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Abstract: This paper investigated the behavior of the two-dimensional magnetohydrodynamics
(MHD) nanofluid flow of water-based suspended carbon nanotubes (CNTs) with entropy generation
and nonlinear thermal radiation in a Darcy–Forchheimer porous medium over a moving horizontal
thin needle. The study also incorporated the effects of Hall current, magnetohydrodynamics, and
viscous dissipation on dust particles. The said flow model was described using high order partial
differential equations. An appropriate set of transformations was used to reduce the order of these
equations. The reduced system was then solved by using a MATLAB tool bvp4c. The results obtained
were compared with the existing literature, and excellent harmony was achieved in this regard. The
results were presented using graphs and tables with coherent discussion. It was comprehended that
Hall current parameter intensified the velocity profiles for both CNTs. Furthermore, it was perceived
that the Bejan number boosted for higher values of Darcy–Forchheimer number.

Keywords: entropy generation; nonlinear thermal radiation; energy conservation;
magnetohydrodynamic; nanofluid; thin needle

1. Introduction

The novel idea to reduce entropy generation in heat transfer convective processes was floated by
Bejan [1]. In thermodynamic systems, this notion is employed to enhance the efficiency of thermal
engineering gadgets [2]. Indeed, entropy generation is used to gauge the molecular chaos or disorder
in a thermodynamic system. Thermodynamics’ second law states that higher molecular disorder is
inversely proportional to the quality of energy reduction. It has been examined that energy dissipation
and heat transfer owing to differences in temperatures are the key factors for entropy generation. That
is why special attention is given for the enhancement of heat transfer in varied engineering applications.
The average internal heat loss because of entropy generation in a titanium dioxide (TiO2) suspended in
a water-based nanofluid Poiseuille flow with the impact of mixed convection and thermal radiation in
a wavy channel is discussed by Zeeshan et al. [3]. The 2nd law of thermodynamics is betrothed for the
entropy generation model erection. It is reported that the pressure gradient is the key factor for a rise
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in the average energy loss. Further, it is noted that the entropy generation for the radiation parameter
is more near walls in comparison to the middle of the channel. The study of entropy generation
in the nanofluid thin-film flow, containing a suspension of both types of carbon nanotubes (CNTs)
with Cattaneo-Christov heat flux, magnetohydrodynamics, and variable source/sink, is studied by
Lu et al. [4]. Numerical simulations with the erected mathematical model are found by the bvp4c
function of MATLAB software (University of New Mexico, New Mexico). It is witnessed that entropy
generation is larger for higher estimates of the magnetic parameter for a thin film flow. The entropy
generation analysis during the heat transfer process in the flow of Ferrofluid with low oscillating
magnetic field past a stretched rotating disk is deliberated by Hassan et al. [5]. The analytical solution
of the problem is attained via Mathematica-based bvp 2.0 based on the homotopy analysis method.
It is comprehended that total entropy is boosted with the dispersion of nanoparticles. Further, it is
noted that the irreversibility of the fluid flow is enhanced by the strong magnetic impact. Some recent
literature about entropy generation may be found in references [6–10].

