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Abstract: Considering the finite time characteristic, heat transfer loss, friction loss and internal
irreversibility loss, an air standard reciprocating heat-engine cycle model is founded by using finite
time thermodynamics. The cycle model, which consists of two endothermic processes, two exothermic
processes and two adiabatic processes, is well generalized. The performance parameters, including
the power output and efficiency (PAE), are obtained. The PAE versus compression ratio relations are
obtained by numerical computation. The impacts of variable specific heats ratio (SHR) of working
fluid (WF) on universal cycle performances are analyzed and various special cycles are also discussed.
The results include the PAE performance characteristics of various special cycles (including Miller,
Dual, Atkinson, Brayton, Diesel and Otto cycles) when the SHR of WF is constant and variable
(including the SHR varied with linear function (LF) and nonlinear function (NLF) of WF temperature).
The maximum power outputs and the corresponding optimal compression ratios, as well as the
maximum efficiencies and the corresponding optimal compression ratios for various special cycles
with three SHR models are compared.

Keywords: finite time thermodynamics; reciprocating heat-engine cycle; universal cycle; variable
specific heat ratio; power output; thermal efficiency

1. Introduction

Using finite time thermodynamics (FTT) [1–16] to optimize the performances of practical
cycles and processes, a series of achievements were made, including Novikov heat engines [17–21],
Curzon–Ahlborn heat engines [22–24], solar-driven engines [25,26], Maisotaenko cycle [27–29], OTEC
systems [30–32], Kalina cycle [33], thermoelectric devices [34–39], dissipative heat engine [40],
refrigeration cycle [41], earth [42], quantum systems [43–50], economic systems [51,52], chemical
systems [53–61], reciprocating internal combustion engines [62–66], etc. In the early studies, for the
reciprocating heat-engine cycle (RHEC), the specific heats (SH) of working fluid (WF) were usually
assumed to be constant. For the practical cycle, the properties and composition of the WF will change
with the occurrence of the combustion reaction. So the SH of WF will also change with the occurrence
of the combustion reaction, and this change has a great influence on cycle performance. The variation
of SH of WF would inevitably cause variation of the performance, so the studies on air standard (AS)
RHEC performance analysis and optimization can be divided into three classes according to the SH of
WF models, including the constant SH model, variable SH model and variable SHR model, see the
book [64] and review article [65] in detail.
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In the first class, Klein [67] studied the net power versus efficiency relations of endoreversible Diesel
and Otto cycles, and obtained the maximum work output and the corresponding compression ratio
(CR). References [68,69] derived the power output and efficiency (PAE) and performance characteristics
(PC) of Diesel [68] and Otto [69] cycles with heat transfer loss (HTL). Angulo-Brown et al. [70]
modeled the Otto cycle with friction loss (FL), and studied the impact of FL on the cycle performance.
Using expansion and compression efficiencies to define the internal irreversibility loss (IIL), Chen et
al. [71] studied the irreversible Otto cycle performance. Qin et al. [72] modeled a universal RHEC
(including Otto, Diesel, Brayton, and Atkinson cycles) which was consisted of an endothermic process,
an exothermic process and two adiabatic processes, and derived the PAE relation with FL and HTL.
Reference [73] founded a more universal RHEC (including Miller, Dual, Atkinson, Brayton, Diesel
and Otto cycles) which consisted of two endothermic processes, two exothermic processes and two
adiabatic processes, derived the PAE and PC, and gave out the maximum power output and the
maximum efficiency orders of each special cycle.

In the second class, Ghatak and Chakraborty [74] studied the impact of variable SH of WF with
the LF of temperature on the PAE and PC of endoreversible Dual cycle. Considering the variable SH
with the LF of temperature, references [75,76] studied the performances of Dual [75] and Miller [76]
cycles with FL and HTL. References [77–80] analyzed the performances of irreversible Otto [77],
Atkinson [78], Diesel [79] and Brayton [80] cycles with HTL, IIL and the variable SH of WF with the
LF of temperature. Chen et al. [81] established a universal cycle which consisted of two endothermic
processes, two exothermic processes and two adiabatic processes with HTL, FL and variable SH of WF
and compared the differences of each special cycle performance when the SH of WF were constant and
variable. Abu-Nada et al. [82–85] introduced a cycle model with variable SH of WF with the nonlinear
function (NLF) of temperature in the performance studies of internal combustion engine cycle. Using
the variable SH model introduced in references [82–85], references [86–89] studied the performances of
Otto [86], Diesel [87], Atkinson [88] and Dual [89] cycles and analyzed the impacts of loss items on
cycle PC.

