired result.

To overcome these problems, “Shortcuts To Adiabaticity” (STA) methods have been developed
in the last decade. The idea is to reach the same results of an adiabatic protocol in short times [2,3].
In STA, the adiabatic invariant is not kept constant throughout the process, but the initial value is
recovered at final time. For the simple example of the load hanging from a moving trolley, the shortcuts
are certain special and fast driving trajectories of the trolley that induce transitory excitations, but
leave the load at final time with the same energy it had initially.

STA methods have been succesfully applied to many different fields and processes in quantum
systems, such as quantum computation [4–7], cooling [8], quantum transport [9,10], quantum state
preparation [11–14], manipulation of cold atoms [15–20] or control of polyatomic molecules [21].
They have been also applied to design optical devices [22,23], and recently in mechanical engineering
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to design fast and robust protocols to control overhead cranes [24,25]. Perhaps surprisingly, because
of the differing orders of magnitude involved, the physics of crane control are much related, in some
formal aspects and domains even identical, to the physics of microscopic particle transport in moving
traps [9]. In both domains the linearized models imply a moving harmonic oscillator. When the
setting is more realistic though, beyond the simplest scenarios, the models become specific and require
specialized treatment as in the system addressed in this paper, see Figure 1, a planar, double-pendulum,
hook (m1) and load (m2) system suspended from a moving trolley. This is a relevant model as cranes
behave like moving double pendulums due to different reasons, for example the large scale of the
payload, or weighty hooks [26,27]. The control of a moving double pendulum dynamics is significantly
more difficult than the single pendulum, with two unactuated degrees of freedom (angles θ1 and θ2

in Figure 1) and only one actuator (the trolley position x). Compared to studies on single pendulum
cranes, this system is much less explored, for a recent brief review on recent papers and approaches
applied see Reference [27]. Control approaches with and without feedback have been worked out
and their pros and cons have been well discussed [26–28]. Our STA approach is presented here in an
elementary way without feedback but it may be adapted and incorporated into methods with feedback
as well.

Figure 1. Double pendulum overhead crane scheme and relevant physical parameters.

Among the different STA approaches, dynamical invariant based inverse engineering is one of the
most successful and is the one followed here. The essence of the method is to identify exact (rather than
adiabatic) dynamical invariants, set boundary conditions to cancel final excitation, design the dynamics
compatible with these conditions, and deduce the necessary controls from the dynamics thanks to the
relations between dynamical invariants and Hamiltonian. For the moving double pendulum the STA
consists on designing trolley trajectories x(t) from x = 0 to x = d so that the system ends up at final
process time t f without excitations. From the point of view of STA process design, this system poses
interesting, non-trivial challenges with respect to the single pendulum, as we shall see.

The article is organized as follows. The physical model and Hamiltonian of the system are set
in Section 2, both in exact form and in the small oscillation regime. Dynamically decoupled normal
modes are found in Section 3, and then the STA protocol is designed in Section 4. Numerical results
are presented in Section 5 and, finally, in Section 6 we end with the conclusions and discuss some
open questions.

2. Physical Model

The physical model and relevant parameters are shown in Figure 1. The model assumes several
conditions and idealizations: (i) the mass of the wires and friction are neglected; (ii) point masses;
(iii) constant wire lengths l1 and l2; (iv) the trolley position is treated as a control parameter rather
than a dynamical variable. This last assumption is a common and simplifying assumption [29] that
requires a good controller, but a more fundamental approach considering the trolley as a dynamical
variable is also possible as in Reference [24].
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2.1. Lagrangian

In terms of the angles θ1 and θ2, see Figure 1, the Cartesian coordinates of each mass in a rest
frame are given by

x1 = x + l1 sin θ1, y1 = −l1 cos θ1,

x2 = x1 + l2 sin θ2, y2 = y1 − l2 cos θ2, (1)

so kinetic (T) and potential (V) energies are given by

T =
1
2

m1(ẋ2
1 + ẏ2

1) +
1
2

m2(ẋ2
2 + ẏ2

2), V = m1gy1 + m2gy2, (2)

where the dots represent time derivatives. The Lagrangian of the system using θ1 and θ2 as generalized
coordinates and dynamical variables and x(t) as a control parameter will be given by

L = L(θi, θ̇i; t) = T −V. (3)

To avoid deformations or excessive tensions, cranes usually work in the small oscillations regime, in
which θi are small so that we may approximate sin θi ≈ θi and cos θi ≈ 1− θ2

i /2. Angular velocities θ̇

will be considered small as well. This approximation linearizes the dynamical equations of motion of
the system. Results found with exact and approximate dynamics will be compared later to check the
validity of the approximation and its limits.