CNTs are cylindrical type carbon allotropes. These were first exposed in the form of multi-walled
carbon nanotubes (MWCNTs) by Iijima [11] in 1991. This was followed by another study by
Bethune et al. [12] who introduced the idea of single-walled carbon nanotubes (SWCNTs) in 1993.
In today’s era, a good number of applications involving CNTs may be found, like in health care,
energy, electronics, etc. [13–15]. It is now a well-established theory that snags with the materials
possessing low thermal conductivity are removed with the introduction of nanofluids. Nanofluids
holds nanoparticles with a size of <100 nm. These nanoparticles are made up of copper, metal oxides,
alumina, nanomaterials, nitrides, and carbides [16]. The concept of nanofluids was the first time
floated by Choi and Eastman [17]. A substantial number of studies have been carried out since
its inception [18–20]. Recently, Sheikholeslami and Shehzad [21] numerically examined the flow of
nanofluid comprising Fe3O4-H2O solution in a permeable cavity under the influence of a variable
magnetic field using Control Volume Finite Element Method (CVFEM). They observed the highest heat
transfer rate in the case of the platelet-shaped nanoparticles. It was further witnessed by them that
the velocity of the nanofluid was on the decline once the strong magnetic field was applied. Entropy
optimization for the flow of Carreau nanofluid flow with cubic auto-catalysis chemical reaction was
studied by Khan et al. [22] analytically. They noticed that the sturdier magnetic field boosted the entropy
generation. Sheikholeslami [23] found a numerical solution of nanofluid flow under the influence of
the magnetic field in a permeable medium via the CVFEM scheme. He analyzed the influences of
entropy and exergy on the presented model and reported that entropy loss enhanced in attendance
of stronger magnetic field. Khan et al. [24] examined the numerical solution of 3D cross nanofluid
with activation energy and binary chemical reaction with zero mass flux and convective boundary
conditions. They noticed that higher estimates of activation energy boosted the concentration of the
cross nanofluid. Hosseini and Sheikholeslami [25] analyzed the thermal competence of a convective
nanofluid flow with entropy generation inside a microchannel under the influence of the magnetic
field. Between two phases, non-equilibrium condition for a permeable media is engaged. They noticed
that the entropy generation enhanced with an increase in fluid friction irreversibility. Some recent
studies have also highlighted the concept of carbon nanotubes [26–33] and many therein.

Abundant applications focusing on Cattaneo-Christov heat flux amalgamated with thermal
radiation may be found in missiles, air crafts, nuclear power plants, space vehicles’ propulsion gadgets,
etc. Keeping in view these interesting applications, scientists and researchers [34–40] are motivated to
look for fluid behavior in attendance of thermal radiation and Cattaneo-Christov heat flux.

Motivated from the above literature, our objective was to find the water-based CNTs dusty
nanofluid flow over a moving thin needle. The analysis was performed in the presence of Hall current
and nonlinear thermal radiation in a Darcy–Forchheimer porous media. The thermal efficacy of the
system was analyzed by employing entropy analysis. A numerical solution of the envisaged inimitable
mathematical model was found. To our information, no such study has been conducted so far in the
literature. This model was unique in its category. Endorsement of the outcomes of the existing study
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was done by comparing with a published article in limiting case. Graphical sketches and tables were
also part of this study.

2. Mathematical Modeling

Let us assume an H2O-CNTs-based nanofluid flow with Hall current over a moving slender
needle having speed uw and radius “a” (Figure 1). The speed of fluid far away from the surface is taken
as u∞. The cylindrical coordinates (x, r) are taken in such a way that x− is along the axis of the needle
and r− normal to the axis. The flow containing dust particles is generated in a non-Darcy absorbent
media. The associated impacts affecting the flow in the heat equation are viscous dissipation and
nonlinear thermal radiation. Furthermore, Tw and T∞ are the constant temperatures at the wall and
far off from the wall with T∞ > Tw. A magnetic field with magnetic strength B0 is applied with the
low Reynold number assumption [41], which eventually results in the induced magnetic field to be
neglected. Two types of the equations, i.e., fluid phase and particle phase, comprising the envisioned
mathematical model fulfilling laws of conservation are also laid down as given below:
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Figure 1. The physical design of the flow problem.

The above flow theory gives rise to the following boundary layer equations [41–45]:

Continuity equation: Fluid phase
∂(ru)
∂x

+
∂(rv)
∂r

= 0, (1)

Momentum equation: Fluid phase

(1−φd)
(
u∂u
∂x + v∂u

∂r

)
= (1−φd)

(
µn f
ρn f

1
r
∂
∂r

(
r∂u
∂r

))
−
νn f
k∗ u

−
Cb

x
√

k∗
u2 + KN

ρn f

(
up − u

)
−

σB0
2

ρn f (1+m2)
u,

(2)

Continuity equation: Particle phase

∂
(
rup

)
∂x

+
∂
(
rvp

)
∂r

= 0, (3)

