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Abstract: Even with considerable attention in recent decades, measuring and working with patterns
remains a complex task due to the underlying dynamic processes that form these patterns, the influence
of scales, and the many further implications stemming from their representation. This work scrutinizes
binary classes mapped onto regular grids and counts the relative frequencies of all first-order
configuration components and then converts these measurements into empirical probabilities of
occurrence for either of the two landscape classes. The approach takes into consideration configuration
explicitly and composition implicitly (in a common framework), while the construction of a frequency
distribution provides a generic model of landscape structure that can be used to simulate structurally
similar landscapes or to compare divergence from other landscapes. The technique is first tested on
simulated data to characterize a continuum of landscapes across a range of spatial autocorrelations
and relative compositions. Subsequent assessments of boundary prominence are explored, where
outcomes are known a priori, to demonstrate the utility of this novel method. For a binary map on
a regular grid, there are 32 possible configurations of first-order orthogonal neighbours. The goal
is to develop a workflow that permits patterns to be characterized in this way and to offer an
approach that identifies how relatively divergent observed patterns are, using the well-known
Kullback–Leibler divergence.

Keywords: binary; configuration; composition; frequency distribution; variability; spatial
pattern; divergence

1. Introduction

Satellites are continually imaging the surface of the Earth and producing representations of
real landscapes. These representations have characteristics based on sensor optics and processing
decisions that were formally incorporated into the design of the imaging systems. At this stage, the
infinite complexity of any imaged landscape is generalized, and subsequent classification of these
images into categorical representations even further simplifies the reality of these landscapes through
depiction. Such images increasingly offer a principal source of data for vast and complex landscape
states, thus enabling nearly limitless investigative opportunities of the environments they characterize.

Through processes of generalization, the finite bounds resulting from a categorical map
representation act to greatly improve both the handling of extensive spatial data and analyses
based on the data. While any real landscape can be imaged and converted into a gridded categorical
map representation in some way, such representations can also result from modelling outputs or
secondary analyses of spatial landscape data. The exact characteristics of these categorical maps will
be determined by numerous decisions leading to their construction and the limitations of the systems
used to acquire and process the data. Regardless, such landscape maps and representations of reality
are at the core of many landscape ecological studies (e.g., [1–3]).

Entropy 2020, 22, 420; doi:10.3390/e22040420 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-6251-876X
http://www.mdpi.com/1099-4300/22/4/420?type=check_update&version=1
http://dx.doi.org/10.3390/e22040420
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 420 2 of 13

The measurement and comparison of spatial patterns have received substantial attention in
recent decades [4–6], with abundant analyses that are directed specifically at the spatial properties
of data (e.g., [7]). However, even with hundreds of pattern metrics and approaches [8–11], no single
method has surfaced as a standard for pattern analysis [6]. Much of this speaks to the intrinsic
complexity that rasterized spatial patterns encode and depict about landscapes and the processes
that generated them [12,13]. With every change to the representation of a given landscape’s state,
a new pattern emerges and thus its characterization and quantification will also adapt. Variability
introduced by simple changes to characteristics such as image extent, spatial resolution, the number of
categorical classes representing a landscape’s state, or the actual configuration of landscapes themselves
complicates selecting appropriate metrics and methods for tackling the seemingly simple tasks of
pattern characterization and comparison [14–16].

In this paper, the idea that by measuring hyper-local configurations (hereafter referred to as
pattern elements) across a landscape representation, and recording the frequency distribution of each
pattern element, it becomes possible to characterize the broader spatial structure of that landscape
via the aggregated relative frequency distribution of the accumulated pattern elements. The pattern
elements characterize each possible binary configuration for first-order orthogonal neighbours mapped
onto a regular grid of cells. The approach is similar to that implemented by [17] in GeoPAT, in that a
histogram of a pattern’s “primitive features” is produced and compared with other histograms using a
selection of methods for assessing similarity. Notably different is the ability to design suites of what
are deemed to be primitive features in GeoPAT (tending to pick up on topographic niches) and the
full specification of all first-order neighbouring pattern cases, as in this paper. The specification of all
possible pattern elements (configurational outcomes) provides a consistent base or denominator that
describes generic pattern without ties to the data. The collective of all local pattern elements is used
to characterize patterns across larger landscapes and to compare them external to any processes that
lead to the formation of these patterns. Similarly, this full specification allows for the assessment of
how much a landscape deviates from, for example, random, because the underlying baseline pattern
elements for specific landscapes can be produced with uncertainty ranges.