In this small oscillation regime and keeping up to second order quadratic terms in θi and θ̇i,
kinetic and potential energies are given by

T ≈ 1
2

Mẋ2 +
1
2
(θ̇1, θ̇2)

(
Ml2

1 m2l1l2
m2l1l2 m2l2

2

)(
θ̇1

θ̇2

)
+ ẋ (Ml1, m2l2)

(
θ̇1

θ̇2

)
,

V ≈ −Mgl1

(
1−

θ2
1

2

)
−m2gl2

(
1−

θ2
2

2

)
, (4)

where M denotes the total mass M = m1 + m2. The Lagrangian becomes

L ≈ T −V =
1
2
(θ̇1, θ̇2)

(
Ml2

1 m2l1l2
m2l1l2 m2l2

2

)(
θ̇1

θ̇2

)
− 1

2
(θ1, θ2)

(
Mgl1 0

0 m2gl2

)(
θ1

θ2

)

+ ẋ (Ml1, m2l2)

(
θ̇1

θ̇2

)
, (5)

where purely time-dependent and constant terms have been omitted since they do not affect
the dynamics.

2.2. Hamiltonian

To implement a Hamiltonian formulation, which is more convenient to treat the invariants and
inverse engineering of trolley trajectories, we need the conjugate momentum of each θi,

pθ1 =
∂Lθ

∂θ̇1
= Ml1 ẋ + Ml2

1 θ̇1 + m2l1l2θ̇2,

pθ2 =
∂Lθ

∂θ̇2
= m2l2 ẋ + m2l1l2θ̇1 + m2l2

2 θ̇2. (6)



Entropy 2020, 22, 350 4 of 15

These relations can be inverted to have the generalized velocities θ̇i in terms of the generalized
momenta pθi . The Hamiltonian is found from the Lagrangian as

Hθ =
2

∑
i=1

θ̇i pθi − L =
p2

θ1

2m1l2
1
+

p2
θ2

2µl2
2
−

pθ1 pθ2

m1l1l2
+

1
2

Mgl1θ2
1 +

1
2

m2gl2θ2
2 − ẋ

pθ1

l1
, (7)

where µ = m1m2
m1+m2

is the reduced mass and where constant terms that do not affect the dynamics have
been neglected. In matrix representation, this Hamiltonian can be written as

Hθ =
1
2
(pθ1 , pθ2)T

(
pθ1

pθ2

)
+

1
2
(θ1, θ2)K

(
θ1

θ2

)
−
(

ẋ
l1

, 0
)(

pθ1

pθ2

)
, (8)

where

T =

 1
m1l2

1

−1
m1l1l2

−1
m1l1l2

m1+m2
m1m2l2

2

; K =

(
Mgl1 0

0 m2gl2

)
.

Whereas the potential matrix K is diagonal, the kinetic matrix T is not, i. e., pθ1 and pθ2 momenta are
coupled. We want to find a coordinate transformation, i. e., normal modes, where both the coordinates
and momenta are uncoupled so that we can easily get the dynamical invariants to inverse engineer
x(t). In the following section, these normal modes will be calculated following Reference [30]. Normal
modes for the double pendulum with fixed suspension point are known [31], but our treatment takes
the motion of the trolley into account. Finding dynamical normal modes for quadratic time-dependent
Hamiltonians is generically non-trivial [30], but in this system the task is facilitated by the fact that the
time-dependence appears in linear terms via ẋ(t).

