
entropy

Article

Mutual Information Based Learning Rate Decay for
Stochastic Gradient Descent Training of Deep
Neural Networks

Shrihari Vasudevan

IBM Research, Bangalore 560045, India; shrivasu@in.ibm.com

Received: 2 April 2020; Accepted: 15 May 2020; Published: 17 May 2020
����������
�������

Abstract: This paper demonstrates a novel approach to training deep neural networks using a Mutual
Information (MI)-driven, decaying Learning Rate (LR), Stochastic Gradient Descent (SGD) algorithm.
MI between the output of the neural network and true outcomes is used to adaptively set the LR for
the network, in every epoch of the training cycle. This idea is extended to layer-wise setting of LR,
as MI naturally provides a layer-wise performance metric. A LR range test determining the operating
LR range is also proposed. Experiments compared this approach with popular alternatives such
as gradient-based adaptive LR algorithms like Adam, RMSprop, and LARS. Competitive to better
accuracy outcomes obtained in competitive to better time, demonstrate the feasibility of the metric
and approach.

Keywords: deep neural networks; stochastic gradient descent; mutual information; adaptive
learning rate

1. Introduction

Automated Machine Learning (AutoML) systems with Deep Neural Network (DNN) models
are currently a very active research area [1] and key development goal being pursued by several
major industry organizations, e.g., IBM, Google, Microsoft, etc. Among the key problems that need
to be addressed towards this goal is hyperparameter selection and adaptation through the training
process. Hyperparameter selection in DNNs is mostly done by experimentation for different data sets
and models. In AutoML systems [1], this is realized through various forms of search including grid
search, random search, Bayesian optimization, etc. Stochastic Gradient Descent (SGD) optimization [2]
with mini-batches of data is a time-tested and efficient approach to optimizing the weights of a DNN.
Hyperparameter selection and adaptation has a strong bearing on the outcomes of SGD-based training
of DNN models. A key example of one such hyperparameter, which is also the subject of this paper,
is the Learning Rate (LR). High LRs, particularly in early training stages, can result in instabilities
and fluctuations in the parameter search process. Established procedures to set the LR to a low value
at the beginning and then gradually warm up to the desired LR have been used effectively [3,4].
These approaches require the a priori definition of a policy or schedule and the LR changes according
to this fixed policy. The fixed policy may not be suited for different data sets or model architectures
which may be very different in complexity. Adaptive setting of the LR through the training cycle is one
way of handling this issue. While adaptive LR algorithms based on gradients exist and are reviewed in
the next section, there is incomplete understanding of the use of alternate metrics towards this objective
and whether these could afford additional capabilities to the DNN training process. This paper explores
the feasibility of using Mutual Information (MI) [5] as a metric to realize this objective.

Entropy 2020, 22, 560; doi:10.3390/e22050560 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-6799-7587
http://dx.doi.org/10.3390/e22050560
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/5/560?type=check_update&version=2

Entropy 2020, 22, 560 2 of 15

2. Related Work

Adaptive learning rate (LR) schedules based on gradients have been proposed in various Gradient
Descent (GD)-based optimization algorithms used for training deep neural networks; a survey of these
is presented in [6]. These include AdaGrad [7], AdaDelta [8], RMSprop [9], Adam [10], and some
more recent algorithms. Broadly, these set LRs at the level of individual parameters by considering the
magnitude of past gradients; parameters associated with smaller past gradients are given a higher LR
to enable larger updates as compared to those associated with larger past gradients. Depending on the
data set and model complexity, careful initial selection of the LR may be required.

While adaptive gradient-based algorithms provide an excellent option for many scenarios,
traditional (mini-batch) SGD is still the preferred option for situations involving complex models
or data sets. Convergence properties of SGD have been studied in [2]; the paper demonstrates that
subject to a few basic assumptions, an appropriately decreasing LR enables SGD to almost certainly
converge to a minima. Various forms of decay in LR have been used, e.g., time-decay, step-decay,
and exponential decay. Typically, in all of these cases, a decay-rate parameter and LR bounds (at least
the maximum or starting LR) is required. The approach presented in this paper also requires the
specification of LR bounds, a threshold based on change in Mutual Information (MI), and optionally,
a starting LR. The difference arises in the nature of the decay and the new value of the LR. Established
decay-LR SGD variants have a fixed rate of decay. The approach presented has a variable rate of
decay governed by a threshold that is set to control search-space exploration at a given LR while
favoring “exploitation” of the search-space as the LR decays. The new value of the LR set is based on a
performance measure of the model. This work thus builds on the well established basis of (mini-batch)
SGD using a decaying LR, but explores the viability of MI as a metric to automatically adapt the LR.

Recent works such as that in [11] use the training loss to adapt the LR for training the neural
network model. The paper is based on linearizing the loss function at each epoch and finding its roots.
At each epoch, the LR is set as the difference between current loss and the minimum achievable loss
(observed thus far in the epoch) taken relative to the inner product between an estimated gradient
and the update provided by a standard optimizer. The authors of [12] perform layer-wise adaptation
of the LR to address the issue of large batch-size training of convolution networks. It observed
significant variation in the ratio of the L2 norm of the weights of a layer to that of its gradients, between
layers. Consequently, it proposed the LARS algorithm, which uses a network-level LR that decays
exponentially with time (epochs). This global LR is further scaled locally for each layer using the ratio
described before, computed for each layer. The approach presented in this paper explores the use of a
layer-wise computable performance metric (MI) to adapt the LR, layer-wise, through the training cycle.