In the third class, considering the variable SHR of WF with the LF of temperature, Ebrahimi
established endoreversible [90] and irreversible [91] Dual cycle, endoreversible Atkinson cycle [92],
endoreversible Diesel cycle [93] and irreversible Otto cycle [94] models, and analyzed the impacts
of variable SHR and loss items on cycle PC. Moreover, considering the variable SHR of WF with
NLF of temperature, references [95–98] proposed the endoreversible Diesel cycle [95], irreversible
Atkinson cycle [96], endoreversible [97] and irreversible [98] Dual cycle models, and studied the effects
of variable SHR and loss items on cycle PC.

Establishing the universal model and obtaining the universal laws and results are the aims of FTT
pursuit, and they are the same for a performance study of RHEC cycle. For the generalized irreversible
RHEC model established in references [73,81], there is no work in the open literature which has studied
the effect of variable SHR of WF with NLF of temperature on RHEC PC. This paper will combine the
generalized irreversible RHEC model established in [73,81] and the variable SHR model of WF with
NLF of temperature in [95–98], analyze the outcome and compare the effects of various SHR models
on cycle PC. The maximum power outputs (MPOs) and the corresponding optimal compression ratios,
as well as the maximum efficiencies and the corresponding optimal compression ratios for various
special cycles with three SHR models will be also compared.

2. Cycle Model

An AS RHEC model is shown in Figure 1 which contains two adiabatic branches; two endothermic
processes with SH of Cin1 and Cin2; and two exothermic processes with SH of Cout1 and Cout2, respectively.
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Figure 1. The T − s diagram for an irreversible reciprocating heat-engine cycle (RHEC) model.

When the above four SH are different values, this universal cycle model will be simplified to all
kinds of special cycle models. The two irreversible adiabatic processes are shown as 1→ 2 and 4→ 5 ;
the two heating processes are shown as 2→ 3 and; and the two cooling processes are shown as 5→ 6
and 6→ 1 .

Assuming the SHR of WF varied with temperature with NLF, the SHR γ can be written as

γ = c + bT + aT2 (1)

where a, b and c are constants and T is WF temperature.
It can be supposed that the four thermal capacities of the cycle are

Cin1 = R
min1(aT2 + bT) + nin1

aT2 + bT + c− 1
Cin2 = R

min2(aT2 + bT) + nin2

aT2 + bT + c− 1

Cout1 = R
mout1(aT2 + bT) + nout1

aT2 + bT + c− 1
Cout2 = R

mout2(aT2 + bT) + nout2

aT2 + bT + c− 1

(2)

where min1, min2, mout1, mout2, nin1, nin2, nout1 and nout2 are constants. When min1 is 1, nin1 is c, and when
min1 is 0, nin1 is 1, so do min2 and nin2, mout1 and nout1 and mout2 and nout2.

When the constants have different values, the four thermal capacities can change into the SH with
constant pressure and constant volume

CP =
R(aT2 + bT + c)
aT2 + bT + c− 1

, CV =
R

aT2 + bT + c− 1
(3)

It can be supposed that two adiabatic processes are instantaneous, and the temperature of WF
changes at a constant speed. k1, k2, k3 and k4 are constants, then the time spent on each cycle is

τ = tout2 + tout1 + tin2 + tin1

= k4(T6 − T1) + k3(T5 − T6) + k2(T4 − T3) + k1(T3 − T2)
(4)

The heat addition in the processes 2→ 3 and 3→ 4 can be written as

Qin = M
(∫ T3

T2
Cin1dT +

∫ T4
T3

Cin2dT
)

= MR

 min1(T3 − T2) + min2(T4 − T3) + [2D−1(min1 − cmin1 + nin1)]
{
arctan[D−1(b + 2aT3)] − arctan[D−1

(b + 2aT2)]
}
−

{
arctan[D−1(b + 2aT3)] − arctan[D−1(b + 2aT4)]

}
× [2D−1(min2 − cmin2 + nin2)]

 (5)



Entropy 2020, 22, 397 4 of 13

The heat rejection in the processes 5→ 6 and 6→ 1 can be written as

Qout = M
(∫ T6

T1
Cout1dT +

∫ T5

T6
Cout2dT

)
= MR

 mout1(T6 − T1) + mout2(T5 − T6) + [2D−1(mout1 − cmout1 + nout1)]
{
arctan[D−1(b + 2aT6)] − arctan[D−1

