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Abstract: In this paper, a new Computer-Aided Detection (CAD) system for the detection and classification
of dangerous skin lesions (melanoma type) is presented, through a fusion of handcraft features related
to the medical algorithm ABCD rule (Asymmetry Borders-Colors-Dermatoscopic Structures) and
deep learning features employing Mutual Information (MI) measurements. The steps of a CAD
system can be summarized as preprocessing, feature extraction, feature fusion, and classification.
During the preprocessing step, a lesion image is enhanced, filtered, and segmented, with the aim to
obtain the Region of Interest (ROI); in the next step, the feature extraction is performed. Handcraft
features such as shape, color, and texture are used as the representation of the ABCD rule, and deep
learning features are extracted using a Convolutional Neural Network (CNN) architecture, which
is pre-trained on Imagenet (an ILSVRC Imagenet task). MI measurement is used as a fusion rule,
gathering the most important information from both types of features. Finally, at the Classification
step, several methods are employed such as Linear Regression (LR), Support Vector Machines (SVMs),
and Relevant Vector Machines (RVMs). The designed framework was tested using the ISIC 2018
public dataset. The proposed framework appears to demonstrate an improved performance in
comparison with other state-of-the-art methods in terms of the accuracy, specificity, and sensibility
obtained in the training and test stages. Additionally, we propose and justify a novel procedure that
should be used in adjusting the evaluation metrics for imbalanced datasets that are common for
different kinds of skin lesions.

Keywords: fusion; handcraft; deep learning; melanoma; convolutional neural networks; transfer
learning; computer-aided systems; mutual information; balance; data

1. Introduction

Skin cancer has become one of the deadliest diseases for human beings. Globally, each year, between
two and three million non-melanoma (less aggressive) cases occur, and over 130,000 melanoma (aggressive)
types are diagnosed [1].

Melanoma is the deadliest type of skin cancer. Australia has the highest rates of skin cancer in
the world. In 2018, melanoma accounted for about 22% of skin cancer diagnoses, and non-melanoma
tumors accounted for about 78% [2]. Studies have shown that this disease is caused most of the time
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by exposure to UV radiation in daylight, tanning on sunbeds, and skin color, among others. Physicians
have suggested that the best way to detect a malignant skin lesion of any kind is early detection.
The rate of survival increases to almost 99% over five years if the disease is spotted in the early stages.

Dermoscopy or Epiluminicence Microscopy (ELM) is a medical method that helps a physician
to recognize if a skin lesion belongs to a benign or malignant type of the disease. This method uses
a dermatoscope, a tool that consists of a light source and amplification lens to enhance the view of
medical patterns such as ramifications, globs, pigmented networks, veils, and colors, among others.

Since the image processing techniques were developed, Computer-Aided Detection (CAD)
systems and approaches in the classification [3–7] and segmentation [8] of a Pigmented Skin Lesion
(PSL) have been improved , benefiting patient diagnoses in early stages of the disease without shocking
or painful medical procedures.

In this work, we propose a novel approach in the detection of a skin lesion among melanoma or
nevus types, using handcraft features that depend on shape, color, and texture, which represent the
ABCD rule (Asymmetry Borders-Colors-Dermatoscopic Structures), and combining them with deep
learning features; these latter features were extracted using the transfer learning method as a generic
feature extractor. At the next step, the most important features according to the Mutual Information
(MI) metric features should be selected using the fusion technique, aiming at the best performance by
taking into account the influences of both sets of features on the binary classification result.

This paper is organized as follows: Section 2 presents a brief review of the methods used in CAD
developments with fused features and their nature, Section 3 explains in detail the proposed method,
the materials used, and the evaluation metrics employed, and Section 4 describes the experimental
results and presents a brief discussion. The conclusions are detailed in Section 5.

2. Literature Survey

Medical detection algorithms are one of the first tools used for determining whether a skin lesion
is malignant or benign [9–13]. Nachbar et al. [9] developed a subjective method based on the visual
perception of the lesion. ABCD Rule is based on color, shape, and particular structures that appear
on skin lesions. Due to the simplicity of the algorithm, it is one of the most practiced for evaluating a
lesion by a naked eye exam or using a dermatoscope.

The ABCD medical algorithm is composed of the following parts:

• Asymmetry A: The lesion is bisected into two perpendicular axes at 90◦ of each other, so as to
yield the lowest possible asymmetry score. In other words, whether the lesion is symmetrical or
not is determined. For each axis, where asymmetry is found, one point is added.

• Borders B: The lesion is divided into slices by eight axes determining whether a lesion has abrupt
borders. If one segment presents an abrupt border, one point is added.

• Colors C: The lesion can contain one or more of the following colors: white, brownish, dark brown,
black, blue, and red. They are generated by vessels and melanin concentrations, so for each one
color founded, one point per color is added.

• Dermatoscopic Structures D: The lesion has the appearance of the following structures: dots,
blobs, pigmented networks, and non-structured areas. A point is added for each structure spotted
on the lesion.

The described features are weighted as follows:

TDS = 1.3 ∗ A + 0.1 ∗ B + 0.5 ∗ C + 0.5 ∗ D, (1)

where TDS is the Total Dermatoscopic Score; if it is less than 4.75, it is concluded that the lesion is
benign; if the score is between 4.75 and 5.45, the lesion is considered suspicious; if it is more than 5.45,
then it is considered malignant.

This algorithm has subversions, where some elements such as dermatoscopic structures are
changed by diameter or darkness [14,15]. Additionally, in [16,17], the addition of features known as
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EFG properties has been suggested; E stands for elevation or evolution, F for firmness, and G for
growth. These features work as complementary information obtained from a PSL. Modifications in
the ABCD rule are based on simplifying the evaluation of a skin lesion such that anyone can evaluate
themselves and record any change in the injury. If the lesion is not identified by these methods, physicians
are obliged to initiate invasive methods such as a biopsy to determine their type.