3. Normal Modes

3.1. Diagonalization of Hθ

Let us first define a new set of coordinates u1 and u2 by the linear transformation(
u1

u2

)
= A

(
θ1

θ2

)
, (9)

where the A matrix is yet to be determined. The corresponding momenta transform according to
Reference [30] (

pu1

pu2

)
= A−T

(
pθ1

pθ2

)
, (10)

where A−T = (A−1)T stands for the transpose of the inverse matrix. The Hamiltonian in these
variables reads

Hu =
1
2
(pu1 , pu2)

(
ATAT

)(pu1

pu2

)
+

1
2
(u1, u2)

(
A−TKA−1

)(u1

u2

)
−
(

ẋ
l1

, 0
)

AT

(
pu1

pu2

)
(11)

We now look for a transformation matrix A that diagonalizes simultaneously both the ATAT and
A−TKA−1 matrices in the expression above. To do so it is useful to define the following matrix

T̃ = K1/2TK1/2, (12)
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which is symmetric and positive definite and therefore can be diagonalized by an orthogonal matrix O.
Without loss of generality, this orthogonal matrix O can be parametrized as

O =

(
cos θ − sin θ

sin θ cos θ

)
, (13)

and choosing the parameter θ (not to be confused with the angles θi) by

tan 2θ =
2l1

(l1 − l2)

√
m2l2
Ml1

, (14)

we have that
OT T̃O = diag(ω2

1, ω2
2) = Td. (15)

The eigenvalues ω2
i are positive since T̃ is a positive definite matrix, and have dimensions of (angular)

frequency square. The explicit expressions are

ω2
1 =

g
m1l1l2

(
−
√

Mm2l1l2 sin 2θ + Ml1 sin2 θ + Ml2 cos2 θ
)

,

ω2
2 =

g
m1l1l2

(√
Mm2l1l2 sin 2θ + Ml1 cos2 θ + Ml2 sin2 θ

)
,

in agreement with the eigenfrequencies given in Reference [31]. Now, by writing the transformation
matrix as

A = OTK1/2 =

( √
Mgl1 cos θ

√
m2gl2 sin θ

−
√

Mgl1 sin θ
√

m2gl2 cos θ

)
, (16)

both quadratic terms in the transformed Hamiltonian (11) are diagonal since

ATAT = OTK1/2TK1/2O = OT T̃O = Td, (17)

A−TKA−1 = OTK−1/2KK−1/2O = 1. (18)

Finally, the Hamiltonian (11) takes the uncoupled form

Hu =
1
2

2

∑
i=1

(
ω2

i p2
ui
+ u2

i

)
+ ẋ

√
Mg
l1

(−pu1 cos θ + pu2 sin θ). (19)

3.2. Lewis-Leach Family of Hamiltonians and Second Canonical Transformation

The Lewis-Leach (LL) family of Hamiltonians are of the form [32]

HLL =
1
2

[
p2 + Ω(t)q2

]
− F(t)q, (20)

i.e., quadratic Hamiltonians with linear in position terms. For them quadratic invariants are explicitly
known. By a suitable canonical transformation to some generalized coordinates {qi, pi}, we shall
transform Hu into this form. This can be easily achieved just by exchanging momentum and
coordinate [33]. The transformation is generated by F1 = u1q1 + u2q2 which gives the new coordinates
and momenta in terms of the old ones as follows,

pui =
∂F1

∂ui
= qi, pi = −

∂F1

∂qi
= −ui. (21)
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By using this canonical transformation, the new Hamiltonian is

Hq = H1 + H2, (22)

a sum of two independent forced harmonic oscillators that belong to the LL family,

H1 =
1
2

(
p2

1 + ω2
1q2

1

)
− q1 ẋ

√
Mg
l1

cos θ,

H2 =
1
2

(
p2

2 + ω2
2q2

2

)
+ q2 ẋ

√
Mg
l1

sin θ. (23)

3.3. Explicit Expression of Normal Mode Coordinates

Taking into account the two canonical transformations, the explicit expression of the normal mode
coordinates and momenta {qi, pi} in terms of the original variables {θi, pθi} is

q1

q2

p1

p2

 =

(
0 I2

−I2 0

)(
A 0
0 A−T

)
θ1

θ2

pθ1

pθ2

 , (24)

where I2 is the 2× 2 identity matrix and, using the explicit expression of A in (16), we have

q1 =
cos θ√
Mgl1

pθ1 +
sin θ√
m2gl2

pθ2 ,

q2 = − sin θ√
Mgl1

pθ1 +
cos θ√
m2gl2

pθ2 ,

p1 = − cos θ
√

Mgl1θ1 − sin θ
√

m2gl2θ2,

p2 = sin θ
√

Mgl1θ1 − cos θ
√

m2gl2θ2. (25)

4. Designing the STA Protocol

We are now ready to define the invariants and design the driving function x(t).