(b + 2aT1)]
}
−

{
arctan[D−1(b + 2aT6)] − arctan[D−1(b + 2aT5)]

}
× [(2D−1(mout2 − cmout2 + nout2))]

 (6)

where D =
√

4ac− 4a− b2, R is gas constant and M is mole number of WF.
The following parameters are defined as

r = V1/V2, ρ = V4/V3, rp = T3/T2, rc = T6/T1 (7)

For the two irreversible adiabatic processes, the IIL are defined as the expansion and compression
efficiencies [86–89]

ηC = (T1 − T2S)/(T1 − T2) (8)

ηE = (T5 − T4)/(T5S − T4) (9)

According to references [75–81], the expression for reversible adiabatic process when SHR is
varied is

Vγ−1T = (V + dV)γ−1(T + dT) (10)

From Equation (10), one has

1
c− 1

1
2

ln

aT2
j + bT j + c− 1

aT2
i + bTi + c− 1

+ b
D

{
arctan[(2aT j + b)/D]

−arctan[(2aTi + b)/D]

}
− ln

(T j

Ti

) = ln
(V j

Vi

)
(11)

For the endoreversible adiabatic process 1→ 2S , one has

1
c− 1

1
2

ln

aT2
2S + bT2S + c− 1

aT2
1 + bT1 + c− 1

+ b
D

{
arctan[(2aT2S + b)/D]

−arctan[(2aT1 + b)/D]

}
− ln

(
T2S
T1

) = ln
(1

r

)
(12)

The special cycles min1, min2, mout1, mout2, nin1, nin2, nout1 and nout2 are fixed, and Equation (12)
becomes the expression of the adiabatic process for the various special cycles.

After a cycle, the entropy change of the WF is zero, so one has

min1 ln(T3/T2S) + min2 ln(T4/T3) + mout1 ln(T1/T6) + mout2 ln(T6/T5S) +
{
[min1(c− 1)

−nin1][2(c− 1)]−1
}{

D−12b
{
−arctan[D−1(b + 2aT2S) + arctan[D−1(b + 2aT3)]]

}
− 2

× ln(T3/T2S) + ln[(aT3
2 + bT3 + c− 1)/(aT2S

2 + bT2S + c− 1)]
}
+

{
[min2(c− 1)

−nin2][2(1− c)]−1
}{

D−12b
{
−arctan[D−1(b + 2aT3)] + arctan[D−1(b + 2aT4)]

}
− 2

× ln(T4/T3) + ln[(aT4
2 + bT4 + c− 1)/(aT3

2 + bT3 + c− 1)]
}
−

{
[mout1(c− 1)

−nout1][2(1− c)]−1
}{

D−12b
{
−arctan[D−1(b + 2aT6)] + arctan[D−1(b + 2aT1)]

}
− 2

× ln(T1/T6) + ln[(aT2
1 + bT1 + c− 1)/(aT6

2 + bT6 + c− 1)]
}
−

{
[mout2(c− 1)

−nout2][2(1− c)]−1
}{

D−12b
{
−arctan[D−1(b + 2aT5S)] + arctan[D−1(b + 2aT6)]

}
− 2

× ln(T6/T5S) + ln[(aT6
2 + bT6 + c− 1)/(aT5S

2 + bT5S + c− 1)]
}



= 0 (13)

For a practical cycle, there exists HTL and FL. According reference [67], the heat addition rate to
the WF by combustion is:

Qin = A′ − B′[0.5(T4 + T2) − T0] = A− B(T4 + T2) (14)

where A′ is the heat released by fuel, B′ is heat leakage coefficient, T0 is the ambient temperature and
A = A′ + B′T0 and B = B′/2 are two constants.
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According to reference [70], the lost power due to FL is

Pµ = µ(dX/dt)2 = µv2 (15)

The mean velocity of piston motion is

v = x(r− 1)/∆t12 (16)

where µ is the friction coefficient in exhaust stroke, v is the mean velocity of piston, X is the piston
displacement, x is the piston position at upper dead point and ∆t12 is the time of the power stroke.