Adjed et al. [18] proposed a method where the aim is the fusion of structural features using Curvelet
and Wavelet transform employing the Fast Digital Curvelet Transform (FDCT) wrapping method, and
statistical metrics and texture features such as local binary pattern are then computed. They fused
around 200 features via concatenation using the PH2 dataset [19].

Hagerty et al. [20] developed a fusion method where deep features are extracted from images using
transfer learning method based on the ResNET-50 Convolutional Neural Network (CNN) architecture.
However, the question as to which handcraft features are used in their method is not clear. Moreover,
they used a feature selection algorithm, in this case, the χ2 method, for performance revision, employing
two datasets: the private set and the second set (a modified version of the ISIC 2018 dataset) [21].

Li et al. [22] used a deep learning approach with the fusion of clinical criteria representations, where
as a classifier and fusion method, a boosting tree-learning algorithm called LightGBM is used [23]. This
method is applied for color properties (RGB and HSL features), texture properties (SIFT and LBP),
and shape properties (solidity and circularity, image ratio, and area ratio). The deep learning features
were obtained using the transfer learning method based on the ResNET-50 and DenseNET-201 CNN
architectures. Data pertaining to 566 features were processed using the ISIC 2018 dataset [21].

Abbas and Celebi [24] proposed a CAD system where the lesion is processed by a Stack-Based
Auto-Encoder (SAE), extracting the deep features from the pixels of a lesion while minimizing the
information loss. The handcraft features are extracted for color (the Hill climbing algorithm (HCA))
and for texture (the speed-up robust features (SURF)). Applying a feature fusion approach, they used
Principal Component Analysis (PCA), and in the concluding stage, Recurrent Neural Networks (RNN)
and A Softmax Linear Classifier were employed.

Among the reviewed methods, most of them use handcraft features and deep learning features
with the help of the transfer learning method based on well-known CNN architectures [25–31]. As one
can see, the revised schemes tried to fuse the information extracted from the lesion images, gathering
data via the concatenation of the feature vectors, classifiers, and feature selection. The main drawback
of such methods is the unawareness of the medical information, which is relevant to physicians besides
the extracted data from image processing algorithms. The analyzed methods above employ several
possibilities in the fusion of features, but most of them do not consider the importance of each extracted
feature according to their nature, which is relevant for a pertinence class. Moreover, some of them
lack features based on medical algorithms due to their assumption of the weakness of the perceptual
handcraft features based on the subjective visual human system. Modern image processing techniques
and machine learning approaches are able to learn the patterns and implement those features, as in
a vision scoring system. Finally, some of the reviewed methods attempt to perform a multiclass
classification, where the system classifies a lesion image to a specific lesion category. Nevertheless,
here a problem endures in the multiclass classification, because the data available for each class
are limited, and some of the public databases are not well balanced to perform this classification.
As a result, a designed system can perform incorrect classifications. Summarizing, we consider the
importance of developing an intelligent system that is able to perform the correct classification of
melanoma disease employing both types of features, where medical features have relevance on the
classification with the aid of deep learning features, aiming for the best performance.

The novel method considers relevant information obtained from handcraft and deep learning
features, improving performance quality presented by commonly used criteria: accuracy, specificity,
and sensibility. Different from other schemes, our novel framework encourages the use of ABCD rule
features, also known as perceptual features, with a set of features equivalent to or based on a similar
medical nature.
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Principal Contributions

The principal contributions of our novel approach in the classification of dermoscopic lesions are
summarized as follows:

• A brief survey of computer-aided detection methods that employ fusion between handcraft and
deep learning features is presented.

• Despite the new tendencies of avoiding the ABCD medical algorithm or any of its variations,
we utilized descriptors based on them, such as shape, color, and texture, as a new aggregation,
and the extraction of deep learning features were used afterwards.

• A balanced method was employed due to the inconsistency of the ISIC database with respect to
classes. A SMOTE oversampling technique was applied, which in this work demonstrates an
improvement in performance at the differentiation of melanoma and benign lesion images.

• A fusing method that employs relevant mutual information obtained from handcraft and deep
learning features was designed, and it appears to demonstrate better performance in comparison
with state-of-the-art CAD systems.

3. Materials and Methods

In this section, the proposed system is described. A brief conceptual block diagram of the system is
illustrated in Figure 1. As an initial step, the pigmented skin lesion image is segmented from surrounding
normal skin tissue and artefacts such as veils, hairs, and air bubbles, among others, by color space
transformation, mean thresholding, and extraction of the Region of Interest (ROI). Subsequently, using
the binary mask image, the ROI image and a set of handcraft features based on shape, color, and
texture are extracted. Thereafter, deep learning features are obtained using a selected CNN architecture,
which is pre-trained in an Imagenet classification task; this CNN is employed as a feature extractor.
All extracted features are concatenated in one vector, which later is fused according to the MI criterion.
The selected classifier is trained on the ISIC dataset comprised of both malignant and other benign
skin lesion images. Finally, the trained classifier model is used to predict each unseen pigmented skin
lesion image as a benign or malignant lesion. The details of each stage of the proposed method are
described in the remainder of this section.

3.1. Preprocessing

An image I(x, y) that is analyzed can contain a lesion with some artefacts such as veils, hairs, stamps,
among others. In the first step, we apply a preprocessing stage, where an image is enhanced [8,32,33].

A Gaussian filter is applied, and this filter is used to blur the artefacts contained on the image as
primary targets: hair, marks, and spots, among others. This maintains the geometric/shape form of
the lesion.