At the simplest level, any given cell in a regular grid that is not on an edge will have four nearest
orthogonal neighbours. An orthogonal neighbour means that connectivity is determined by having
a shared side and are thus not simply joined via a corner. The literature often refers to this type of
connectivity as the Rook’s case, following the analogy of chess piece movements [18]. Instances of
each possible and unique pattern element are counted at this first-order neighbourhood scale and
accumulated across a given landscape to describe the frequency distributions of all pattern elements.
This distribution becomes a summary of both composition and configuration at the most local level of a
landscape’s representation. A co-occurrence matrix approach [19], commonly implemented in texture
analysis to assess categorical co-occurrences of tones/classes between varying locations on a mapped
grid, is also a related approach but one that focuses on paired results that would need the production
of additional matrices to handle the joint occurrences within a local neighbourhood. The ultimate
result would be a similar number of elements but arrived at more laboriously than the elegant solution
presented in this paper. While the co-occurrence approach is praised for its rotation invariance, the
inability to capture differences in pattern due to rotations would form a limitation and the multiple
class case would still lead to a very large number of matrix entries.

This work has three objectives: (1) to produce characteristic distributions of pattern elements
for typical families of landscape patterns through extensive spatial simulation, (2) demonstrate the
quantification of divergence between two landscape patterns for assessing similarity and difference,
and (3) to implement this method for assessing the prominence of boundaries on a landscape.

2. Methods

In the binary case, where only two landcover classes are considered, there are 32 possible pattern
element configurations (Figure 1). Any focal cell (C = centre) can be either black or white (2 states)
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and the four nearest neighbouring cells (R = right, A = above, L = left, B = below) will yield some
combination of 16 possible configuration states for each black or white central cell, thus resulting in
the total of 25 = 32 possible pattern elements. A single pattern element can be represented by a string
of five binary digits (Centre, Right, Above, Left, and Below (CRALB)), where 0 indicates a location
being black, and 1 being white. Thus, the case 01010 indicates a black cell flanked on the right and
left by white cells but black cells above and below (Figure 2). It is possible to count all occurrences of
each pattern element and to record these as a frequency distribution. Dividing the frequency for each
pattern element by the total frequency of locations assessed provides probabilities of occurrence; the
sum of all 32 probabilities will always be 1.
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Figure 1. All 32 configurations and encodings for a binary regular grid, considering four orthogonal
neighbours. CRALB represent Centre, Right, Above, Left, and Below locations, respectively.
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Figure 2. An example of one pattern element (01010), where the binary digit values represent locations
CRALB, respectively, and are bolded and enlarged to identify the location of black or white cells within
a first-order neighbourhood surrounding a cell.

The proposed approach is presented at the constrained level of first-order orthogonal neighbours
and for binary landscapes to reduce an otherwise rapidly increasing complexity resulting from a vast
number of possible local configurations. Having fewer pattern elements to track results in dramatically
fewer connectivity options to measure and record while maintaining that all connections are equidistant
from a focal central cell. Just the additional inclusion of the four first-order diagonal cells would
increase the number of combinations to 29 = 512.
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Limiting scope to binary representations avoids an escalating number of configurational
combinations too large to realistically consider and particularly given that many of these configurations
may never actually exist. This constraint reduces the frequency of non-occurrence and thus the overly
limiting zero-probability of a pattern element ever occurring, versus having a small probability of
occurrence for rare cases. Further, maps with smaller extents (i.e., fewer cells) can be processed,
since there is a greater likelihood of sufficient sampling to account for fewer unique pattern elements.
For example, a map with only 22 × 22 = 484 cells could never be justified to adequately account
for 512 pattern elements (there are too few map cells to even have one occurrence of each pattern
element), but may provide sufficient samples for 32 (15 times as many cells as there are possible pattern
elements to enumerate). Thus, these constraints permit the processing of images with fewer cells (often
akin to having lesser extents) while ensuring that representativeness is preserved, since abundant
local measures will statistically characterize more extensive landscape representations. The resulting
distribution can be based on a landscape being considered as being on a torus (sides wrap around to
form a pseudo-continuous surface) or as a non-torus (whereby the outer rows and columns are omitted
from the final tally to avoid edge biases on a non-continuous surface).