4.1. Dynamical Invariants

A dynamical invariant of a Hamiltonian system remains constant during the time evolution [34].
Labelling the dynamical invariant of the Hamiltonian Hi as Ii we have that

dIi
dt

= ∂t Ii + {Ii, Hi} = 0, (26)

with {Ii, Hi} being the Poisson bracket. The sum of invariants I = I1 + I2 is invariant with respect to
the sum of Hamiltonians Hq = H1 + H2 since

dI
dt

= {I, Hq}+ ∂t I = {I1 + I2, H1 + H2}+ ∂t(I1 + I2)

= ({I1, H1}+ ∂t I1) + ({I2, H2}+ ∂t I2) + {I1, H2}+ {I2, H1} = 0.

The invariants for (23) have the explicit form [32]

Ii =
1
2
(pi − α̇i)

2 +
ω2

i
2

(qi − αi)
2 , (27)
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provided the functions αi satisfy the following Newton equations,

α̈1 + ω2
1α1 = ẋ

√
Mg
l1

cos θ, (28)

α̈2 + ω2
2α2 = −ẋ

√
Mg
l1

sin θ. (29)

These αi functions may be regarded as auxiliary, reference, special “displacements” in two forced
harmonic oscillators. Let us underline that the actual motion for a specific transport process is described
by the qi rather than by the αi (which represent just a particular case of all possible qi). Note by the
way that the qi satisfy the same Newton equations (with the same forces) as the αi. However, we
shall impose to αi boundary conditions that will guarantee zero final excitations whereas the initial
conditions for the qi are arbitrary.

4.2. Boundary Conditions (BC) for x(t) and αi(t)

We shall assume a transport from x(0) = 0 to x(t f ) = d with additional smooth boundary
conditions for the trolley velocity, ẋ(tb) = 0 for tb = 0, t f . We shall further assume that the auxiliary
functions αi, as well as their first and second time derivatives vanish at boundary times tb = 0, t f .
We therefore have in principle a total of sixteen boundary conditions (BC), namely

αi(tb) = α̇i(tb) = α̈i(tb) = 0,

x(0) = 0 ; x(t f ) = d,

ẋ(0) = 0 ; ẋ(t f ) = 0. (30)

These boundary conditions guarantee that each invariant Ii coincides with the corresponding
Hamiltonian Hi at initial and final times, see (27),

Hq(tb) = H1(tb) + H2(tb) = I1(tb) + I2(tb) = I(tb).

At these boundary times, and due to the ẋ(tb) = 0 boundary condition, the Hamiltonian represents
the total mechanical energy of the system, i. e. E(tb) = Hq(tb). If a fast finite-time process is designed
so that the auxiliary functions αi satisfy the imposed boundary conditions, the energy at final and
initial times -regardless of the initial conditions of the hook and load, that is, regardless of the initial
conditions set for qi(0) and its derivatives- will coincide since

E(0) = Hq(0) = I(0) = I(t f ) = Hq(t f ) = E(t f ).

Note that in principle the only conditions needed to guarantee I(tb) = H(tb) are the ones for α(tb)

and α̇(tb). The others have a physical motivation as the desired boundaries for the trolley motion (on
x(tb) and ẋ(tb)) or are a consequence of the former ones (the ones on α̈(tb) because of (28) and (29)).

In the following subsection we will show how to construct the trolley trajectory x(t) so that the
desired conditions in (30) are satisfied.