An automation of decaying LR SGD may be realized by different performance measures. Training
accuracy is directly available and may be used; however, it does not provide a layer-wise performance
measure for layer-wise LR setting, naturally obtainable using MI. Validation accuracy has the same
issue but experience has also shown that it can be unreliable depending on the data set and partitioning.
In principle, alternative performance measures, such as precision, recall, etc., may be used, but neither
are these layer-wise metrics nor is the connection between a change in them and corresponding change
in LR clear. MI provides a surrogate measure of classification accuracy [13]; in addition to capturing
model performance, it can also be computed layer-wise.

Hu et al. [14] perform a study of information theoretic measures for objective evaluation
of classifications. Several Normalized Information Measures derived from MI, divergence,
and cross-entropy were considered. The paper suggests that measures from the first category were
generally superior for data distinguishability. Meyen [15] links MI to classification accuracy through
conditional (input-specific) classification accuracies. The work shows that MI and classification
accuracy provide upper and lower bounds on each other through the conditional classification accuracy.
It also suggests that MI and classification accuracy capture different aspects of the classification,
that they are complementary and recommends that MI also be considered when developing classifiers.
It is possible for two models to be identically accurate but for one to be more informative than the

Entropy 2020, 22, 560 3 of 15

other; the latter may be expected to generalize better. This work explores an indirect approach to
utilizing MI—the standard training pipeline (cost-function and optimizer) is not modified but the MI
is used as a performance metric for adapting the LR through training.

Recent works of Tishby et al. [16] view deep neural networks through the Information Bottleneck
(IB) [17] lens. In brief, IB theory is a MI-based signal compression–reconstruction formulation that
attempts to find a maximally compressed signal abstraction that captures maximum information
content of the signal. In the current context, the signal would correspond to the data being modeled
(denote input as X and output as Y) and the abstraction would correspond to the layers of the neural
network (denote as T). Shamir et al. [13] point out that the MI between a neural network layer
and the input (MI(T, X) denoted here-on as ITX) functions as a regularization term and the MI
between a neural network layer and the output (MI(T, Y) denoted here-on as ITY) functions as a
measure of performance (e.g., classification accuracy). For a classification problem, the paper derives
an upper bound on the misclassification error in terms of ITY. It also suggests that the amount of
relevant information captured by the layer (or network up-to and including the layer) about Y is given
by ITY/IXY, where IXY is the MI between the input X and output Y. Data Processing Inequality
(DPI) [5] guarantees that ITY ≤ IXY for any layer or network.

Preliminary approach and experimental results of this paper were reported in [18]. This paper
presents significant improvements over the previous version, significant change to the LR policy to
enable it to build on the well understood convergence properties of decaying LR SGD and significantly
better experimental results. The use of MI as a metric for LR adaptation is intended to lead to further
work towards a deeper understanding of DNNs [19] and learning of DNNs through maximizing
Mutual Information [16,20].

The contributions of this work are as follows.

• A MI-based automation of decaying LR SGD training of neural network models that adaptively
sets the LR layer-wise or for the whole network, through the training cycle.

• A LR Range Test that defines the broad LR bounds within which the proposed algorithm operates.
• Evaluation of the proposed algorithm in comparison with state-of-the-art alternatives applied

to a range of data sets and models, to demonstrate the viability of the use of MI for automating
decaying LR SGD training.

3. Approach

The proposed training algorithm is shown in Algorithm 1. It basically performs regular SGD-based
Deep Neural Network (DNN) model training with an information driven LR setting every epoch.
The model architecture and data set are first subject to an LR Range Test (LRRT) described in
Algorithm 2; this yields broad LR bounds within which the algorithm operates (LRmin, LRmax), the LR
(LRtop) among the candidate LRs that produced maximum value of a metric (e.g., training accuracy)
and a significance threshold ε. A small set of data is randomly sampled from the training data for
MI computation. All MI computation measurement and reference upper bound are done only using
this small subset only. Two metrics are computed during every epoch–dp is a measure of how far
the model with current best MI is from the maximum value it can achieve and ds is a measure of the
relative change in the MI between epochs. Both MI metrics used in the training algorithm are relative
measures, enabling effective use of MI in the standard training pipeline without much computational
overhead. Note that Algorithm 1 may be applied at the level of the network using the last layer for
MI computation or may also be applied on a per-layer basis to set the LR of each layer independently.
The value of dp decides the LR for the current epoch and the value of ds determines when the LR has
to be changed.

The LR value is essentially set as max(dp · (1− e
E) · LRmax, LRmin). The first term reduces LR

proportional to the current performance level relative to the maximum attainable; it implements
a performance-based LR decay. The second term ensures LR reduction even in the face of the
performance stagnating (e.g., a model that significantly under-fits the data). For models that are

Entropy 2020, 22, 560 4 of 15

a priori known to fit the data well, this component can even be removed; experience suggests a small
performance improvement may be obtained. The LR thus decays at a variable rate, with its value being
defined by a performance component and a simple time-decay component. The LR is set as a function
of LRmax and is bounded by (LRmin, LRmax).