The Gaussian filter is denoted as follows:

G(x, y) =
1

2πσ2 exp
(
− x2 + y2

2σ2

)
, (2)

where σ2 is the variance of the spatial kernel, this step is shown in Figure 2.
CIEL*a*b* space is characterized to more closely approximate the human perception system,

where there are channels: L stands for lightness; a* and b* stand for chroma channels, where a* is
a parametric measure between magenta and green, and b* is a parametric measure between blue
and yellow. The L channel presents values between [0, 100], and a* and b* chroma channels have
values between [−30, 30]. This transformation is used to avoid the correlation between channels,
while keeping the perceptual data intact, such as a pigmented skin lesion that is darker than healthy
skin tissue, as one of the sub-variants of the ABCD algorithm states [14].
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Figure 1. Block diagram of the novel Computer-Aided Detection (CAD) system.

Figure 2. (a) Original image I(x, y); (b) image (a) processed with a Gaussian filter.

In each channel of CIEL*a*b* for images IL, Ia, Ib, the mean thresholding procedure is applied.
Such thresholding allows one to differentiate skin tissue from lesion tissue. In Figure 3, one can see
how the CIEL*a*b* space is able to visually separate this information. These mean values are calculated
as follows:

IL =
m

∑
x=1

n

∑
y=1

1
mn

IL(x, y), (3)
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Ia =
m

∑
x=1

n

∑
y=1

1
mn

Ia(x, y), (4)

Ib =
m

∑
x=1

n

∑
y=1

1
mn

Ib(x, y), (5)

where (x, y) are the spatial coordinates, m, n are the sizes of an image, and IL, Ia, Ib denote the mean
values. The thresholding operation is applied in each channel of the CIEL*a*b* space, forming the
thresholded channel images as follows:

IThL(x, y) =

{
1, IL(x, y) ≥ IL,

0, otherwise,
(6)

ITha(x, y) =,

{
1, Ia(x, y) ≥ Ia,

0, otherwise,
(7)

IThb
(x, y) =

{
1, Ib(x, y) ≥ Ib,

0, otherwise.
(8)

Figure 3. (a) Original image I(x, y), (b) I(x, y) on channel L, (c) I(x, y) on channel a*, and (d) I(x, y) on
channel b*.

Afterwards, the following logic operation is applied on each binarized image, IThL , ITha , and IThb
,

to form a binary mask Ibin(x, y) of the image.

Ibin(x, y) = IThL ∩ ITha ∩ IThb
. (9)

Example of extracted Binary Masks images are given in Figure 4. Finally, a median filter with a
kernel 5× 5 is applied to the Ibin(x, y), removing the remaining artefacts, which resists thresholding.
Next, a bounding box algorithm is performed. The bounding box [34] is a method that is used to
compute an imaginary rectangle that completely encloses the given object. This rectangle can be
determined by the x- and y-axis coordinates in the upper-left and lower-right corners of a shape.
This method is commonly used in object detection tasks because it estimates the coordinates of the
ROI in an image.
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Figure 4. Results of the thresholding stage: (a) Original image I(x, y), (b) binary image IThL obtained
from the threshold of the L channel, (c) binary image ITha obtained from the threshold of the a* channel,
(d) binary image IThb

obtained from the threshold of the b* channel.

Bissotto et al. [35] have shown the effect of the bias between different types of image segmentation,
where those biases can negatively affect the performance of classification models. They consider that
the usage of the bounding box algorithm to segment a lesion is appropriate because a CNN architecture
can extract all the relevant features of a lesion and distinguish it from the surrounding healthy skin.
Therefore, we consider this solution to reduce the bias of the classification model before processing.

3.2. Handcraft Features

The ABCD rule represents a set of perceptual features stated by the findings of patterns in PSLs.
The ABCD method employs features that are based mostly on shapes, color, and texture. The selected
features in this study are the representation of medical attributes using image processing algorithms.

Sirakov et al. [36] proposed a method to estimate the asymmetry of a lesion based on the binary
mask Ibin, which is obtained from the previous thresholding step. Then, by rotating it through 180◦,
the symmetry mask SIbin is formed, and the synthetic image A is calculated as follows :

A = Ibin ∪ SIbin (10)

where A is the generated image, which contains the non-overlapping regions of the lesion called false
symmetry FS, therefore applying

Sym0◦ = 1− (FS/A), (11)

and this technique is applied on the 0◦ axis of the binary image.
In this study, a variation of the previous method is proposed, where from the A generated image

is rotated from the major axis and the minor axis, by applying the same procedure again and finally,
computing the average symmetry value between the two axes, as follows:

Symmetry =
Sym0◦ + Sym90◦

2
. (12)

The symmetry values belong to the interval [0,1], where, if this index approaches the highest value (1),
a lesion is more symmetric. The Figure 5 shown the extracted ROI images.
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Figure 5. Results of the preprocessing stage: Original image I(x, y), (a) Region of Interest (ROI) obtained,
(b) segmented image SIbin , (c) obtained asymmetry at 0◦, and (d) obtained asymmetry at 90◦.

3.2.1. Shape Features

Shape features or geometric features [34] can describe an object or a form in numerical values to
represent human perception.

For shape features, the following equations are employed:

Area =
m

∑
x=1

n

∑
y=1

Ibin(x, y), (13)

where m, n are the sizes of the image, and x, y are the spatial coordinates; therefore, the area consists of
the amount of pixels contained in the ROI of a lesion.

Perimeter =
m

∑
i=1

2
√
(x1 − xi−1) + (y1 − yi−1), (14)

where (x, y) are the spatial coordinates of the i− th pixel, which constructs the contour of the region,
and the perimeter contains the amount of pixels around the ROI of a lesion.

Circularity =
4π · Area

Perimeter2 , (15)

where the circularity shows the similarity between a shape and a circle.

Diameter = 2

√
1
2
(µ2,0 + µ0,2)± 2

√
4µ2

1,1 − (µ2,0 − µ0,2)2, (16)

where the diameter is formed by obtaining the length of the major axis and the minor axis of the shape,
computed from the 2nd central moment. This measure connects two pairs of points on the perimeter
of the shape.