3. Power Output and Thermal Efficiency

The net power output is

P = (Qin −Qout)/τ− Pµ

=

MR



min1(T3 − T2) + min2(T4 − T3) −mout1(T6 − T1) −mout2(T5 − T6) + [2D−1(min1 − cmin1

+nin1)]
{
arctan[D−1(b + 2aT3)] − arctan[D−1(b−+2aT2)]

}
+ [2D−1(min2 − cmin2

+nin2)]
{
arctan[D−1(b + 2aT4)] − arctan[D−1(b + 2aT3)]

}
− [2(mout1 − cmout1+

nout1)/D]
{
arctan[D−1(b + 2aT6)] − arctan[D−1(b + 2aT1)]

}
+ [2D−1(mout2 − cmout2

+nout2)]
{
arctan[D−1(b + 2aT6)] − arctan[D−1(b + 2aT5)]

}


K4(T6−T1)+K3(T5−T6)+K2(T4−T3)+K1(T3−T2)

− b f (r− 1)2

(17)

where b f is defined as b f = µx2
2/(∆t12)

2.
The thermal efficiency is

η = Pτ/Qin

=

MR



min1(T3 − T2) + min2(T4 − T3) −mout1(T6 − T1) −mout2(T5 − T6) − [2D−1(min1 − cmin1 + nin1)]{
arctan[D−1(b + 2aT2)] − arctan[D−1(b + 2aT3)]

}
− [2D−1(min2 − cmin2 + nin2)]{

arctan[D−1(b + 2aT3)] − arctan[D−1(b + 2aT4)]
}
+ [2D−1(mout1 − cmout1 + nout1)]{

arctan[D−1(b + 2aT1)] − arctan[D−1(b + 2aT6)]
}
+ [2D−1(mout2 − cmout2 + nout2)]{

arctan[D−1(b + 2aT6)] − arctan[D−1(b + 2aT5)]
}


−b f (r− 1)2[K4(T6 − T1) + K3(T5 − T6) + K2(T4 − T3) + K1(T3 − T2)]

MR


min1(T3 − T2) + min2(T4 − T3) − [2D−1(min1 − cmin1 + nin1)]

{
arctan[D−1(b + 2aT2)]−

arctan[D−1(b + 2aT3)]
}
− [2D−1(min2 − cmin2 + nin2)]

{
arctan[D−1(b + 2aT3)]−

arctan[D−1(b + 2aT4)]
}



(18)

In order to make the cycle run normally, State 3 must be between States 2 and 4. When States 2
and 3 coincide, it gives rp = (rp)min = 1, and when States 3 and 4 coincide, it gives rp = (rp)max and
T3 = (rp)maxT2 = T4. T2 can be gotten by Equations (12) and (8). Substituting T3 = (rp)maxT2 = T4

into Equations (5) and (14) gives (rp)max. So the range of rp is

1 = (rp)min ≤ rp ≤ (rp)max (19)

State 6 must be between States 1 and 5. When States 1 and 6 coincide, it gives rc = (rc)min = 1,
and when States 3 and 4 coincide, it gives rc = (rc)max and T6 = (rc)maxT1 = T5. Substituting
T2 into Equation (7) gives T3, substituting T3 into Equations (5) and (14) gives T4 and substituting
T6 = (rc)maxT1 = T5 and the temperatures above into Equation (13) gives (rp)max. So the range of rc is

1 = (rc)min ≤ rc ≤ (rc)max (20)

4. Discussions

Equations (17) and (18) are the PAE characteristics of the universal cycle which include all kinds
of RHEC with different loss items.
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(1) When min1 = min2 = mout1 = mout2 = 0 and nin1 = nin2 = nout1 = nout2 = 1, the expressions
can be simplified into the PAE for an AS Otto cycle.

(2) When min1 = min2 = 1, nin1 = nin2 = c, mout1 = mout2 = 0 and nout1 = nout2 = 1, the expressions
can be simplified into the PAE for an AS Diesel cycle.

(3) When min1 = min2 = 0, nin1 = nin2 = 1, mout1 = mout2 = 1 and nout1 = nout2 = c, the expressions
can be simplified into the PAE for an AS Atkinson cycle.

(4) When min1 = min2 = mout1 = mout2 = 1 and nin1 = nin2 = nout1 = nout2 = c, the expressions
can be simplified into the PAE for an AS Brayton cycle.

(5) When min1 = 0, min2 = mout1 = mout2 = nin1 = 1 and nin2 = nout1 = nout2 = c, the expressions
can be simplified into the PAE for an AS Dual cycle.