Algorithm 1: MI-based decaying LR SGD
Data: Training [, validation], test data, model and number of epochs E
Result: Trained DNN model and accuracy on data partitions
Initialize model weights
Random sample n� N data points for MI computation where N = number of training data
Perform LR Range Test with model to obtain (LRmin, LRmax, LRtop, ε)
Compute IXY, the DPI provided theoretical MI upper bound of the n data
Compute ITY, the initial pre-training (epoch 0) MI of the n data
Initialize performance metric dp = 1− ITY

IXY
Initialize saturation metric ds = 1.0
for epoch e <= E do

if e == 1 then
Set LRe to LRtop or alternatively,
Set LRe to max(ITY

IXY · LRmax, LRmin)
else

Compute dp = 1− max(ITY0 : e−1)
IXY

Compute ds =
ITYe−1−ITYe−2

ITYe−1

if e == 2 then
Set LRe to max(dp · LRmax, LRmin)

end
else if (e > 2 and ds < ε) then

Set LRe to max(dp · (1− e
E) · LRmax, LRmin)

end
end
Perform regular forward pass and SGD backpropagation using LRe to train model.
Record loss, accuracy and ITY at end of epoch.

end

For the first epoch, the starting LR can be set to LRtop, obtained from the LRRT. It may also be set
to a low value based on the initial pre-training MI as shown in Algorithm 1; therefore, the use of LRtop

is optional. Experience suggests both starting LRs perform well. Experiments reported in this paper
have used LRtop. In the second epoch, the algorithm sets the LR based on the first epoch performance.
Thereafter, LR changes occur when the change in MI metric ds is below ε; these changes incorporate
maximum performance attained thus far and the simple time-decay component.

The state-of-the-art approach to initial LR determination by Smith [21] is based on a single
run/model, a single metric, and continuous LR increase during the run. Although it is fast, it does
not address repeatability of results. It cannot isolate the performance of a particular candidate LR,
as performance depends on the previous LR and the initial model state. It cannot specify a layer-wise
LR operating range in its current form and is essentially a manual process involving visual inspection,
even if automation guidelines exist.

The LRRT procedure proposed in this work and described in Algorithm 2 essentially runs the
training method described in Algorithm 1 for a fixed number of epochs, for a set of candidate LRs,
and picks a LR range from their outcomes. The automated LR range selection process runs a multi-trial
approach so as to enable repeatable outcomes. Each LR is tested from the same initial model state
to enable fair testing, until training crashes and a new trial (model weights reset) begins. It records
both standard training accuracy/loss metrics and also the MI measure ITY; the latter measure can
also be recorded layer-wise to enable layer-wise specification of LR operating range. A crash in

Entropy 2020, 22, 560 5 of 15

training is typically exemplified by a sudden or dramatic drop in all performance attributes. When
multiple attributes are of interest (e.g., training accuracy and ITY), the LR bounds (LRmin, LRmax)

can be computed for each attribute and the one with larger LRmax can be chosen. In some cases, it
may be possible to combine multiple attributes into a composite attribute and then extract the LR
bounds as in the algorithm. Essentially, the LRRT picks LR bounds based on a fraction of the maximum
performance; the first LR from which the growth exceeds this threshold and the first LR beyond which
performance relative to maximum performance drops below this threshold constitute the required
LR bounds. The process is automated and results in (LRmin, LRmax, LRtop, ε). For experiments in this
paper, the bound selection uses training accuracy and the significance threshold ε is based on the MI
saturation metric, as required of the training algorithm.

Algorithm 2: LR Range Test
Data: Training data, MI computation data, model, test LRs, number of trials and epochs per

trial
Result: (LRmin, LRmax, LRtop, ε)
Compute IXY, the DPI provided theoretical MI upper bound of the n data
for epoch t <= number-of-trials do

Initialize and save initial model
for each LRi in candidate LR list do

Set model← initial model
Compute ITY, the initial pre-training (epoch 0) MI
for epoch e <= number-of-epochs-per-trial do

if e == 1 then
Set LR to LRi
Compute dp = 1− ITY

IXY
Compute ds = 1.0

else
Compute dp = 1− max(ITY0 : e−1)

IXY

Compute ds =
ITYe−1−ITYe−2

ITYe−1

end
Perform regular forward pass and SGD backpropagation using LRi to train model.
Compute loss, accuracy and ITY after training-epoch
Record e, dp, ds, LR, ITY, Train loss and Train accuracy
If training has crashed break and start a new trial from (current) candidate LRi

end
If number-of-epochs-per-trial epochs of training successfully completed, record in a
summary table D for LRi, the following attributes - LR, min(ds), initial and final
training loss, initial and final ITY, initial and final training accuracy.

end
end
For each attribute of interest (e.g., training accuracy), compute two more columns in D
quantifying for each LR, (1) d1n = change between initial and final values and (2) dnn =
difference relative to maximum value across all candidate LRs.