Momentum equation: Particle phase

up
∂up

∂x
+ vp

∂up

∂r
=

K
md

(
u− up

)
, (4)
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Energy equation: Fluid phase

u∂T
∂x + v∂T

∂r =
kn f

(ρCp)n f

1
r
∂
∂r

(
r∂T
∂r

)
−

1
(ρCp)n f

∂qr
∂r +

µn f

(ρCp)n f

(
∂u
∂r

)2

+
µn f

k∗(ρCp)n f
u2 + N1

τυ(ρCp)n f

(
up − u

)2
+

N1(Cp)n f

τT(ρCp)n f

(
Tp − T

)
+ σB0

2

(ρCp)n f (1+m2)
u2,

(5)

Energy equation: Particle phase

N1cm

(
up
∂Tp

∂x
+ vp

∂Tp

∂r

)
=

N1
(
Cp

)
n f

τT

(
Tp − T

)
, (6)

with the boundary conditions

u(x, r) = uw, v(x, r) = 0, up(x, r) = uw, vp(x, r) = 0,
T(x, r) = Tw, at r = R(x),

(7)

u(x, r) → u∞, T(x, r)→ T∞, Tp(x, r)→ T∞ as r→∞. (8)

The heat flux in simplified form after considering Rosseland approximation is:

qr = −
4σSB
3ar

∂T4

∂r
, (9)

where ar is the mean absorption coefficient, and σSB is the Stephen–Boltzman constant. For a planer
boundary layer flow, the above equation can be written as:

qr = −
16σSB

3ar
T3 ∂T
∂r

. (10)

The mathematical model proposed by Xue [46] for the CNTs is given in Table 1. The thermo-physical
traits of the CNTs of both types and H2O are appended in Table 2.

Table 1. Properties of the nanofluid defined for the presented model [46].

Properties Nano-Fluid

Density ρn f = (1−φ)ρb f + φρCNT

Heat capacity
(
ρCp

)
n f

= (1−φ)
(
ρCp

)
b f

+ φ
(
ρCp

)
CNT

Viscosity µn f =
µb f

(1−φ)2.5

Thermal conductivity
kn f

kb f
=

(1−φ)+2φ
(

kCNT
kCNT−kb f

)
ln

( kCNT+kb f
2kb f

)
(1−φ)+2φ

( kb f
kCNT−kb f

)
ln

( kCNT+kb f
2kb f

)

Table 2. Thermo-physical features of the base fluid H2O and CNTs [46].

Thermo-Physical Properties H2O SWCNT MWCNT

Cp (j/kg)K 4179 425 796
ρ (kg/m3) 997.1 2600 1600
k (W/mK) 0.613 6600 3000

Prandtl number (Pr) 6.8 − −
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3. Similarity Transformation

The similarity variables are introduced as follows,

u = 2Ug′(ξ), up = 2UG′(ξ), v = Ur
x g′(ξ) −

υb f
r g(ξ),

vp = Ur
x G′(ξ) −

υb f
r G(ξ), ξ = Ur2

υb f x , θ(ξ) = T−T∞
Tw−T∞ , θp(ξ) =

Tp−T∞
Tw−T∞ .

(11)

The resulting non-dimensional Ordinary differential equations (ODEs) system after referring to
similarity variables:

Momentum equation: Fluid phase

(1−φd)(1−φ)
2.5

(
1−φ+ φ

ρCNT
ρb f

)
gg′′ + 2(g′′ + ξg′′′ ) − λg′

− (1−φ)2.5
(
1−φ+ φ

ρCNT
ρb f

)
Frg′2 + (1−φ)2.5αβ(G′ − g′)

− (1−φ)2.5 M
1+m2 g′ = 0,

(12)

Momentum equation: Particle phase

G′′G + β(g′ −G′) = 0, (13)