(6) When min1 = min2 = mout2 = 0, mout1 = nin1 = nin2 = nout2 = 1 and nout1 = c, the expressions
can be simplified into the PAE for an AS Miller cycle.

(7) When a , 0, the expressions can be simplified into the PAE for the universal cycle with variable
SHR of WF with the NLF of temperature; when a = 0 and b , 0, the expressions can be turned into
those with variable SHR with the LF of temperature; and when a = b = 0, the expressions can be
simplified into those for the constant SHR.

(8) When ηc , 1 and ηe , 1, the expressions can be simplified into the PAE for the universal cycle
with IIL, and when ηc = ηe = 1, the expressions can be simplified into that for the cycle without IIL.

(9) When b f , 0, the expressions can be simplified into the PAE for the cycle with FL, and when
b f = 0, the expressions can be simplified into those for the cycle without FFL.

(10) When B , 0, the expressions can be simplified into the PAE for the cycle with HTL, and when
B = 0, the expressions can be simplified into those for the cycle without HTL.

5. Numerical Examples

According to references [81,95–98], the following constants are used in the computations:
A = 60000 J/mol, B = 25 J/(mol ·K), T1 = 300 K, b = −9.7617 × 10−5 K−1, a = 1.6928 × 10−8 K−1,
c = 1.4235, M = 0.0157 mol, R = 8.314, γp = 1.2, γc = 1.2, b f = 32.5 W, K3 = K4 = 18.67× 10−6 s ·K−1

and K1 = K2 = 8.128× 10−6 s ·K−1.
Figures 2 and 3 illustrate the relations of power output versus CR and efficiency versus CR for

various special cycles with the constant SHR and variable SHR with LF and NLF of temperature.
Figure 2 shows that, compared with the constant SHR, the ranges of the CRs of various special cycles
with the variable SHR with the LF of temperature increase from 13.5 to about 16, the power output
decreases (0.5% decrease for Miller cycle; 3% decrease for Otto and Atkinson cycles; 8% decrease for
Diesel, Brayton and Dual cycles). Compared with the variable SHR with the LF of temperature, the
ranges of CR of various special cycles with the variable SHR with NLF of temperature decrease from 16
to about 15; the changes of power output are unobvious (0.5% increase for Diesel cycle; 0.1% increase
for Dual cycle; about 0.5–2% decrease for Otto, Atkinson, Brayton and Miller cycles). The order of the
maximum power outputs (MPO) of various special cycles is Pbr > Pat > Pmi > Pdu > Pdi > Pot with
every one of the three SHR models.
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For the Otto cycle, under three SHR models, the orders of the MPOs and the corresponding
optimal CRs are (Pot)C > (Pot)L > (Pot)N and (rot)L > (rot)N > (rot)C. For the Diesel cycle, under three
SHR models, the orders of the MPOs and the corresponding optimal CRs are (Pdi)C > (Pdi)N > (Pdi)L
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and (rdi)C > (rdi)L > (rdi)N. For Atkinson cycle, under three SHR models, the orders of the MPOs
and the corresponding optimal CRs are (Pat)C > (Pat)L > (Pat)N and (rat)L > (rat)N > (rat)C. For the
Brayton cycle, under three SHR models, the orders of the MPOs and the corresponding optimal
CRs are (Pbr)C > (Pbr)L > (Pbr)N and (rbr)L > (rbr)C > (rbr)N. For the Dual cycle, under three SHR
models, the orders of the MPOs and the corresponding optimal CRs are (Pdu)C > (pdu)L > (Pdu)N
and (rdu)C > (rdu)L > (rdu)N. For the Miller cycle, under three SHR models, the orders of the MPOs
and the corresponding optimal CRs are (Pmi)C > (Pmi)L > (Pmi)N and (rmi)L > (rmi)N > (rmi)C. Under
constant SHR model, the order of the corresponding optimal CRs at the MPO points of various
special cycles is rdi > rdu > rbr > rmi > rot > rat. Under variable SHR with the LF of the temperature
model, the order of the corresponding optimal CRs at the MPO points of various special cycles is
rdi > rbr > rmi > rdu > rot > rat. Under variable SHR with NLF of temperature model, the order of the
corresponding optimal CRs at the MPO points of various special cycles is rdi > rdu > rmi > rbr > rot > rat.