Pattern elements are identified by first shifting the input binary map four times (Figure 3)—once
in each cardinal direction to produce four new shifted output maps (imagine two playing cards lying
on top of each other and the top one being slid relative to the bottom one). Each time one of these
shifts occurs, the row or column that is exposed is replicated at the opposite edge; this ensures that
the original and shifted layers still align perfectly and have the same extent. The four shifted raster
output layers are then multiplied by 1, 10, 100, and 1000 for R, A, L, and B, respectively, and further
multiplied by the original raster values. These four values are then summed along with 10,000 times
the original raster value. The result is an integer that is 5 digits in length, comprising only 0s and/or 1s,
each position conforming to the five locations (CRALB), indicating the presence of a 0 or 1. This works
for locations with 1s in position C; to count occurrences where C is 0, the input raster is inverted and
the process is repeated. The two independent results are then folded together, and a map of pattern
elements is retained.
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Figure 3. Example of shifting a binary regular grid in the four cardinal directions to produce the CRALB
set for the original and inverted binary raster maps. Shown are the coding produced and the resulting
5-digit pattern elements for each result (grey) that will be folded together to produce a final result.
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Once the configurational encoding is complete, the frequency of each unique pattern element is
tallied to produce a frequency distribution that is subsequently converted to an empirical probability
distribution by dividing each entry by the total number of input cells. In essence, a vector with
32 elements is produced such that each element represents the probability of one unique pattern
element occurring in the landscape representation. The ordering of pattern elements is consistent, and
thus distributions are directly comparable across any number of assessed landscapes. Implementation
was prototyped in Microsoft Excel for testing the logic of this approach and then transmuted into an
R [20] function called patternbits for operationalization (the R function can readily be downloaded from
CRAN (https://cran.r-project.org/package=ShapePattern). The patternbits function relies on the raster
package [21] for drawing functionality but otherwise runs independently.

The first objective is achieved by simulating landscapes along joint-continua of land cover
proportion and spatial autocorrelation. Landscapes were simulated using the CARsimu function
within the PatternClass package for R [22]. This simulator provides means for controlling the level
of spatial autocorrelation and the proportion of the binary categories while ensuring an underlying
stationary and isotropic process to produce the simulated realizations. Composition was varied at
10% intervals from 10% through 90% white-to-black proportion, while spatial autocorrelation was
varied from random (RAND) to highly spatially autocorrelated (BUMPY) at 11 intervals to follow the
tradition of Remmel and Csillag [14] to produce N = (9 compositions) × (11 spatial autocorrelations) ×
(1000 replicates) = 99,000 images. Images were simulated to have 256 × 256 = 65,536 cells, and pattern
elements were enumerated and recorded for each along with the corresponding simulation parameters.
Two additional simulations were produced where the landscapes were forced to have strong (CHECK)
and intermediate (INTER) degrees of negative spatial autocorrelation, but land cover proportions were
maintained as equal (N = 2 × 1000 = 2000) in these cases.

The second objective requires the computation of the Kullback–Leibler (KL) divergence between
pairs of empirical probability distributions, stemming from the work by Kullback and Leibler (1951)
and widely implemented in various fields [23–26]. Given that P and Q are empirical probability
distributions defined for a common probability space X, then the Kullback–Leibler divergence of Q
from P can be computed by Equation (1) for categorical data. While this relationship is not symmetric
or an actual true distance measure, it does identify the relative divergence between two empirical
probability distributions [24] and will advise on the structural similarity between two distributions.

DKL(P ‖ Q) =
∑
x∈X

P(x)log
(

P(x)
Q(x)

)
(1)

The KL divergence is computed among N = 1000 randomly selected landscape pairs drawn from
the suite of simulated landscapes representing the spectrum of all composition and configuration
characteristics and for which pattern elements and their empirical probability distributions are prepared.
The paired landscapes are further characterized by the absolute differences between the compositional
and configurational parameters in order to identify levels of expected difference. It is hypothesized
that the magnitude of the KL divergence corresponds to the structural similarity of the information
that two distributions hold, and thus smaller divergences indicate greater similarity.