Energy equation: Fluid phase

kn f
kb f

(ξθ′′ + θ′) + 0.5Pr
(
1−φ+ φ

(ρCp)CNT

(ρCp)b f

)
gθ′

+ 4
3Nr

(1 + (θr − 1)θ)2
{
3ξ(θr − 1)θ′2

+ (1 + (θr − 1)θ)(0.5θ′ + ξθ′′)
}
+ 4EcPr

(1−φ)2.5 ξg
′′2

+ 2αβEcPr(G′ − g′)2 + 2EcPr
(

λ
(1−φ)2.5 +

M
1+m2

)
g′2

+ 0.5αβTPr
(
1−φ+ φ

(Cp)CNT

(Cp)b f

)(
θp − θ

)
= 0,

(14)

Energy equation: Particle phase

Gθ′p − γβT

1−φ+ φ

(
Cp

)
CNT(

Cp
)
b f

(θp − θ
)
= 0, (15)

associated with boundary conditions

g(a) = a
2ε, g′(a) = ε

2 , G(a) = a
2ε, G′(a) = ε

2 , θ(a) = 1,
g′(∞)→ 1−ε

2 , θ(∞)→ 0, θp(∞) → 0.
(16)

Here, prime represents derivative with respect to ξ. The dimensionless physical parameters are
defined as follows:

λ =
υb f

2Uk∗ , Fr =
Cb√

k∗
, α =

Nmd
ρb f

, β = K
2Umd

, M = σB0
2

2Uρb f
,

Pr =
υb f
kb f

(
ρCp

)
b f

, Nr =
arkb f

4σSBT∞3 , θr =
Tw
T∞ , Ec = U2

(Tw−T∞)(Cp)b f
,

βT = 1
2UτT

, γ =
(Cp)b f

cm
.

(17)
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4. Nusselt Number and Skin Friction Coefficient

The skin friction coefficients C f x and the local Nusselt number Nux in dimensional form are
given by:

C f x =
2τw

ρb f U2 , Nux =
xqw

kb f (Tw − T∞)
, (18)

where τw and qw are defined as below:

τw = [µn f
∂u
∂r

]
r=a

, qw = −kn f

(
∂T
∂r

)
r=a

+ (qr)r=a. (19)

By using Equations (11), (18) and (19) we get

√
RexC f x =

8a1/2g′′ (a)

(1−φ)2.5 , (20)

Nux
√

Rex
= −2a

1
2

(kn f

kb f

)(
1 +

4
3Nr

θr
3
)
θ′(a). (21)

with
Rex =

Ux
υb f

. (22)

5. Entropy Generation

Entropy generation analysis is much important to study the thermal energy irreversibility of a
particular system.

.
S
′′′

GEN =

 kn f

T2

(
∂T
∂r

)2
+

kn f

T2

{
16σSB
3arkb f

T3
(
∂T
∂r

)2
}

Entropy due to heat trans f er


+

 µn f
Tk∗ u

2 +
µn f
T

(
∂T
∂r

)2

Energy due to f luid f riction

︸                                   ︷︷                                   ︸︸                                          ︷︷                                          ︸
+

 σB0
2

T(1+m2)
u2

Energy due to di f f usion

︸                              ︷︷                              ︸, (23)

Equation (23), after employing Equation (11), in dimensionless form is

NS =
kn f
kb f
ξ(θr − 1)2θ′2

(
1

(1+(θr−1)θ)2 +
4

3Nr
(1 + (θr − 1)θ)

)
+

4EcPr(θr−1)
(1−φ)2.5(1+(θr−1)θ)

ξg′′2 + 2EcPr(θr−1)
(1+(θr−1)θ)

(
λ

(1−φ)2.5 +
M

1+m2

)
g′2.