Set LRtop to the LR producing the maximum value (MAXVAL) of the attribute.
Compute Thresh = MAXVAL / C1; C1 is a preset constant (typically, 10)
Set LRmin as the first LR from which d1n >= Thresh
Set LRmax as the first LR from which dnn >= Thresh for all successive LRs
Set ε to median of all recorded min(ds) values multiplied by a constant C2 (typically, 1)
Return (LRmin, LRmax, LRtop, ε)

When the LRRT is performed in time constrained scenarios (e.g., AutoML systems running on
time budgets), fewer trials and epochs per trial (e.g., two trials of three epochs each) may be used.
While the bounds will remain largely unaffected, the significance threshold ε may be larger leading to

Entropy 2020, 22, 560 6 of 15

frequent LR decay that would resemble a continuous time-decay curve. This effect may be offset by
setting constant C2 << 1 in Algorithm 2. Extensive experimentation suggests that budget permitting,
a LRRT of at least three trials of five-to-six epochs each would be useful. A small ε would lead to
relatively less frequent LR decay; the resulting LR plot would resemble a step-decay curve.

Bottou [2] demonstrated the almost certain convergence property of SGD subject to the
assumptions on (1) differentiabilty of the cost function, (2) two conditions on the learning rate (LR),
(3) constraint that moments of the update do not grow too quickly relative to the change in parameters,
and (4) constraint that the cost function cannot have a plateau region within which the parameters
can grow indefinitely without ever being able to leave. The two conditions on the LR require that
it decreases rapidly but not so quickly so as to prevent the algorithm from reaching the minima.
These are respectively quantified as ∑∞

i=1 γ2
i < ∞ and ∑∞

i=1 γi = ∞, where γi are the LR values.
The approach presented in this paper automates the LR decay using a performance-based variable-rate
decay of the LR, to enable both layer-wise and full-network LR setting; the paper explores the use of a
MI-based performance metric in this context. The approach may thus leverage established ideas on
SGD convergence. Using a fixed decay could result in unnecessary dwelling at a relatively high LR
even when the model has quickly trained to a competitive performance outcome. This would lead to
slower convergence. It is important to note that no change to the loss function is pursued in this work.
No change to the standard SGD training pipeline is proposed. Consequently, the proposed approach
also does not affect the overfitting properties of the standard DNN training pipeline. The proposed
approach replaces a fixed parameter-based decaying LR SGD with a variable performance-based
decaying LR SGD; automated approaches to parameter selection and a layer-wise performance metric
are also proposed.

4. Experiments

Experiments were conducted on multiple standard image classification data sets with different
standard DNN architectures; they compared the proposed approach with one or more gradient-based
adaptive LR algorithms such as Adam [10] and RMSprop [9], standard step-decay SGD, and the
weight-norm/gradient-based layer-wise adaptive LR algorithm (LARS) [12]. The data sets used
include MNIST [22], CIFAR-10, CIFAR-100 [23], and Imagenet-1K [24]. The CIFAR-10 data set was
tested with two different architectures—the AllConvNet [25] and the VGG-16 [26]. Layer-wise testing
of the proposed approach was limited to MNIST and CIFAR-10 applied to the AllConvNet. In all
experiments, the best test accuracy of 3 random seed runs is reported; unless specified, the deviation
in outcomes between the 3 runs was within 0.5%. Each run trains a model from scratch. All models
use ReLU activations for all layers except the last one which uses a Softmax. SGD training used a fixed
momentum of 0.9. Nesterov acceleration was used for training MNIST and CIFAR-10 (AllConvNet);
for CIFAR-10 (VGG-16), CIFAR-100 and Imagenet-1K, standard settings including weight-decay were
used. For each data set, a LRRT was performed to determine the LR operating range before applying
the proposed algorithm. Layer-wise testing of the proposed approach applied the exact same LR
operating range for each layer. It is also possible to conduct a layer-wise LRRT to determine layer-wise
LR operating ranges. For all alternative approaches (Adam, RMSprop and LARS), a first test was
performed to determine the best initial LR from a range of options (about 10). This was followed by
3 tests with this LR; the results report the best of these outcomes.

Computing MI is computationally expensive; performing MI computation after each
epoch in deep neural network training can prove to be infeasible. This paper uses the
Kraskov–Stögbauer–Grassberger (KSG) estimator [27] for MI estimation; other algorithms could
also be used. The KSG estimator is approximate in that it adds a small jitter (∼e−10) to overcome data
degeneracies. This paper relies on two ideas to effectively use MI in training with large data sets:
(1) use a subset of data for MI computation; plotting the MI vs sample size curve for different data
sets enables informed selection of an appropriate subset sample size for per-epoch MI computation,
and (2) the approximate MI value may suffice if the relative measures can be utilized for the problem.

Entropy 2020, 22, 560 7 of 15

Based on Figure 1, a sample size of 1000 was chosen for MI computation in the experiments of this
paper; this number was a trade-off between computational overhead (due to the chosen size) and
variation in the MI estimate. The Experiments section also describes a sample size sensitivity test to
check the practical impact of the selected size on training outcome of training. A large sample size
while providing a more accurate MI estimate would add significant computational overhead to the
training process. Since accurate MI estimation is not a required objective of the approach presented in
this paper, the approach is developed on an approximate estimate of the MI.