4.3. Inverse Engineering

We start by proposing the following ansatz for the trolley velocity ẋ(t), symmetric with respect
to t f /2,

ẋ(t) =
3

∑
j=1

aj sin
(2j− 1)πt

t f
, (31)
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with three free parameters a1, a2, and a3 that will be determined from the following three conditions
(the second line involves two conditions, one for each frequency, as justified in the Appendix):

∫ t f

0
ẋ(τ)dτ = d, (32)∫ t f

0
ẋ(τ) cos[ωj(τ −

t f

2
)]dτ = 0, (33)

for j = 1, 2.
Different functional forms are possible, but this ansatz is chosen for simplicity and because of

very useful properties discussed in the Appendix A (it avoids resonance and boundary effects). It is
also remarkable that an ansatz with only three free parameters satisfies the full set of sixteen boundary
conditions in (30), see further details in the Appendix A.

The three free parameters can be therefore written in terms of the system physical parameters as

a1 =
75πd

(
ω2

1t2
f − π2

) (
ω2

2t2
f − π2

)
128t5

f ω2
1ω2

2
, (34)

a2 = −
75πd

(
ω2

1t2
f − 9π2

) (
ω2

2t2
f − 9π2

)
256t5

f ω2
1ω2

2
, (35)

a3 =
15πd

(
ω2

1t2
f − 25π2

) (
ω2

2t2
f − 25π2

)
256t5

f ω2
1ω2

2
. (36)

These parameters determine completely the velocity of the trolley by (31), and its trajectory is simply
the integral

x(t) =
∫ t

0
ẋ(τ)dτ, (37)

which gives an explicit but lengthy expression. See some trolley trajectories and velocities in Figure 2.
For long transport times (ωjt f � π) the trolley trajectory becomes independent of the masses and
lengths of the pendulum and tends to

x∞(t) = d

[
1
2
− 75

128
cos

(
πt
t f

)
+

25
256

cos

(
3πt
t f

)
− 3

256
cos

(
5πt
t f

)]
. (38)

tf=2s
tf=4s
tf=8s
ωj tf≫ 1

(a)

x(
t)

/d

0

0.2

0.4

0.6

0.8

1

t/tf

0 0.2 0.4 0.6 0.8 1

(b)

v(
t)

/d
  (

s-1
)

0

0.2

0.4

0.6

0.8

t/tf

0 0.2 0.4 0.6 0.8 1

Figure 2. (Color online) Trolley trajectories x(t) and velocities v(t) = ẋ(t) for different final times:
t f = 2s (blue-dashed line), t f = 4s (green-dot-dashed line), t f = 8s (red-dotted line). Compare to the
“long time behaviour” in (a) of (38) (black-solid line). Other parameters are: m1 = 1 kg, m2 = 0.5 kg,
l1 = 1 m, l2 = 0.2 m.
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This trajectory implies a maximal velocity vmax = (15π/16)(d/t f ) at t = t f /2. In this asymptotic
scenario there is only one acceleration time segment up to t f /2 and a subsequent braking segment.

For short times compared to eigenperiods there are several segments of acceleration and braking.
In any case this regime is less interesting in practice since the system deviates from the harmonic regime.

5. Numerical Results

5.1. Time Evolution of Suspension Angles

Once the trolley trajectory is designed, the dynamical evolution of the system can be found by
numerically integrating the Euler-Lagrange equations of motion using either the exact Lagrangian (3)
or the approximate Lagrangian in the harmonic (small oscillations) approximation (5). In Figure 3
some examples of the time evolution of the suspension angles θ1 and θ2 during transport are shown.
The initial and final angles are not equal (unless the system is initially at equilibrium), but this is
not a requirement for ending with the initial energy. The calculation has been done using the exact
Lagrangian, but the results are undistinguishable in the scale of the figure when using the approximate
Lagrangian since the involved angles are small throughout the whole transport process. For larger
transport distance d or smaller process time t f these differences will increase and will lead to some
errors due to the anharmonicity of the exact model as will be discussed in the following section.