(24)

Here, the characteristic entropy generation is given by:

( .
S
′′′

GEN
)
0
=

4kb f U

υb f x
, (25)

In non-dimensional form, heat transfer irreversibility is given by:

NHT =
kn f

kb f
ξ(θr − 1)2θ′2

 1

(1 + (θr − 1)θ)2 +
4

3Nr
(1 + (θr − 1)θ)

. (26)
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The fluid friction irreversibility is defined by:

NFF =
4EcPr(θr − 1)

(1−φ)2.5(1 + (θr − 1)θ)
ξg
′′2, (27)

and the porous medium and magnetic field irreversibility are represented by:

NPMF
2EcPr(θr − 1)
(1 + (θr − 1)θ)

 λ

(1−φ)2.5 +
M

1 + m2

g′2, (28)

The Bejan number Be in dimensional form is defined as:

Be =

kn f

T2

(
∂T
∂r

)2
+

kn f

T2

{
16σSB
3arkb f

T3
(
∂T
∂r

)2
}

kn f

T2

(
∂T
∂r

)2
+

kn f

T2

{
16σSB
3arkb f

T3
(
∂T
∂r

)2
}
+

µn f
Tk∗ u

2 +
µn f
T

(
∂T
∂r

)2
+ σB02

T(1+m2)
u2

. (29)

In dimensionless form, Be after consulting (11) is:

Be =

(
ξ(θr − 1)2θ′2

(
3Nr

+4(1 + (θr − 1)θ)3

))


ξ(θr − 1)2θ′2
(
3Nr + 4(1 + (θr − 1)θ)3

)
+

12NrEcPr(θr−1)(
kn f
kb f

)
(1−φ)2.5

ξ(1 + (θr − 1)θ)g′′ 2

+
6NrEcPr(θr−1)(

kn f
kb f

) (1 + (θr − 1)θ)
(

λ
(1−φ)2.5 +

M
1+m2

)

,

(30)

6. Numerical Scheme

The system with high nonlinearity comprising Equations (12)–(15) with the support of Equation
(16) is numerically solved by bvp4c MATLAB function. The following code transforms the given
model into the 1st order system of ODEs.

g = y1,
g′ = y2,
g′′ = y3,
g′′′ = yy1,

yy1 = 1
2ξ


λy2 − 2y3 + (1−ϕ)2.5(1−ϕ+ ϕ

ρCNT
ρb f

)Fry2
2

−(1−ϕ)2.5αβ(y5 − y2) − (1−ϕd)(1−ϕ)
2.5(1−ϕ+ ϕ

ρCNT
ρb f

)y1y3

+(1−ϕ)2.5 M
1+m2 y2

,
(31)

θ = y6,
θ′ = y7,
θ′′ = yy3,

(32)

yy3 =
1

kn f
kb f
ξ+ 4

3Nr (1 + (θr − 1)θ)3



kb f
kn f

y7 − 0.5Pr(1−ϕ)2.5(1−ϕ+ ϕ
ρCNT
ρb f

)y1y7

−
4

Nr (1 + (θr − 1)θ)2ξ(θr − 1)θ′2

−
4

3Nr (1 + (θr − 1)θ)30.5θ′ − 4EcPr
(1−ϕ)2.5 ξy2

3

−2αβEcPr(y5 − y2)
2
− 2EcPr( λ

(1−ϕ)2.5 +
M

1+m2)y2
2

−0.5αβTPr(1−ϕ+ ϕ
(Cp)CNT
(Cp)b f

)(y8 − y6)


(33)
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θp = y8,
θp′ = yy4,

yy4 =
γβT(1−ϕ+ϕ

(Cp)CNT
(Cp)b f

)

y4
(y8 − y6).

(34)

With boundary conditions

y1(a) = a
2ε, y2(a) = ε

2 , y4(a) = a
2ε, y5(a) = ε

2 ,
y6(a) = 1, y2(∞) = 0, y6(∞) = 0, y8(∞) = 0.

(35)

Table 3 depicts the validation of the obtained results by comparing with already published articles
in limiting case. This endorses the truthfulness of the presented mathematical model.