MNIST: Data comprises 60,000 training and 10,000 testing grayscale images of size 28 × 28,
representing 10 class outcomes. A model (see Figure 2) based on the LeNet-5 architecture [22] was
trained on the data. The model had two sets of convolution and pooling blocks followed by 2 fully
connected layers separated by a Dropout layer. Training was done for 50 epochs using a batch size
of 256. No data transformation other than basic scaling of data to [0, 1] was performed. Adam and
RMSprop each reported a best accuracy of 99.53%. The proposed approach reported a best outcome
of 99.27% when trained using a single LR (see Figure 3) and 99.39% when trained using layer-wise
LR based on its MI (see Figure 4). The LARS algorithm reported a best accuracy of 99.43%. Figure 4
suggests layer-wise training may be beneficial because the earlier layers continue tuning the model
weights for much longer, resulting in slower decay of LR, whereas the last layers mapping abstract
features to outcomes reaches its desired state quickly, resulting in rapid decay of LR.

Figure 1. Mutual Information (MI) (of input and output training data) vs. sample size for MNIST
(left) and CIFAR-10 (right) as computed using the KSG estimator. The plots show estimated mean and
standard deviation (error bar) for each sample size tested. A sample size of 1000 was chosen for MI
computation in the experiments of this paper—this was selected as a trade-off between computational
cost of computing MI and the variation in estimates. A sample size sensitivity test using CIFAR-10 is
described in the experiments.

Figure 2. MNIST model description.

Entropy 2020, 22, 560 8 of 15

Figure 3. MNIST (Model based on LeNet-5): Accuracy and LR plots using the proposed approach and
single model-level LR in [0.0001, 0.2]. The proposed approach produced a best test accuracy of 99.27%
in 50 epochs, compared to the best alternative of 99.53% obtained using both Adam and RMSprop.
Best outcomes from 3 random seed runs are reported.

Figure 4. MNIST (Model based on LeNet-5): Accuracy and LR plots using the proposed approach
and layer-wise LR in [0.0001, 0.2]. The proposed approach produced a best test accuracy of 99.39%
in 50 epochs, compared to the best alternative of 99.43% obtained using LARS. Best outcomes from
3 random seed runs are reported.

CIFAR10: Data comprises 50,000 training and 10,000 test color images of size 32× 32, representing
10 class outcomes. The data was first trained with a model based on the AllConvNet architecture
proposed in [25]. The model implementation used the All-CNN-C architecture from the paper.
However, no data augmentation was used. The model implementation used dropout (50%) only
after max-pooling layers, no L2 regularization for weights, a fixed momentum value of 0.9, Nesterov
acceleration, and a batch size of 256; these choices were made based on preliminary tests. Moreover,
these tests suggested that setting C2 = 1 leads to a very quick LR decay; so for this data set, C2 was set
to 0.01 (experimentally determined) to determine LRRT parameters. As in the cited paper, training was
done for 350 epochs. Adam and RMSprop reported best accuracies of 87.84% and 88.13%, respectively.

Entropy 2020, 22, 560 9 of 15

The proposed approach reached 88.86% when trained with a single LR for the entire model (see
Figure 5) and 87.77% when trained layer-wise (see Figure 6). The deviation between the best and worst
outcomes of the proposed approach was just under 1%. LARS reported a best outcome of 77.03% if
weight-decay was not used, to enable a fair comparison with proposed and other approaches. If weight
decay was included, LARS could obtain a best outcome of 89.91% across 3 runs. In comparison, the best
layer-wise outcome of the proposed approach, with further manual tuning of parameters but without
weight decay, was 88.79%.

Figure 5. CIFAR10 (AllConvNet): Accuracy and LR plots using the proposed approach and a single
model-level LR in [0.00075, 0.04]. The proposed approach produced a best test accuracy of 88.86% in
350 epochs, compared to the best alternative of 88.13% obtained using RMSprop. Best outcomes from 3
random seed runs are reported.

Figure 6. CIFAR10 (AllConvNet): Accuracy and LR plots using the proposed approach and layer-wise
LR in [0.00075, 0.04]. The proposed approach produced a best test accuracy of 87.77% in 350 epochs,
compared to the best alternative of 77.03% obtained using LARS. Best outcomes from 3 random seed
runs are reported.

Experiments until now used Keras/Tensorflow implementations of different models; those that
follow are based of standard PyTorch model implementations. As a next step, CIFAR10 data was

Entropy 2020, 22, 560 10 of 15

also subject to training and evaluation with the VGG-16 architecture. Standard training choices of a
batch-size of 256, weight-decay of 5× 10−4, momentum of 0.9 and basic data transformations through
random-crops and random horizontal flips were used. Training was performed for 200 epochs with a
batch size of 256. Preliminary tests suggested that C2 needed to be set to 0.005, to prevent an overly
quick LR decay. The outcome of the LRRT was then used to train the model using the proposed
approach. Adam reached a best accuracy of 89.62%, while RMSprop could reach a best accuracy
of 87.17%. The proposed approach reached 92.21%. A plot of the accuracy and the LR is shown in
Figure 7. A step-decay-LR SGD approach that decayed the LR by 2 every 30 epochs was found to be
the best alternative, reaching 92.58%. The proposed MI-based SGD approach was very similar to the
step-decay-LR SGD in terms of speed, with the former reaching 91% and 92% at epochs 65 and 102,
respectively, while the latter reached these milestones at epochs 64 and 97, respectively.