Eccentricity =
(µ0,2 − µ2,0)

2 + 4µ1,1

A
, (17)

which measures the aspect ratio of the length of the major axis to the length of the minor axis.
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3.2.2. Colour Features

Medical algorithms, in particular the ABCD rule, try to present, as features, a set of colors contained
on a PSL. Therefore, these features can be replaced by statistical characteristics obtained from color
spaces. In this study, the following characteristics are used:

Minch = min[Ich(x, y)], (18)

Maxch = max[Ich(x, y)], (19)

Varch = var[Ich(x, y)], (20)

Meanch = [Ich(x, y)], (21)

where Ich(x, y) is the image of a chosen channel for the PSL image in RGB and CIEL*a*b* color spaces.

3.2.3. Texture Features

Haralick et al. [37] proposed the Gray Level Co-occurrence Matrix (GLCM). This method analyzes
the statistical texture features of an image. The texture features provide information about how the
gray intensities of the PSL of the image are distributed. GLCM shows how often a gray level occurs at
a pixel located in a fixed position, using Pd(i, j) as the (i, j) element of the normalized GLCM; Ng is the
number of gray levels; σx, σy and µx, µy are the standard derivations and the mean values among the i
and j axes of the GLCM, and are expressed as follows:

µx =
Ng

∑
i=1

Ng

∑
j=1

iPd(i, j), (22)

µy =
Ng

∑
i=1

Ng

∑
j=1

jPd(i, j), (23)

σx =

√√√√ Ng

∑
i=1

Ng

∑
j=1

(i− µx)2Pd(i, j), (24)

σy =

√√√√ Ng

∑
i=1

Ng

∑
j=1

(j− µy)2Pd(i, j). (25)

The 13 features used in this study are as follows:

ASM =
Ng

∑
i=1

Ng

∑
j=1

P2
d (i, j). (26)

The angular second moment measures consistency of the gray local values.

Contrast =
Ng

∑
i=1

Ng

∑
j=1

(i− j)2Pd(i, j), (27)

This is the second moment. This characteristic measures the variations between pixels.

Correlation =
Ng

∑
i=1

Ng

∑
j=1

Pd(i, j)
(i− µx)(j− µy)

σxσy
. (28)

This is the linear dependency of the gray level values.
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Variance =
Ng

∑
i=1

Ng

∑
j=1

(i− µ)2Pd(i, j). (29)

This is the second moment. It shows the spread around the mean in the surrounding neighborhood.

IDM =
Ng

∑
i=1

Ng

∑
j=1

1
1 + (i− j)2 Pd(i, j). (30)

This is the Inverse Difference Moment (IDM). It shows how close the elements of the GLCM are
in their distribution.

Entropy = −
Ng

∑
i=1

Ng

∑
j=1

Pd(i, j) · ln[Pd(i, j)]. (31)

This is the measure of randomness of the gray values in an image.
Additional texture features that are used in this study are based on the difference statistics using

the probability Px−y(k) that can be written as follows:

Px−y(k) =
Ng

∑
i=1

Ng

∑
j=1

Pd(i, j), k = 0, 1, ..., Ng − 1, (32)

where Pd(i, j) is the (i, j)th element contained in the GLCM, and Ng is the number of gray levels.

Sum Variance =
2Ng

∑
k=2

(k− µx+y)
2Px+y(k), (33)

Sum Entropy = −
2Ng

∑
k=2

Px+y(k)log[Px+y(k)], (34)

Di f f erence Variance =
NG−1

∑
k=0

(k− µx−y)
2Px−y(k), (35)

Di f f erence Entropy = −
Ng−1

∑
k=0

Px−y(k)log[Px−y(k)], (36)

IMCorr1 =
H(XY)− H(XY1)

max[H(X)H(Y)]
, (37)

IMCorr2 =
√

1− exp {−2[H(XY2)− H(XY)]}, (38)

where H(X), H(Y), H(XY), H(XY1) and H(XY2) are denoted as follows:

H(X) = −
Ng

∑
i=1

Px(i) · log[Px(i)], (39)

H(Y) = −
Ng

∑
i=1

Py(i) · log[Py(i)], (40)

H(XY) = −
Ng

∑
i=1

Pd(i, j) · log[Pd(i, j)], (41)

H(XY1) = −
Ng

∑
i=1

Ng

∑
j=1

Pd(i, j) · log[Px(i) · Py(j)], (42)



Entropy 2020, 22, 484 11 of 23

H(XY2) = −
Ng

∑
i=1

Ng

∑
j=1

Px(i) · Py(j) · log[Px(i) · Py(j)]. (43)

3.3. Deep Learning Features

Based on the discrete convolution operation,

W(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j− n)K(m, n), (44)

the CNN [38,39] represents one type of method, namely, deep learning strategies [40], the basis of
which is to obtain the information of an image I(i, j), using filters K(m, n), which are trained on a
neural network as feed-forward and back-propagation, according to

y = z(W ∗ X) + b, (45)

where W are the computed values for the filters, z is the activation function, X is the input, and b is the
bias [40,41].

The design of an architecture of a CNN is a rather complex task due to the statement of parameters
such as the number and size of the filters, and the depth, even those that are task-related.

3.3.1. Transfer Learning

The main problem of using a deep learning approach is that a large amount of data is needed to
train the network from scratch. Usually, to overcome this problem, the transfer learning method [42–44]
is applied.