Table 3. Validation of the existing model for the values of g ′′(a) when ε = φd = λ = Fr = α = β =

M = m = 0.

a Ishak et al. [47] Chen and Smith [42] M. Idrees Afridi et al. [43] Present Results

0.1 1.2888 1.28881 1.28881 1.28508
0.01 8.4924 8.49244 8.49233 8.4878

0.001 62.1637 62.16372 62.16370 62.1594

Table 4 illustrates the numerically calculated values of the skin friction coefficient for numerous
estimates of α, φd, Fr, β, M, and m. It is noticed that value of the drag force coefficient is higher for α, φd,
Fr, and M, but it declines for estimates of β and m for both types of CNTs. Likewise, Table 5 portrays
the Nusselt number for Fr, α, β, m, Nr, and θr. It is comprehended that heat transfer rate is higher in
case of α and Fr, but converse behavior is seen for β, m, Nr, and θr for SWCNTs and MWCNTs.

Table 4. Skin friction coefficient against different parameters.

a φd Fr β M m Skin Friction Coefficient
SWCNT MWCNT

0.001 0.00184647 0.00184157
0.01 0.00583012 0.00581468
0.2 0.02591430 0.02584880

0.1 0.00583012 0.00581468
2.0 0.00583276 0.00581722
3.5 0.00583491 0.00581927

0.10 0.00583012 0.00581468
0.25 0.00644651 0.00640784
0.4 0.00706302 0.00700110

1.0 0.00583012 0.00581468
2.0 0.00582586 0.00581043
3.0 0.00582165 0.00580623

0.2 0.00583012 0.00581468
0.3 0.00711701 0.00710157
0.4 0.00840431 0.00838888

1.0 0.00583012 0.00581468
1.4 0.00499559 0.00498015
1.8 0.00447082 0.00445537
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Table 5. Numerical values of Nusselt number against different parameters.

Fr α β m Nr θr
Nusselt Number

SWCNT MWCNT

0.10 1.10739 1.05489
0.25 1.12048 1.06695
0.40 1.13570 1.08087

1.0 1.10739 1.05489
2.0 1.28855 1.22836
3.0 1.44647 1.37965

0.3 1.12089 1.06788
0.5 1.10739 1.05489
0.9 1.09958 1.04738

1.0 1.10739 1.05489
1.4 1.09857 1.04640
1.8 1.09329 1.04131

6.0 1.10739 1.05489
9.0 0.80951 0.77264
15.0 0.59158 0.56589

1.1 1.10739 1.05489
1.4 0.80635 0.77013
1.7 0.71356 0.68292

7. Results and Discussion

This segment was devoted to envisioning the physical insight for graphical illustration Figures 2–10.
We took the fixed values of the parameters throughout the study as (α = 0.01, ε = 0.3, φ = 0.04, φd =

Fr = λ = Ec = 0.1, α = m = γ = 1, β = βT = 0.5, M = 0.2, Nr = 6, θr = 1.1,) and Pr = 6.8. Figure 2a,b
exemplify the impacts of needle’s size “a” on the nanofluid velocity and velocity of the dust phase,
respectively. It was comprehended that velocities were declining functions of the needle size in the
case of CNTs of both types. Physically speaking, both velocities were highly dependent on the size of
the needle. Increasing the needle’s size lowered the velocities, which was obvious. An opposite trend
was witnessed in the case of Figure 2c,d. It was witnessed that temperature was dominant in the case
of SWCNTs as compared to MWCNTs. This was because MWCNTs have lower thermal conductivity
than SWCNTs.

The impact of radiation parameter Nr on the nanofluid temperature and temperature of the dust
phase could be seen in Figure 3a,b. Owing to higher radiation, more heat was transmitted to both
nanofluid and the dust phase. Eventually, the augmented temperature in both cases, i.e., nanofluid
and dust fluid, was witnessed.

Variation in temperature ratio parameter θr on temperatures of the nanofluid and dust fluid is
depicted in Figure 4a,b, respectively. θr is the quotient of the wall temperature to ambient temperature.
Larger values of θr meant sturdier wall temperature than the ambient temperature. Higher estimates
of θr resulted in a rise in the temperature of both fluids in the case of both CNTs.