Figure 7. CIFAR10 (VGG16): Accuracy and LR plots using the proposed approach and and a single
model-level LR in [0.0003, 0.07]. The proposed approach produced a best test accuracy of 92.21% in 200
epochs, compared to the best alternative of 92.58% obtained using SGD with fixed LR decay policy.
Best outcomes from 3 random seed runs are reported.

Experiments in this paper use a sample size of 1000 data samples to estimate MI during every
epoch of the training process. To test the sensitivity of the accuracy outcomes on the sample size of the
data used for MI computation, the CIFAR10 data with VGG16 model was tested with two other sample
sizes: half of that used for experiments in this paper (500) and double of that used for the experiments
in this paper (2000). As with all other experiments in this paper, all numbers reported here are best
outcomes of three random seed runs. First, the previously estimated parameters (from the experiment
above) were applied in both cases. This would be indicative of the sensitivity of the accuracy outcome
on Algorithm 1 with a fixed parameter set but different MI sample sizes. Using a sample size of 500
produced a best test accuracy of 92.37% and using a sample size of 2000 resulted in a best test accuracy
of 92.26%. The maximum variability in test accuracies between runs, in both cases, was under 1.7%.

Next, the parameters used were re-estimated using the different sample sizes (with the same
value of C2 used above) and the accuracy outcomes were tested again. This would primarily indicate
the sensitivity of Algorithm 2 on MI sample size, but also performs a second sensitivity evaluation
of Algorithm 1, with the new set of parameters found. Using both a sample size of 500 and 2000,
near identical parameter outcomes for each of (LRmin = 0.0003, LRmax = 0.06, LRtop = 0.02, ε =

0.00054) were obtained; these were almost identical to those obtained earlier using a sample size
of 1000 (LRmin = 0.0003, LRmax = 0.07, LRtop = 0.01, ε = 0.00048). Subsequent execution of
Algorithm 1, with the new parameters, produced a best test accuracy of 92.76% with a sample size
of 500 and 92.23% with a sample size of 2000, with an inter-run variability of ~1% in both cases.
The best accuracy of 92.76% is marginally higher than the best outcome obtained across all other
approaches. These outcomes suggest that (a) using a small sample size for MI computation does
not affect performance of the proposed approach; it would make computational overhead due to MI

Entropy 2020, 22, 560 11 of 15

computation negligible, and (b) the proposed approach is relatively robust to the sample size chosen
for per-epoch MI computation. It is likely that the use of a small but representative sample of the
training data along with the use of relative MI metrics affords this capacity to the proposed approach.
It must be noted in this context that accurate MI estimation is not the goal of this paper; efficient
automation of the training process, using MI, is realized by the proposed approach.

CIFAR100: Data comprises 50,000 training and 10,000 testing color images of size 32 × 32,
representing 100 class outcomes. Experiments were conducted using the Wide-Resnet-28-10
architecture, proposed in [28]. Training was done for 200 epochs using a batch size of 128. Adam
reported a best case performance of 75.02% while RMSprop performed comparably at 74.74%.
The proposed approach reached 81.25%. The author’s code (baseline) and fixed LR-decay policy
reached 81.76%. While the proposed approach was competitive, it was also faster in that it reached
80% and 81% accuracy in 93 and 107 epochs respectively compared to the fixed LR policy used by the
author which took 121 and 130 epochs respectively to reach the same levels. Plots of the accuracy and
the LR over training are shown in Figure 8.

Figure 8. CIFAR100 (Wide-Resnet-28-10): Accuracy and LR plots using the proposed approach and a
single model-level LR in [0.0003, 0.07]. The proposed approach produced a best test accuracy of 81.25%
in 200 epochs, compared to the best alternative of 81.76% obtained using SGD with a fixed LR decay
policy. The proposed approach reached top-level accuracies 10–15% faster than the alternative. Best
outcomes from 3 random seed runs are reported.

Imagenet-1K: Data comprises 1.2 Million training and 50,000 test color images, representing 1000
class outcomes. Experiments were conducted using the Resnet-50 model architecture proposed in [29].
Training was done for 100 epochs using a batch size of 256. Standard data transformations through
resizing to desired size, random-crops, and random horizontal flips were used. Preliminary tests
observed the MI growth over a few epochs and when compared to the desired theoretical upper
bound, determined that using a value of 30 for C1 in the LRRT would be appropriate. For this data set,
the proposed approach was compared with Adam and a widely used fixed LR-decay policy involving
starting from a LR of 0.1 and stepping-down the LR by a factor of 0.1 every 30 epochs. Adam reported
a best test accuracy of 69.82% only. The fixed LR-decay policy reached 75.57%. The proposed approach
reached 76.05% for the same extent of training, which is competitive with state-of-the-art outcomes [4]
on this data set. Plots of the accuracy and the LR over training are shown in Figure 9.

Entropy 2020, 22, 560 12 of 15

Figure 9. Imagenet-1K (Resnet-50): Accuracy and LR plots using the proposed approach and a single
model-level LR in [0.0005, 0.1]. The proposed approach produced a best test accuracy of 76.05% in 100
epochs, compared to the best alternative of 75.57% obtained using SGD with a fixed LR decay policy.
Best outcomes from 3 random seed runs are reported.