θ1(º)
θ2(º)

(a)

−10

−5

0

5

10

t(s)

0 2 4 6 8 10

θ1(º)
θ2(º)

(b)

−20

−10

0

10

20

t(s)

0 2 4 6 8 10

θ1(º)
θ2(º)

(c)

−20

−10

0

10

20

t(s)

0 2 4 6 8 10

θ1(º)
θ2(º)

(d)

−20

−10

0

10

20

t(s)

0 2 4 6 8 10

Figure 3. (Color online) Time evolution of the suspension angles for a transport of d = 15 m in a time
t f = 10 s. We have numerically integrated the exact dynamical equations using the exact Lagrangian (3)
with different initial conditions: (a) θ1(0) = 0o, θ2(0) = 0o; (b) θ1(0) = 5o, θ2(0) = 0o; (c) θ1(0) = 0o,
θ2(0) = 5o; and (d) θ1(0) = 5o, θ2(0) = 5o, with θ̇1(0) = θ̇2(0) = 0 in all cases. In the scale of the
figure the results using the approximate Lagrangian (5) or the exact one are indistinguishable. Other
parameters are: m1 = 1 kg, m2 = 0.5 kg, l1 = 1 m, l2 = 0.2 m.

5.2. Anharmonic Effects

For rapid transport operations, the involved angles are larger and the harmonic approximation
breaks down, see Figure 4. Therefore, some deviations from the ideal results (i.e., equal final and initial
energies) should be expected.
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|θ1,max|(º)
|θ2,max|(º)
|θf| (º)
|θf,h| (º)

0

10

20

30

40

tf(s)
5 10 15 20 25 30

Figure 4. (Color online) Maximum swing angles during the process as a function of the duration t f
(red dotted and blue dashed lines). For very rapid operations (small t f ), larger angles are involved
and the harmonic approximation breaks down. Fictitious angle θ f (black-solid line), which basically
is a measure of the final excitation energy, see the main text, as a function of t f . In the harmonic
approximation this angle is zero by construction (θ f ,h, green-dashed-dotted line). System assumed
initially in equilibrium. Other parameters are: m1 = 30 kg, m2 = 3 kg, l1 = 30 m, l2 = 3 m, d = 15 m.
The natural periods of the modes are T1 = 2π/ω1 = 11.048 s and T2 = 2π/ω2 = 3.298 s.

To quantify the excitation at final time in a way that is easy to understand and visualize, we
measure the final energy ∆E in terms of a fictitious angle θ f . This angle is defined as follows: (i) the
load and hook are initially in equilibrium (at rest in the vertical position); and (ii) the final energy is
artificially interpreted as pure potential energy for a configuration where load and hook are at rest
along a line with θ f = θ1 = θ2. In other words: θ f is the final angle when the final energy is considered
to be purely potential and the two suspension angles coincide. Using (2) we may write

∆E = −2E0 sin2 θ f

2
, (39)

with E0 = −m1gl1 −m2g(l1 + l2) being the energy for the equilibrium configuration. In Figure 4, this
fictitious angle is plotted as a function of the process duration time t f .

5.3. Stability

The stability of the proposed transport protocol can be studied by allowing some initial deviations
of the angles θ1(0) or θ2(0) from the equilibrium positions. In Figure 5a, the final time energy excitation,
measured in units of the fictitious angle θ f (39), is plotted as a function of these deviations.

We will compare the resulting excitation with that for a simple third order polynomial ansatz for
the trolley trajectory,

x(t) = 3d

(
t
t f

)2

− 2d

(
t
t f

)3

, (40)

which satisfies the four BCs in (30) for x(t) but not those for the auxiliar functions αi. As shown in
Figure 5b (which should be compared with Figure 5a), the excitation at final time using this simple
trajectory is much larger that the one using the inverse engineered trajectory. Our inverse engineering
method leads to much more robust results.

5.4. Example Limiting the Maximal Trolley Speed

The engine power and safety considerations imply limits to the trolley speed. In this example we
test the effect of such a limit. We set a load m2 = 1000 kg transported a distance d = 40 m. We also set
a hook mass m1 = 150 kg, l2 = 5 m, and l1 = 40 m. A maximum velocity of 2 m/s is assumed.