The third objective is to use the KL divergence to identify the prominence or existence of
boundaries where landscape structure changes dramatically. The KL divergence can be computed
between or among identified regions, as in the second objective, to identify the degree of difference or
similarity between landscape configurations and thus infer the prominence of these defined boundaries.
However, this method can serve as a boundary detector as well in order to identify locations of likely
configurational boundaries. Presented is a paired moving-window approach that scans across a
landscape to quantify changing landscape structures. First, binary landscapes were simulated with
broad zones of structural similarity; each image had varying numbers of structural zones and of
varying degrees of prominence. Second, two non-overlapping but adjacent 150 × 150 cell subset
windows of the simulated image were extracted, their pattern elements were counted, and the KL

https://cran.r-project.org/package=ShapePattern
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divergence between them was computed and stored. Third, the windows were shifted by one cell
and the process was repeated. When the windows reached the opposite edge of the input image, the
processing ended, and the KL divergence was plotted.

The size of the subset window and the magnitude of its shift between subsequent iterations
will affect the outcome. While this is beyond the scope of this paper, the ability to test scaling will
permit the adjustment of the application relative to the processes producing the patterns observed
(these will vary among studies) and sensitivity to the scale can be assessed. The output plot of the KL
divergence provides a quasi-continuous measure of boundary prominence across a landscape (in a
specified direction); where the KL divergence is maximized, the boundary is accentuated.

3. Results

The first results depict empirical probability distributions for all pattern elements that represent
four extreme cases of simulated binary landscapes with 50% white and 50% black cells. Simulated
landscapes, N = 1000 each, were produced for random (RAND), highly spatially autocorrelated
(BUMPY), intermediately spatially autocorrelated (INTER), and highly checkered or negatively
spatially autocorrelated (CHECK) patterns (Figure 4). As expected, the probability of any pattern
element is equally likely over multiple simulations for random landscapes (RAND), with the mean for
any pattern element converging on xP = 1

32 = 0.3125. The bounds on this variability are relatively tight
(Figure 4a) but do exemplify the expectation that these values will vary due to the random simulation.
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The highly (positively) spatially autocorrelated landscapes (BUMPY) depict high proportions
of pattern elements 00000 and 11111, indicating the propensity of like-colours grouping (Figure 4b).
The probabilities of these two cases together represent nearly half of the total probabilities. The
remaining pattern elements capture the various interfaces and transitions between the classes and
happen substantially less frequently. The highly (negatively) spatially autocorrelated landscapes
(CHECK) depict high probabilities of pattern elements 00000 and 11111, but also 01111 and 10000,
cases where one colour is completely surrounded by the other (Figure 4c). These four pattern elements
account for probabilities ranging between 0.1300 and 0.1500, with all other pattern elements being
much less probable. The two halves of these distributions are near mirrors of each other (i.e., the
first 16 pattern elements have similar distributions to the second set of 16 pattern elements, where
differences stem from the inversion of the landscape classes: 0xxxx versus 1xxxx). The intermediate
cases (INTER) show a much more dispersed distribution of pattern elements (Figure 4d), but there
remain strong similarities with the distributions recorded for CHECK and BUMPY. All of the simulated
image replicates are produced by a stationary and isotropic process model.

To further characterize the effect of composition and configuration on the expectation probability
of individual pattern elements, surfaces were constructed for each of the 32 pattern elements, such that
the level of spatial autocorrelation and land cover proportion define the margins of the surface, and
the surface height represents the mean probability. Figure 5 depicts the results for a selection of these
(codes 00000, 10011, and 11010). The surfaces are further coloured to represent the level of variability
expressed across the replicates from the simulation. The full half-set (0-centred) surfaces are provided
in Figure 6, but they are much smaller than the examples in Figure 5 due to their number.
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Figure 6. A full half-set of surfaces (others are mirrored cases) demonstrating pattern element probability
changes across a range of spatial autocorrelations (Rho ≈ 0.00 to 0.99) and class proportions (10% to 90%
white to black). The probability axis is not consistently scaled for illustrative purposes. Colouration of
the surfaces characterizes the variability of pattern element probability across 1000 simulations.