5. Discussion

Algorithm 2 presented an approach to automatic selection of hyperparameters for training the
deep neural network model using Algorithm 1. The default values of C1 and C2 in Algorithm 2
generally work well across models and data sets. In cases where the data set is large or complex
(e.g., characterized by slow accuracy growth) or the number of epochs is small or very large, C1 and
C2 may need to be set to different values, to obtain better outcomes than alternative approaches.
In this paper, this was done empirically. The experiments in this paper suggest that Algorithm 2 needs
further understanding in terms of automatic setting of C1 and C2 while considering the number of
epochs of training available and data set complexity, to enable it to be fully automated in all possible
application scenarios, while also producing the best outcomes. This requires separate exploration and
is intended to be pursued as a future extension of this work.

Experiments of this paper demonstrated the need for tuning of hyperparameters for every
approach, including the state of the art in adaptive LR algorithms, e.g., Adam and RMSprop.
Algorithm 1 presented an MI-based automated training approach for deep neural networks. It required
the definition of three parameters: the LR bounds and a significance threshold to control the decay
of the LR (the fourth parameter, LRtop, is optional). These were set by performing a LR range test,
presented in Algorithm 2. The definition of bounds instead of a single starting LR alone was done
to explore dynamic LR adaptation (both increase and decrease of LR during training) in response to
changes to other hyperparameters (e.g., batch-size) or other factors (e.g., computational resources).
A preliminary foray in this direction was documented in [18], but much more exploration is intended
as part of future work. Algorithm 2 also has a couple of parameters (C1 and C2) that control the
actual selection of the LR bounds within which Algorithm 1 operates. Considering this aspect, unlike
alternative training approaches, the proposed approach pushes parameter selection one level above in
the hierarchy, i.e., it uses (default or other coarse) values for C1 and C2 that in turn do hyperparameter
bound selection (done by Algorithm 2) for the actual training algorithm (Algorithm 1). It is possible
that this meta-level parameter selection strategy will enable reduced sensitivity of outcomes on the
values selected; this hypothesis will be verified alongside the proposed future extension stated above.

This paper explores the use MI-based metrics to automate the LR decay in SGD training of deep
neural networks. The experiments compare the proposed approach to state of the art adaptive LR
methods as well as widely used fixed LR decay policies for SGD. In comparison with the fixed LR
policies, the proposed approach is competitive or better in terms of accuracy or convergence speed
because it prevents unnecessary dwelling or insufficient exploration of the search space by using a
performance-based metric over a manually set policy. In terms of the specific performance metric,

Entropy 2020, 22, 560 13 of 15

the use of MI-based performance metrics, at the minimum, affords a layer-wise training capability
over the use of a metric such as the training accuracy. The proposed approach to SGD training of
neural networks perform favorably in comparison with state-of-the-art gradient-based adaptive LR
approaches like Adam, RMSprop, etc. Recent works have attempted to explain this finding [30] and
also exploit it [31] in training deep neural network models. The former paper found that for problems
where the number of parameters exceeds the number of data points, adaptive gradient methods
generalize poorly compared to SGD, even if the training performance suggests otherwise. The paper
attributes this to a tendency of adaptive gradient methods to overfit features that happen to have
no value towards generalization. They also point out that adaptive gradient-based methods require
similar amounts of hyperparameter tuning as compared to other approaches; this was observed in the
experiments of this paper as well.

While experiments in this paper were developed and tested in an image classification application
context, an experiment was conducted to understand if the proposed approach would also work
in a regression context. A recently collated temperature prediction data set [32] was used to test
if the proposed approach could train neural network models for regression problems. The paper
uses two identification attributes (station and time), fourteen numerical weather prediction model
attributes, two in situ temperature observations and five geographical attributes to forecast maximum
and minimum next-day temperatures. A total of 7750 data with 25 attributes were provided; the data
spanned the years 2013 to 2017. For the purposes of this experiment, data from 2013 to 2016 (80% of
the entire data set) was used to train a neural network model, which was used to predict the minimum
and maximum temperatures for each data instance in 2017 (20% of the data set). A simple neural
network comprising 3 fully connected layers, with 64, 32, and 2 neurons, respectively, was used to
perform regression. All neurons used ReLU activations. As with other experiments in this paper,
MI estimation per training epoch was done using 1000 data points. As a one time computation on
real data, the maximum possible MI was estimated using the entire data set. The model was trained
using Adam, RMSprop and the proposed approach, for 2000 epochs. Given the context of a regression
problem, the Mean Squared Error was used as a loss metric to perform the optimization and the results
report the Mean Absolute Error (MAE) (temperature in degrees Centigrade) in prediction of both
minimum and maximum temperature, over the test data subset. Adam and RMSprop were subject to
an LR search process to find the best starting LR. As an accuracy measure is not available, the LRRT
parameter selection was done using the MI metric, logged simultaneously, demonstrating the flexibility
of the LRRT algorithm. The proposed approach followed the steps of the paper in performing an
LR Range Test (Algorithm 2) followed by the MI-based SGD training (Algorithm 1). Adam reported
a best MAE of 0.97 ◦C over three random seed runs while RMSprop reported a best MAE of 1 ◦C.
The proposed approach reached a competitive best MAE of 1.32 ◦C over three random seed runs; its
outcome is depicted in Figure 10. The deviation between individual outcomes was under 0.03 ◦C in
all cases. For the proposed approach, the LR Range Test used C2 = 0.01, as was used for CIFAR-10.
An aspect that needs further understanding is that the proposed approach was significantly slower
than Adam in this experiment; the proposed approach first reached a MAE between 1.3 and 1.4 just
after 1160 epochs, whereas Adam had attained a minimum MAE of just under 1 ◦C in the same time.
Although the experiment demonstrates of the approach working in a regression problem, further
experiments on other data sets and models are required to conclusively quantify the performance of
the proposed approach in regression problems and derive insights on the contexts (e.g., model/data
complexity) where existing adaptive LR approaches and the proposed MI-based training approach are
likely to perform best.