With this data, two transport protocols are compared in Figure 6: (i) inverse engineered trolley
trajectory (37) and (ii) directly postulated cubic trajectory (40). For initial conditions at equilibrium and
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the same final process time t f , our inverse engineering protocol involves higher maximum velocities
but the crane ends with much lower energy, almost ending in equilibrium. In the dotted part of the
curves the limit of 2 m/s is surpassed.
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Figure 5. (Color online) Difference between final and initial energy measured by the modulus of
the fictitious angle θ f (in o) as a function of the deviations from equilibrium configuration of either
θ1(0) or θ2(0) after solving the exact dynamics with Lagrangian (2). (a) Final fictitious angle for the
inverse-engineered trolley trajectory (37). (b) Final fictitious angle for the postulated cubic trajectory (40).
Other parameters are: m1 = 1 kg, m2 = 0.5 kg, l1 = 1 m, l2 = 0.2 m, d = 15 m and t f = 5 s. The system
is assummed initially at rest, θ̇1(0) = θ̇2(0) = 0.
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Figure 6. (Color online) Comparison of two transport protocols, the inverse engineered trolley
trajectory (37) (red) and the cubic trajectory (40) (blue). The dotted line is for segments where the
maximal trolley velocity is larger than 2 m/s, whereas in solid line segments the maximal velocity
is below that value. (a) Maximum trolley velocity during the process and (b) excitation at final time
measured by the fictitious angle θ f . Rest of parameters: m1 = 150 kg, m2 = 1000 kg, l1 = 40 m,
l2 = 5 m and d = 40 m. System initially at equilibrium. The natural periods of the modes are
T1 = 2π/ω1 = 13.376 s and T2 = 2π/ω2 = 1.538 s.

6. Conclusions

We have applied an invariant based inverse engineering STA method to design fast trolley
trajectories of a double pendulum overhead crane. In the small oscillations regime these trajectories
guarantee that the transport does not induce any energy excitation, regardless of the initial condition
of the double pendulum. We have first found the normal modes and from them the dynamical
invariants. Using these invariants, it is possible to inverse engineer STA trolley trajectories. We have
performed the numerical simulations with the exact dynamics to see the parameter intervals where
the protocol is accurate. Comparisons are also made with less sophisticated trolley trajectories that
demonstrate the advantage of the STA approach. We have worked out a particularly simple design
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for the trolley speed with three sine terms, (31). It should be clear that we have not really optimized
the trolley trajectory. One of the interesting facts about STA methods is that the solutions to the
inverse problem are not unique. That means that there is much room for finding specific trajectories
that optimize variables of interest, or are robust with respect to specific perturbations or parametric
uncertainties [35]. STA combine well in particular with optimal control theory [3]. Thus STA provide
a useful avenue to minimize the sensitivity to parameter uncertainties, one of the weak points of
open-loop approaches. Other possible extension of this work may be to tackle combined or sequential
operations with transport and hoisting [25].

Compared to previous work on methods without feedback [26,28,36], this paper exemplifies and
introduces the use of shortcuts-to-adiabaticity in mechatronics for multimode systems. We refrain
from performing a numerical comparison with “input shaping” methods because virtually any result
would be possible given the flexibility of both input-shaping and STA methods to accomodate a vast
family of possible designs for the trolley motion, corrections for increased robustness with respect
to parameter uncertainties or noise. Nevertheless we would like to underline the simplicity of the
basic invariant-based engineering for the moving double pendulum crane, compared to input-shaping
approaches [26,28,36]. Even if the choice among methods may be a matter of taste and previous
experience, we would like to argue that STA should be in the the toolbox of control methods, if
only because STA are well tested and have been intensely developed theoretically along different
approaches and applied to many experiments in AMO (atomic, molecular, and optical), and solid state
physics [3]. Thus engineering applications may benefit from an important framework of techniques
and concepts. By the way, a positive influence in the opposite direction, from mechatronics to AMO
physics, is also expected. For example, state manipulation in AMO science has much to learn from a
long experience on control with feedback in mechatronics.

Author Contributions: Conceptualization, I.L. and J.G.M.; methodology, I.L.; validation, A.T. and A.R.-P.; formal
analysis, A.T. and A.R.-P.; investigation, I.L.; writing–original draft preparation, I.L.; writing–review and editing,
I.L., A.T., A.R.-P. and J.G.M.; supervision, I.L. and J.G.M.; project administration, J.G.M.; funding acquisition,
J.G.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Basque Country Government (Grant No. IT986-16) and
PGC2018-101355-B-I00 (MCIU/AEI/FEDER, UE).