Transfer learning is a technique that can be defined as the generalization of a target task based
on applied knowledge extracted from one or more source tasks [43]. The idea originates from human
thinking: we do not learn exactly how to recognize a chair, a plane, or a book; we start by recognizing
colors, shapes, and textures, and someone else then tells us how to differentiate a chair from an apple.
This sharing of knowledge between beings helps us to understand the world as infants. Another idea
is handling information collected for a task to solve related ones. Therefore, transfer learning can be
defined as follows:

Assume a domain D, which consists of two components:

D = {χ, P(X)}, (46)

where χ is a feature space, and there is a marginal distribution: P(X), X = {x1, ..., xn}, xi ∈ χ.
Given a task T with two components,

T = {γ, P(Y|X)} = {γ, η}; Y = {y1, ..., yn}, yi ∈ γ, (47)

where γ is a label space with a predictive function; η is trained from (xi, yi), xi ∈ χ, yi ∈ γ, for each
feature vector in the D domain; η predicts the corresponding label η(xi) = yi.

The paper [43] states self-called scenarios:
Given a source domain and an objective domain DS & DT , where D = {χ, P(X)} and the related

tasks are TS & TT , where T = {γ, P(Y|X)}, the conditions can vary as follows:

1. χS 6= χT : Feature spaces are different.
2. P(XS) 6= P(XT): The marginal probabilities of the distributions are different.
3. γS 6= γT : The label spaces are different.
4. P(YS|XS) 6= P(YT |XT): The conditional probabilities are different.
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Transfer learning is defined in [44]. Given a source domain DS with a corresponding source task Ts

and a target domain DT with a corresponding task TT , transfer learning is the process of enhancement
for a target predictive function fT(·) using the related information from the domain source DS and the
task-related TS.

CNN architectures are overlay filters that sample the data contained in an image. Therefore, these filters
are hierarchical representations called feature maps when all filters learn all the features based on
image data. These are connected to the last layer of the CNN architecture, which is a neural network
classifier referred to in the literature as a fully connected layer [40].

Moreover, CNN architectures belong to a class of inductive learning algorithms, where the objective
of these algorithms is to map input features between classes seeking the generalization of the data.

Therefore, inductive learning can be transferred from an architecture trained on the source task
to the target class, and this is done by adjustments of the model space, correcting the inductive bias.
Commonly, this can be performed by replacing the last layer of the model, which is the classifier,
from the original one to a lightweight classifier, which should be trained on the generalized features.

In this study, we employed the transfer learning method on architectures that are pre-trained on a
similar task. In this research, the Imagenet classification task [45] was employed, by the assumption
that DS = DT and the CNN Architecture should perform as a generic feature extractor.

3.3.2. Feature Extractor

In our case, the CNN Architecture was used as a deep feature extractor, where features are extracted
by the following:

Consider an image I(x, y) of the domain DT that is mapped or transformed by

W = {w1, ..., wn}; w1 ∈ RM×N×h, (48)

where W is the weight computed by the feature extractor, where M, N, and h are the proposed size of
the CNN architecture. As a result, we can obtain

P = W(I(x, y)) = {w1(I(x, y)), ..., wn(I(x, y))}; ∈ RM×N×h, (49)

and the pooling transformations are based on

Q = f (0, P) = { f (0, w1(I(x, y))), ..., f (0, wn(I(x, y)))}, (50)

where f (·) is a mapping function.

3.3.3. Deep Learning Architectures

Below, we use the following architectures: VGG-16/VGG-19 [26], MobileNet [27], ResNet-50 [28],
Inception v3 [29], Xception [30], and DenseNet-201 [31]. The selection of these architectures was based
on the fact that they have been shown to obtain the Top-1 and Top-5 best accuracy and error rates on
the Imagenet task proposed for [45], which is an image classification task.

In Table 1, the number of features extracted by each utilized architecture is explained.
The features for each selected architecture are concatenated with the extracted handcraft features,

forming a unique feature vector:

F = Deep[#FeaturesExtracted] ∪ Hand[Asymetry, Area, .., Entropy, Contrast, Std..., Max, Min, ...], (51)

where the size of vector F is equal to 43 for the handcraft features, plus the number of features extracted
from the CNN architecture used.
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Table 1. The number of features extracted by architecture.

CNN Architecture #Features

VGG19 4096
VGG16 4096

ResNET-50 2048
Inception v3 2048
Mobilenet v1 1024
Mobilenet v2 1280

DenseNET-201 1920
Xception 2048

3.4. Algorithm Summary

Let the sum of all proposed and explained procedures be described in the form of an algorithm
for extraction features for PSL Images. The proposed CAD system consists of four principal stages:
(a) preprocessing, (b) handcraft features, (c) deep learning features, and (d) the fusion stage. In the
first stage, artifacts are removed by using a Gaussian filter after a CIELab color transformation is
employed. Mean thresholding per channel is employed afterwards. We then extract the ROI by using
the boundary box algorithm. In the second stage, shape features are extracted using Equations (12)–(17),
Equations (18)–(21) are computed for statistical color features, and texture features are then calculated
from Equations (22)–(38). The ROI image is finally processed by the chosen CNN Architecture,
whose features are concatenated for the following steps.

Algorithm 1 presents the details of the feature extraction process for PSL images.

3.5. Feature Selection

After extracting the deep learning and handcraft features, the number of features is reduced,
which is a typical problem in machine learning algorithms, because high-dimensional data increases
the computing time for a prediction.

Feature selection is one method to resolve this problem. In [46], filtering methods are applied,
and the features are selected based on various statistical tests, such as χ2, ANOVA, Linear discriminant
analysis (LDA) among others [47].

The extracted data can be represented in the form of a high-dimensional matrix defined by

X ∈ Rn×p (52)

where X is the extracted data, n represents the instances or elements, and p represents the features
extracted for each element.

The idea is to reduce the data as much as possible, such that the features are extracted by selecting
a subset of each element that is relevant to the pertinence category or label y. This subset is defined as

XS ∈ Rn×k (53)

where XS represents the reduced data, n is the same instance or element of the original data matrix,
and k is the selected or reduced features based on k << p.