Comparing binary landscape patterns based on measurable differences between two distributions
of the enumerated pattern elements described in this paper is achieved by computing the KL divergence
between the associated paired empirical probability distributions. This approach is well documented
and provides a means of establishing baselines and deviations from them. With randomly selected
1000 pairs of maps to compare, the composition and configuration parameters for both maps were
retained along with the computed KL divergence between the empirical probability distributions
of the pattern elements. Since the absolute composition or configuration are not as informative as
the differences between them, additional attributes characterizing the differences in composition and
configuration were added to each of the 1000 records. This allowed the summary of the KL divergence
relative to both the composition and configuration parameters to be plotted (Figure 7). Differences in
composition led to greater differences in the KL divergence than differences in configuration. Greater
differences in either composition or configuration led to greater variability in the measured KL diversity
between the two landscapes.
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Figure 7. Boxplots depicting the range of variability in Kullback–Leibler (KL) divergence as measured
on empirical probability distributions of pattern elements computed for 10,000 randomly selected
simulated binary image pairs. The boxplots are grouped by differences in (1) composition and (2)
configuration between pairs of compared maps to showcase the ability of the KL divergence to detect
landscape structural changes.

When a paired moving window was slid across a landscape such that paired subsets of a larger
landscape could be iteratively extracted and compared by computing the KL divergence between
pattern element empirical probability distributions, the plotted results identified structural changes
(i.e., likely boundary locations). The example provided in the top of Figure 8 shows a long east–west
trending landscape with two classes (0, 1). Each of the paired moving windows was comprised
of non-overlapping but adjacent 150 × 150 cells. The line graph in the bottom of Figure 8 depicts
the corresponding computed KL divergence between each of these window pairs as they were slid
along the length of this landscape. The curve quantifies and indicates a few important characteristics:
(1) the east and west halves of this landscape appear to have differing uniformity, (2) boundaries are
transitions as identified by non-abrupt peaks, and (3) the western half of the landscape has several
additional boundaries that identify structural differences. The KL divergence curve does not begin at
the far left of the landscape due to the window size offset.
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non-overlapping windows.
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4. Discussion

It has previously been extensively documented that composition and configuration are the
dominant descriptors of a spatial pattern [14,27]; however, while exceptions exist [28], these attributes
are generally described by different metrics and in differing units of measurement. The approach
introduced here examines binary landscapes and tallies the frequency of each basic pattern element
(of which there are 32 in a binary landscape representation). These frequencies are then converted into
empirical probability distributions that take on the ability to generalize the spatial structure of that
landscape, where its extent and number of cells are not critically important. The distribution itself is
telling of the expected pattern observed—both in terms of which land cover class dominates and what
types of highly localized spatial arrangements are most likely.

Code is provided for performing the actions in this paper (and is continually evolving) for use in
the open source R environment. This permits the operationalization and modification of functions
or their incorporation in popular GIS environments through readily available libraries that interface
with R. The current iteration of the computer code has a few limitations that do not affect the proof of
concept presented in this paper, but operationally may be problematic: (1) the requirement of an equal
number of rows and columns defining input grids, (2) the inability to handle missing data or blanks
encoded as NA, (3) data rotations, and (4) currently handling only first-order neighbours. All of these
limitations can be considered temporary.

It is possible to extend the neighbourhood to include the Queen’s case, or even to consider
second-order (or beyond) neighbours, but this will dramatically increase the number of possible
configurations and also boost the likelihood of highly sparse matrices of pattern element probabilities.
Due to the sheer number of combinations, the highly probable existence of ultra-rare cases, and a need
for very large assessment landscapes, this additional complexity has been excluded. The handling
of grids with unequal numbers of rows and columns should be possible in a near future release of
the code. Dealing with missing data (NA) is a bit trickier, but headway is being made on this to
accommodate the handling of irregular study areas and data gaps that are common operationally but
not theoretically—as in this paper. As for data rotation, this remains an issue that may not actually
need a top–down solution. On the one hand, many of the pattern elements can be collapsed with
their probabilities aggregated to compensate for reflections; this would mitigate the rotation issue.
However, orientation is sometimes important and the current approach provides the precision to detect
orientation differences in such cases. Leaving the ability to collapse pattern elements as needed to end
users ensures that that decision making is left to those most familiar with their data and needs. What
may be interesting in the future, however, is adapting this concept to handle time series by considering
the pattern elements in preceding or following timesteps relative to the focal period for assessing
landscape change units.