Acknowledgments: We thank B. Ruiz López and S. González-Resines for collaboration during their final-degree
and Master Theses.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Simple Ansatz for Trolley Velocity

The ansatz with three free parameters (31),

ẋ(t) =
3

∑
k=1

ak sin
(2k− 1)πt

t f
, (A1)

is an even function with respect to t = t f /2 and it automatically satisfies ẋ(tb) = 0. We now rewrite
the auxiliary Equations (28) and (29) as

β̈ j + ω2
j β j = ẋ (A2)

for j = 1, 2, α1 = β1
√

Mg/l1 cos θ, and α2 = −β2
√

Mg/l1 sin θ. These are the equations of a driven
harmonic oscillator, where the trolley velocity plays the role of the external driving force. The new
variables β j should satisfy the BC β j(tb) = β̇ j(tb) = β̈ j(tb) = 0, see (30).
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The solutions with initial condition β j(0) = β̇ j(0) = 0 to the above equations (A2) can be written
in a compact form using the complex function [37]

zj(t) = ωjβ j(t) + iβ̇ j(t)

= ie−iωjt
∫ t

0
ẋ(τ)eiωjτdτ. (A3)

They also satisfy β̈ j(0) = 0 because ẋ(0) = 0, see (A2). If we now impose that the integral term in the
expression above vanishes at t = t f for j = 1, 2, the final time BCs βi(t f ) = β̇i(t f ) = β̈i(t f ) = 0 will be
also satisfied. Note that since ẋ(τ) is an even function in the integration interval, we may rewrite the
integral above as

∫ t f

0
ẋ(τ)eiωjτdτ = eiωjt f /2

∫ t f

0
ẋ(τ) cos

[
ωj

(
τ −

t f

2

)]
dτ

so that only the cosine part of the remaining exponential may contribute by symmetry.
We have therefore two integral constraints, but three parameters to determine in (A1). The third,

and last, constraint comes from the fact that the crane trajectory ends at x(t f ) = d,

x(t f ) =
∫ t f

0
ẋ(τ)dτ = d. (A4)

The three conditions are therefore those summarized in (33).
In the steps just described the sixteen boundary conditions in (30) are satisfied. Let us count them

explicitly: two for ẋ(tb), four for the initial conditions set for β j(0) and β̇ j(0); two more because β̈ j(0)
vanishes automatically due to ẋ(0) = 0; four are satisfied for the β j and their first derivatives at t f
when nullifying the integral; this implies two more, β̈ j(t f ) = 0 using ẋ(t f ) = 0; finally the last two
correspond to the initial condition x(0) = 0 and final condition x(t f ) = 0.

Equation (A3) is also useful to analyze possible unstable behaviour due to border effects. For the
proposed ansatz for the trolley velocity (A1) the only discontinuity will be in the initial (and final)
acceleration but it behaves nicely with t f ,

ẍ(0) = −ẍ(t f ) =
225dπ6

2ω2
1ω2

2t6
f
. (A5)

(The effect of ẍ(0) on the β j as a boundary term is made evident by integrating (A3) twice by
parts.) We tried other ansatzes, polynomials in particular, with a much worse behaviour and serious
boundary-driven excitations because of periodic singularities of ẍ at the boundary times.

If a null acceleration is imposed at boundary times, a further term in (31) will be needed and a
discontinuity in the fourth derivative of x(t) scaling as t−8

f will be observed. Every odd derivative of a
series like (A1) is zero by construction, regardless of the number of terms. In general, imposing a null
2nth derivative of x(t) leads to a discontinuity in the (2n + 2)th derivative, scaling as t−(2n+6)

f , i. e.,

x(2n)(tb) = 0→ x(2n+2)(tb) ∝ t−(2n+6)
f . (A6)

As for the potential occurrence of resonances because of matching of frequencies in (A3), our
ansatz (A1) leads to very stable and simple β j forms without any resonant behaviour, in particular no
dangerous denominators arise. Thus our trolley trajectory avoids resonances from both modes in a
simple direct way, for other methods using multi-mode input shaping see References [26,28].
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