Mutual Information

In this work, we propose the MI metric to reduce the data of the extracted features. MI is a measure
based on the entropy measure:

I(X; Y) = H(X)− H(X|Y) = ∑
y∈Y

∑
x∈X

P(X ∩Y)log2

(
P(X ∩Y)
P(X)P(Y)

)
(54)
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where X = x1, ..., xn and Y = y1, ..., yn in the multi-variable case, H(X|Y) is the conditional entropy
between two random variables, and H(X) is the entropy of a random variable [48–50].

H(x) = −
n

∑
i=1

P(xi)log2P(xi) (55)

Algorithm 1 Algorithm summary

Require: PSL Image
(a)Preprocessing

1: Input: I
Apply Gaussian Filter, Equation (2)
Apply RGB to CIEL*a*b* Color Transform
Separate CIEL*a*b* Image ILab in Image Channels IL, Ia, Ib
Calculate Mean value of IL, Ia, Ib, Equations (3)–(5)

2: for all (i, y) ∈ IL do
3: if IL(x, y) ≥ IL then
4: Assign 1 to IThL(x, y)
5: else
6: Assign 0 to IThL(x, y)
7: end if
8: end for
9: for all (i, j) ∈ Ia do

10: if Ia(x, y) ≥ Ia then
11: Assign 1 to ITha(x, y)
12: else
13: Assign 0 to ITha(x, y)
14: end if
15: end for
16: for all (i, j) ∈ Ib do
17: if Ib(x, y) ≥ Ib then
18: Assign 1 to IThb

(x, y)
19: else
20: Assign 0 to IThb

(x, y)
21: end if
22: end for

Compute Ibin(x, y) Applying Equation (9) to IThL , ITha , IThb
Apply Median Filter, size = 5× 5

Compute Bounding Box Algorithm to estimate coordinates of Region Of Interest
Crop Iroi(x, y) from estimated coordinates on I(x, y) & ILab(x, y)

23: Output: Region of Interest (ROI) Image Iroi(x, y)
(b)Handcraft Features

24: Input: IROI
Compute Area, Perimeter, Circularity, Diameter and Eccentricity from Equations (13)–(17)
Compute Asymetry from Equations (10)–(12)
Compute Color Features from Equations (18)–(21) from Iroi(x, y)
Compute Texture Features from Equations (22)–(43) from Iroi(x, y)

25: Concatenate the extracted features H
26: Output: H Handcraft features

(c)Deep Learning features
27: Input: Iroi
28: Load the weights Wi from selected CNN architecture
29: Apply the weights Wi to Iroi
30: Obtain the D deep learning features
31: Output: D deep learning features

(D)Wrapping Features
32: Input: D, H
33: Apply H ∪ D to the extracted features
34: Output: F Full set of extracted features
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Ross, in [51], proposed an MI estimator for continuous and discrete data aiming at the relationship
between datasets.

Based on the nearest neighborhood rule, the idea is to find a k-nearest neighbor between a point i
among all the data points Nxi using the Chebyshev distance metric:

Dchebyshev = max
i

(|xi − yi|), (56)

and the MI measure is then computed as follows:

I(X, Y) = 〈Ii〉 = ψ(N)− 〈ψ(Nx)〉+ ψ(k)− 〈ψ(m)〉, (57)

where ψ(·) is the digamma function, 〈Nx〉 is the average of the data points, k is the number of k-closest
neighbors to the point i, and 〈m〉 is the average counted neighbors among the full dataset.

If our dataset contains continuous data points, these are discretized using a binning method—
grouping the data into bins—leading to a binned approximation of MI as follows:

I(X, Y) =

〈
log

p(xi, bi)

p(xi)p(bi)

〉
i

. (58)

After applying the MI method, a new vector is delivered, and it shows the value of MI per concrete
feature among all obtained features. Next, the mean value is calculated for the MI among all features.
We proposed to use this value as a threshold to discard the features with the lowest MI values and to
keep the features with the highest MI values. Tables 2 and 3 expose examples of different parts of the
fused feature vector.

L f eatures(x, y) = F(x, y) > M.I(x, y) (59)

The found subset contains the features with the highest mutual information values that we consider
as the fused data of both sets of extracted features from a PSL. Below, as an example, we present the
behavior of the features and their MI values.

Tables 2 and 3 expose, for illustration, several MI values between the extracted features for the
dataset of images. Some of the deep learning features appear to demonstrate negligible MI values for
the binary classification problem, according to the complete set of features extracted from the database,
as one can see in Table 2.

Table 2. Example of features that expose the lowest Mutual Information (MI) values.

Inception v3 + Handcraft Features

Feature Mutual Info. value

1448 3.813956037657107 × 10−7

648 1.4314941993776031 × 10−5

1020 3.4236070477255964 × 10−5

804 3.515106075036023 × 10−5

333 4.213506368255793 × 10−5

562 4.4971751217204314 × 10−5

91 5.133156269931938 × 10−5

852 6.514623080855486 × 10−5

1689 7.53828133426282 × 10−5

1788 7.605629690621285 × 10−5

Table 3 exposes several features with significant values of MI that are merged with additional
significant handcraft features, forming the final set of features for the proposed system. Therefore,
the proposed fusion method based on MI measurements demonstrates the fusion for both types of
features in accordance with their influence on the binary classification problem.
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Therefore, in contrast with state-of-the-art techniques that use Concat, PCA-based, and χ2-based
methods, among others, for the selection of significant features, the proposed approach employs the
information measures, justifying the informative weight of each feature that is used in the classification stage.

Table 3. Example of features that expose the highest MI values.