Figure 3 shows that, compared with the constant SHR, the efficiencies of various special cycles
with the variable SHR with the LF of temperature decrease by about 12%. Compared with the variable
SHR with the LF of temperature, the efficiencies of various special cycles with variable SHR with NLF
of temperature increase by about 0.7–1.7%. The order of the maximum efficiency of various special
cycles is ηat > ηmi > ηbr > ηot > ηdu > ηdi with every one of the three SHR models.

For the Otto cycle, under three SHR models, the orders of the maximum efficiencies and
corresponding optimal CRs are (ηot)C > (ηot)N > (ηot)L and (rot)C > (rot)L > (rot)N. For the Diesel cycle,
under three SHR models, the orders of the maximum efficiencies and corresponding optimal CRs are
(ηdi)C > (ηdi)N > (ηdi)L and (rdi)C > (rdi)N > (rdi)L. For the Atkinson cycle, under three SHR models,
the orders of the maximum efficiencies and corresponding optimal CRs are (ηat)C > (ηat)N > (ηat)L and
(rat)L > (rat)N > (rat)C. For the Brayton cycle, under three SHR models, the orders of the maximum
efficiencies and corresponding optimal CRs are (ηbr)C > (ηbr)N > (ηbr)L and (rbr)C > (rbr)N > (rbr)L.
For the Dual cycle, under three SHR models, the orders of the maximum efficiencies and corresponding
optimal CRs are (ηdu)C > (ηdu)N > (ηdu)L and (rdu)C > (rdu)N > (rdu)L. For the Miller cycle, under
three SHR models, the orders of the maximum efficiencies and corresponding optimal CRs are
(ηmi)C > (ηmi)N > (ηmi)L and (rmi)L > (rmi)N > (rmi)C.

Under the constant SHR model, the order of the corresponding optimal CRs at the maximum
efficiency points of various special cycles is rdi > rdu > rbr > rot > rmi > rat. Under variable SHR with
the LF of temperature model, the order of the corresponding optimal CRs at the maximum efficiency
points of various special cycles is rdi > rdu > rbr > rmi > rot > rat. Under variable SHR with NLF of
temperature model, the order of the corresponding optimal CRs at the maximum efficiency points of
various special cycles is rdi > rdu > rbr > rot > rmi > rat.

In general, the optimal CR at MPO point is not the same as the optimal CR at maximum efficiency
point, for all discussed cycles with three SHR models. The reasonable design range for all of the
discussed cycles with three SHR models should be between the optimal CR at MPO point and the
optimal CR at maximum efficiency point from the point of view of compromised optimization of
the PAE.

From what was mentioned above, one can see that there are influences of the variable SHR model
on the performance of every special cycle; and the performances of Miller, Brayton and Atkinson cycles
are more excellent than those of Otto, Diesel and Dual cycles with every one of the three SHR models.

6. Conclusions

The AS RHEC model considering HTL, FL and IIL is established in this paper. The cycle
performances with various SHR are analyzed. The performance parameters including the PAE are
derived. The performances of all kinds of special cycles are discussed and the MPO and the maximum
efficiency of each special cycle and the corresponding optimal CRs are compared. The results show
that the orders of the MPO and the maximum efficiency remain the same with every one of the three
SHR models, but the PAE changes, which suggests that the various SHRs have influences on cycle
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performance. When the model of variable SHR is more complicated, the distance between the cycle
model and the practice one is closer. The reasonable design range for various cycles should be between
the optimal CR at MPO point and the optimal CR at maximum efficiency point for the compromise
optimization of the PAE.
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Nomenclature

A heat rate released by fuel
B constant related to heat transfer
C specific heat
M mole number of WF
P power output
Q heat added or rejected by the working fluid
r compression ratio
T temperature
V volume
Greek symbol
γ SHR
η efficiency
ηc compression efficiency
ηE expansion efficiency
Subscripts
at Atkinson cycle
br Brayton cycle
C Constant SHR
di Diesel cycle
du Dual cycle
L Variable SHR with the LF of temperature
mi Miller cycle
N Variable SHR with NLF of temperature
ot Otto cycle

Abbreviations

AS air standard
CR compression ratio
FL friction loss
FTT finite time thermodynamics
HTL heat transfer loss
IIL internal irreversibility loss
LF linear function
MPO maximum power output
NLF nonlinear function
PAE power output and efficiency
PC performance characteristics
RHEC reciprocating heat-engine cycle
SH specific heat
SHR specific heat ratio
WF working fluid
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