Most land cover products have multiple classes, but the presented approach strictly requires
binary representations. While this may be seen as a limitation, it must be emphasized that it is not and
that the enumeration for multiple classes or larger numbers of neighbours can be prohibitively tedious
and unnecessary [29]. Theoretically, for stationary and isotropic process-generated patterns, even
many of the current pattern elements should be reducible, as alluded to by [30], due to uniformity in
all directions. This would have the benefit of fewer elements in the empirical probability distributions
being compared, a lesser likelihood of null entries, and possibly simpler interpretations, but this would
need to be assessed formally and may vary by case. The binary case is further supported by [31], since
anomalies in patterns observed locally are more likely to be detected and meaningful than if many
more categories were present or measured over larger focal windows.

The slightly more involved calculation of the Jensen–Shannon (JS) divergence, which is symmetric
and has a constrained range [32], is also computed and provided as output by the code. However,
given the nearly linear relationship between the KL and JS divergences (except for > 70% compositional
differences, where the JS divergence saturates), the simpler KL results are accepted as sufficient for the
purposes presented here. Operationally, a user can select either (or both) as desired.
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Composition is much more readily identified as a change than configuration by human
interpretation [30], which is echoed by the KL result in objective 2. Greater changes in composition
between two maps lead to substantially larger divergence values, while differences to configuration
are subtler. Similarly, larger actual differences in composition lead to greater variability in the KL
divergence values, likely a result of a wider array of possible patterns, and thus a greater variation in
the distribution of pattern element probabilities is observed. A multiscale analysis may hold interest
here, whereby the spatial resolution could be varied across a range of values and the pattern element
analysis performed and aggregated akin to a wavelet-type of methodology.

The moving-window scan of the KL divergence values across a landscape provides a unique
opportunity to detect structural changes at the most local level, and this characterization is purely data
driven. Depending on the size of the moving window and the sliding distance used, the results can be
used to detect changes that manifest over varying lag distances and thereby identify boundaries with
specific characteristics. The approach identifies locations of potential boundaries and characterizes
their strength [33] and their thickness (distance over which they are detectable). This boundary detector
could be implemented in multiple directions and then have identified boundaries accumulated into a
common boundary layer, with strength and thickness indicated as attributes. This concept has not
been tested, but the framework now exists that would facilitate such future investigations.

Related and interesting work in geomorphology and specifically in characterizing topographic
units from digital elevation models have resulted in the identification of geomorphons that can be
mapped onto a landscape [34,35]. These geomorphons characterize combinations of local slopes and
aspects and can classify landscapes into characteristic units that will determining overland flow and
erosive effects, but they do rely on the user defined parameters and are not purely pattern-based but
related to physical landscape topographic structures. The presented methods in this paper are not
intended as an alternative or replacement for such approaches, but methods that may be complimentary
in terms of also assessing the spatial pattern of land cover patterns in the same area.

5. Conclusions

This study provides a means by which binary landscapes can be summarized by their 32 most
primitive pattern elements. These results are converted into probabilities that characterize the
dominance of certain elements in describing the overall spatial structure of observed patterns.
Extensive simulations identify the impact of changing composition and configuration on the expected
distributions of pattern elements, with composition being a greater driver than configuration, and
that this aligns with the human interpretive experience as supported by the literature. Furthermore,
the use of the KL divergence as a relative measure is useful for comparing the degree of similarity or
difference between pairs of landscapes. This approach has the benefit of encoding composition and
configuration in a common framework to assess the separation between landscape structures. The use
of the KL divergence is also useful for detecting boundaries within landscapes, by detecting structural
changes, focusing on changes to the distribution of pattern elements enumerated, rather than direct
measures of only a single landscape metric. Likely boundaries as well as their relative prominence
(i.e., the KL divergence value) and their abruptness (i.e., distance over which boundaries are detected)
are identified.
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