Inception v3 + Handcraft Features

Feature Mutual Info. value

Mean_b 0.09829037284938669
Min_b 0.09536305749234275
Max_b 0.06834317593527395

578 0.06131147578510121
Min_G 0.05817685924318594

116 0.055293703553799256
389 0.05446628875169646
464 0.05424503079140042

Var_L 0.05420063226575533
288 0.053949117014718606

4. Results and Discussion

The classifiers: logistic regression, support vector machine with linear and rbf kernel [52], and finally,
relevant vector machine [53,54] algorithms were employed in this work. The rationale for the use of
different classifiers lies in the fundamental idea of transfer learning, whereby after extracting generic
features, a shallow classifier must be applied to test the proposed method.

4.1. Experimental Results

4.1.1. Experimental Setup

The described method was performed on a PC with an Intel R© Xeon E5 1230-V5 CPU, 32GB RAM,
NVIDIA GeForce R© 1080Ti with 11 GB RAM, running a Linux 64-bit operating system, Python 3.5, and the
libraries: Keras 2.3 [55], Sklearn [56], Mahotas [57], thundersvm [58], and Imblearn [59].

4.1.2. Evaluation Metrics

In this study, we used commonly applied performance metrics: accuracy, sensitivity, specificity,
precision, f-score, and the Matthews correlation coefficient:

Accuracy =
tp + tn

tp + tn + f p + f n
. (60)

The accuracy value measures the appropriate classifications over the total elements evaluated.

Sensibility =
tp

tp + f n
. (61)

The sensibility value, also known as recall, measures the number of positive elements that are correctly
classified.

Speci f icity =
tn

tn + f p
. (62)

The specificity value measures the number of negative elements that are correctly classified.

Precision =
tp

tp + f p
. (63)
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The precision value measures the number of elements that are correctly classified among all the positive
elements to evaluate.

FScore =
2tp

2tp + f p + f n
. (64)

The F-score value measures the harmonic mean between precision and recall.
These criteria are described in terms of tp, tn, fp, and fn, which denote true positive, true negative,

false positive, and false negative, respectively. Additionally, to characterize the classifier performance,
we used the Matthews correlation coefficient [60]:

MCC =
(tp× tn)− ( f p× f n)

2
√
(tp + f p)(tp + f n)(tn + f p)(tn + f n)

, (65)

where the MCC value measures the performance of the classification model as a coefficient between
the predicted and the observed elements of the binary classification. It returns a value between [−1, 1],
where a value of 1 represents a perfect prediction, a value of 0 is no better than a random prediction,
and −1 indicates total disagreement between prediction and observation.

4.1.3. Dataset

This study uses the public ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection grand
challenge datasets [21] task 3, also known as HAM10000 [61], which contains 10,015 separate images,
as shown in Figure 6, where AKIEC corresponds to Actinic Keratosis, BCC is Basal Cell Carcinoma,
DF is a Dermatofibroma, MEL is Melanoma, NV is Nevus, BKL is Pigmented Benign Keratosis,
and VASC is Vascular. This distribution was obtained from the Ground Truth file, and each image is
on RGB space with a size of 450× 600.

Figure 6. Distribution of classes on the ISIC2018/HAM10000 dataset.

As one can see in Figure 6, the ISIC dataset contains images that belong to different types of
skin lesions that do not correspond to the melanoma-type lesion. Therefore, we decided to modify
the dataset to develop a binary class classification by excluding all the classes, except for Melanoma
and Nevus.

We split the ISIC dataset: 75% for the training set and 25% for test set. The features extracted were
processed by Z-score normalization:

Z =
x− µ

σ
. (66)
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4.1.4. Balance Data

The adjustment of the ISIC dataset mentioned above means that the data are unbalanced, where one
class contains more data than others. In most machine learning techniques, when they employ unbalanced
data, this can result in a lower performance of the minority class, which can cause misclassification of
the data.

SMOTE [62] is a data augmentation method that can oversample the data of the minority class,
compensating with the majority class. This method is based on K-NN clustering and Euclidean distance,
selecting two points of the minority class and computing a new one based on them. This method is
iterative until it reaches an equivalent amount of information of the majority class.

The SMOTE technique has been employed in several studies [63,64], where extracted features that
belong to an unbalanced dataset are oversampled to compensate for the number of instances between
classes. In this work, we apply this method to compensate the data of the melanoma class against
nevus ones to the selected features by the MI criterion, and as result, a balanced dataset with the fused
features can be obtained.

The study [65] introduces new metrics to overcome this problem, where geometric mean attempts
to maximize the accuracy of each of the two classes similarly, a performance metric that correlates
both objectives:

Gmean = 2
√

Sensitivity · Speci f icity. (67)

Dominance is aimed at quantifying the prevalence relation between the majority and minority
classes and is used to analyze the behavior of a binary classifier:

Dominance = Sensitivity− Speci f icity. (68)

The Index of Balanced Accuracy (IBA) is a performance metric in classification that aims to make
it more sensitive for imbalanced domains. This metric is defined as follows:

IBA = (1− Dominance) · G2
mean. (69)

The objective of this procedure is to moderately favor the classification models with a higher prediction
rate of the minority class, without underestimating the relevance of the majority class.

4.1.5. Experimental Results

In the following tables, the experimental results of binary classification for balance data are presented.
The experimental results in Table 4 show that the designed system appears to demonstrate

sufficiently good performance when different CNN architectures are fused with handcraft features in
accordance with the MI metric that can seek relevant information among features against concatenating
or discriminative analysis.

Table 4. Performance results of the proposed method using selected deep learning architectures fused
with handcraft features.