Figure 5a,b revealed the nanofluid velocity and dust phase for the Darcy–Forchheimer parameter
Fr. It is learned that both velocity functions are diminishing for the growing values of Fr [29]. Actually,
higher estimates of Fr produced resistance in nanofluid motion for both CNTs that ultimately dropped
nanofluid and dust fluid velocities.
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Figure 5. Impact of Fr on (a) nanofluid velocity and (b) the velocity of the dust phase.

The upshot of magnetic parameter M on associated distributions is described in Figure 6a–d.
Upon increasing the number of dust particles into the fluid, the drag force was strengthened, and
more resistance to the fluid flow was experienced, and, eventually, a decrease in both velocities was
witnessed. An opposing trend was identified for the temperature field and the dust fluid temperature,
which was obviously owing to sturdier M.

Figure 7a,b are outlined to perceive the impact of Hall current parameter m on both velocities. It
was detected that velocities were mounting functions of m. Larger estimates of m enforced the damping
force, and, eventually, velocities were strengthened.

The impression of Hall current m on entropy generation and the Bejan number is shown in
Figure 8a,b. Larger values of m lowered the temperature that resulted in a drop of entropy generation
as well. An inverse behavior was seen for the Bejan number against m.
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Figure 9a,b is plotted for entropy generation and Bejan number for Forchheimer parameter Fr.
An upsurge was visualized in both cases. Larger estimates of the inertial coefficient boosted the
disorderliness and caused it to intensify Ns and Be.

Figure 10a,b is sketched to comprehend the upshot of radiation parameter Nr on entropy generation
and the Bejan number, respectively. An enhancement in both entropy generation and the Bejan number
was witnessed versus the radiation parameter. This was all because of the heightened energy systems,
owing to larger estimates of Nr.

8. Final Remarks

In the present exploration, Hall current sequel on the Darcy–Forchheimer H2O-CNTs dusty
nanofluid solution over a thin needle was investigated numerically. The novelty impacts of nonlinear
thermal radiation with other effects were accompanied by entropy analysis. The leading outcomes of
the investigation are appended as follows:
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Bejan number increased for larger values of Darcy–Forchheimer number.
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Velocity was on the decline once the size of the needle and Darcy–Forchheimer parameter’s
values were enhanced.
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Higher estimates of Hall current parameter escalated the velocity profiles for both CNTs.
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An upsurge in entropy generation and the Bejan number was witnessed versus the
radiation parameter.
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Sturdier magnetic field diminished the velocity of the fluid.
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Skin friction coefficient declined for growing estimates of dust particles’ mass concentration.
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Nomenclature

r Coordinate measured in radial direction
(u, v) Velocity components along x and r directions
µn f Effective dynamic viscosity of nanofluid
ρn f Density of nanofluid
υn f Kinematic viscosity of nanofluid
k∗ Darcy-permeability of the porous medium
Cb Drag coefficient
φd Volume fraction of dust particles
K Stokes resistance
N Number density of dust particles
σ Electric conductivity
B0 Applied magnetic field
m Hall parameter
md Mass concentration of the dust particles
knf Effective thermal conductivity of the nanofluid
(ρCp)nf Effective heat capacitance of the nanofluid
N1 Density of the particle phase
τv Relaxation time of dust particles
τT Thermal equilibrium time
τw Shear stress at the surface
.
S
′′′

GEN Entropy generation rate per unit volume(
up, vp

)
Velocity components of particle phase in x and r directions

cm Specific heat of the dust particles
uw Velocity of the moving needle
u∞ Velocity outside the boundary layer
T Dimensional temperature of the nanofluid
Tp Temperature of the dust particle
Tw Constant surface temperature of the thin needle
T∞ Ambient temperature
λ Porosity parameter
Fr Forchheimer parameter
α Dust particles mass concentration
β Fluid particle interaction parameter for velocity
M Magnetic field parameter
Pr Prandtl number
Nr Nonlinear radiation parameter
θr Temperature ratio parameter
Ec Eckert number
βT Fluid particle interaction parameter for temperature
γ Ratio of specific heat
qw Surface heat flux
NS Entropy generation number
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