Acc. Train Acc. Test Sensibility Specificity Precision F-Score AUC G-Mean IBA MCC

VGG16 88.60 84.90 79.23 0.85 88.74 83.71 84.79 0.85 0.72 0.7012
VGG19 90.23 87.14 82.46 0.87 90.44 86.26 87.05 0.87 0.76 0.7451

Mobilenet v1 91.48 89.32 84.04 0.89 93.49 88.51 89.21 0.89 0.79 0.7898
Mobilenet v2 92.40 89.71 86.41 0.90 92.08 89.16 89.64 0.90 0.80 0.7953
ResNET-50 90.67 87.86 81.24 0.88 93.09 86.76 87.72 0.87 0.77 0.7624

DenseNET-201 91.10 88.54 83.25 0.88 92.61 87.68 88.44 0.88 0.78 0.5985
Inception V3 91.33 88.10 84.87 0.88 90.59 87.42 88.02 0.88 0.77 0.7632

Xception 90.47 87.53 83.19 0.87 90.58 86.73 87.44 0.87 0.76 0.7525



Entropy 2020, 22, 484 19 of 23

Table 4 provides the experimental results obtained using the selected CNN architectures, where the
Mobilenet v2 appears to demonstrate the best performance in comparison to the before-mentioned
architectures. The proposed method shows notable evaluation metrics such as accuracy, Area Under
Curve (AUC), and IBA metrics. The selected features contain the fused features that are the most
relevant for the classification of a lesion with the MI metric.

Presented in Table 5, experimental results for different criteria show that the designed system
outperforms several state-of-the-art methods. The experimentally justified performance, in our view,
is due to the fusion technique employed, where a mutual information metric seeks relevant information
among features upon concatenating or discriminative analysis. Moreover, the IBA metric is employed,
achieving a value of 0.80, which confirms the stability and robustness of the system when balanced
data are used.

Table 5. Comparison between our novel CAD and state-of-the-art CADs.

Metric [18] [24] [22] Proposed Method Using
Mobilenet v2 Architecture

Accuracy 86.07 95 85.55 92.40
Sensibility 78.93 93 86 86.41
Specificity 93.25 - - 90
Precision - 93 85 92.08
F-Score - - 86 89.16
G-Mean - - - 0.90

IBA - - - 0.80
MCC - - - 0.7953

Imbalance Data Yes No No No
Fused Data Yes Yes Yes Yes

Type of Classification Binary Binary Multiclass Binary

The proposed method achieves an accuracy of 92.40%, sensitivity of 86.41%, AUC of 89.64%,
and an IBA of 0.80. In [24], the authors proposed the usage of the complete PSL image, which contains
healthy skin and artefacts. Whereby, there is a probability of generating misclassification of the
recognizing patterns that belong to these objects. By contrast, the proposed system extracts the
proposed features from the region of interest of an image only for the entire classification process.
This guarantees that the feature extraction is performed exactly in the lesion image.

Moreover, our novel CAD employed the ISIC 2018 database [21] that contains more than 10,000
dermoscopy images that are authenticated by experts. Additionally, because of the unbalanced data
that are present in this database, we applied the data augmentation procedure given in Section 4.1.4.
This guarantees the robustness of the obtained classifications results. In contrast, the CAD DermoDeep
system [24] obtained the experimental results using a synthetic database constructed by four different
databases (private and public). In this case, an equal number of melanoma and benign skin lesions
were subjectively selected from each of the four databases. This system showed slightly improved
performance results as those reported in this study. In our opinion, such an approach does not guarantee
that the same high performance can be repeated using data that are not previously preselected.

The proposed system used a data augmentation technique and presented the performance analysis
for all images contained in the database and not only those that have been preselected according to a
subjective criterion that has no statistical justification.

Finally, our proposed system was developed with medical-based and deep learning features,
whereby the system employed data from both sets of features and merged them, applying the MI
criterion. As a result, the system enhances the recognition of melanoma and nevus lesions compared
to the use of a fully deep learning approach that is extremely computationally expensive to train,
requires substantial amounts of labeled data and does not recognize dermoscopic features established
in the ABCD algorithm.
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5. Conclusions and Future Work

In this study, a novel competitive CAD system was designed to differentiate melanoma from
nevus lesions. Different from commonly proposed CAD systems, the novel method employs handcraft
features based on the medical algorithm ABCD rule and deep learning features and applies a transfer
learning method as a feature extractor. Additionally, in the proposed system, the set features are
fused using an MI metric that, in contrast with state-of-the-art systems, can select the most significant
features in accordance with their influence on binary classification decisions.

The performance of the proposed system has been evaluated; the system achieved an accuracy
of 92.4%, an IBA of 0.80, and an MCC of 0.7953 using a balanced dataset. The system is competitive
against the performance of other, state-of-the-art systems.

The proposed CAD system can help inexperienced physicians to visually distinguish the medical
features to be applied. Furthermore, it could be used to provide a second opinion to a dermatologist.
Our future work will consist of designing a method for multiclass classification using both sets of
features, thus permitting the diagnosis of several diseases found in the ISIC challenge dataset.

Author Contributions: Methodology: J.-A.A.-D. and V.P.; software: J.-A.A.-D. and H.C.-F.; formal analysis:
J.-A.A.-D., V.P. and S.S.; investigation: J.-A.A.-D. and V.P.; resources: J.-A.A.-D. and V.P.; data curation: J.-A.A.-D.
and V.P.; writing—original draft preparation: J.-A.A.-D. and V.P.; writing—review and editing: J.-A.A.-D., V.P., S.S.
and H.C.-F. All authors have read and agreed to the published version of the manuscript.

Acknowledgments: The authors would like to thank the Instituto Politecnico Nacional (Mexico) and the Consejo
Nacional de Ciencia y Tecnologia (Mexico) for their support in this work.

Conflicts of Interest: The authors declare that there is no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ELM Epiluminance Microscopy
MD Medical Doctor
PSL Pigmented Skin Lesion
ROI Region of Interest
GLCM Gray Co-occurrence Matrix
DL Deep Learning
CAD Computer-Aided Detection
SVM Support Vector Machine
RVM Relevant Vector Machine
LR Logistic Regression
CNN Convolutional Neural Network
TF Transfer Learning
MI Mutual Information
K-NN K-Nearest Neighborhood
MCC Matthews Correlation Coefficient
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