Entropy 2020, 22, 560 14 of 15

Figure 10. Results of the application of the proposed approach to a temperature prediction (regression
problem) data set [32]. The proposed approach produced a competitive Mean Absolute Error (MAE) of
1.32 ◦C in comparison to the best alternative approach (Adam) which produced an MAE of 0.97 ◦C.
Reported numbers are best outcomes of three random seed runs.

6. Conclusions

The paper proposed a novel Mutual Information (MI)-driven, decaying Learning Rate (LR)
Stochastic (mini-batch) Gradient Descent (SGD) training approach for Deep Neural Network models.
The paper also introduced a novel multimetric LR Range Test to automatically select LR bounds and
decay rate parameters for the training algorithm being proposed. Experiments reported demonstrate
that the proposed approach produced competitive to better outcomes across data sets, neural network
architectures, problem contexts (classification or regression), and training choices. The experiments
also demonstrated the ability of using MI for both regular model-wise training and layer-wise training.
A more efficient implementation of the MI computation algorithm using GPUs and suitable data
structures may enable the application of this approach to wider/deeper neural network models.
Overall, the paper demonstrated that MI can be used as a metric for performance-based decaying LR
SGD training, leading to competitive outcomes compared to the best alternatives for a range of data
sets and models.

Funding: This research received no external funding.

Acknowledgments: The author dedicates this work to his late mother, Lakshmi Vasudevan. The author is grateful
for computing support provided by Koyel Mukherjee and Vaibhav Saxena and for being pointed to the LARS
algorithm by Yogish Sabharwal.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. He, X.; Zhao, K.; Chu, X. AutoML: A Survey of the State-of-the-Art. arXiv 2019, arXiv:1908.00709.
2. Bottou, L. Online Algorithms and Stochastic Approximations. In Online Learning and Neural Networks;

Cambridge University Press: Cambridge, UK, 1998.
3. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. arXiv 2016, arXiv:1603.05027.
4. Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K.

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv 2017, arXiv:1706.02677.
5. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: Hoboken, NJ, USA, 2006.
6. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
7. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization.

J. Mach. Learn. Res. 2011, 12, 2121–2159.
8. Zeiler, M. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701.
9. Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent

magnitude. In Neural Networks for Machine Learning; COURSERA: Mountain View, CA, USA, 2012.

Entropy 2020, 22, 560 15 of 15

10. Diederik, K.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
11. Rolinek, M.; Martius, G. L4: Practical loss-based stepsize adaptation for deep learning. arXiv 2018,

arXiv:1802.05074.
12. You, Y.; Gitman, I.; Ginsburg, B. Large Batch Training of Convolutional Networks. arXiv 2017, arXiv:1708.03888.
13. Shamir, O.; Sabato, S.; Tishby, N. Learning and generalization with the Information Bottleneck.

Theor. Comput. Sci. 2010, 411, 2696–2711. [CrossRef]
14. Hu, B.G.; He, R.; Yuan, X.T. Information-Theoretic Measures for Objective Evaluation of Classifications.

arXiv 2011, arXiv:1107.1837.
15. Meyen, S. Relation between Classification Accuracy and Mutual Information in Equally Weighted

Classification Tasks. Master’s Thesis, University of Hamburg, Hamburg, Germany, 2016.
16. Tishby, N.; Zaslavsky, N. Deep learning and the information bottleneck principle. In Proceedings of the

IEEE Information Theory Workshop (ITW), Jerusalem, Israel, 26 April–1 May 2015.
17. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. In Proceedings of the 37th Allerton

Conference on Communication, Control, and Computing, Monticello, IL, USA, 22–24 September 1999.
18. Vasudevan, S. Dynamic Learning Rate using Mutual Information. arXiv 2018, arXiv:1805.07249.
19. Fang, H.; Wang, V.; Tamaguchi, M. Dissecting Deep Learning Networks–Visualising Mutual Information.

Entropy 2018, 20, 823. [CrossRef]
20. Hjelm, R.D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal, K.; Bachman, P.; Trichler, A.; Bengio, Y. Learning

Deep Representations by Mutual Information estimation and maximization. In Proceedings of the
International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.

21. Smith, L.N. Cyclical Learning Rates for Training Neural Networks. arXiv 2015, arXiv:1506.01186.
22. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.

Proc. IEEE 1998, 86, 2278–2324. [CrossRef]
23. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto:

Toronto, ON, Canada, 2009.
24. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;

Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015,
115, 211–252. [CrossRef]

25. Springenberg, J.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net.
arXiv 2014, arXiv:1412.6806.

26. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
In Proceedings of the International Conference on Learning Repreresentations (ICLR), San Diego, CA, USA,
7–9 May 2015.

27. Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138.
[CrossRef]

28. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. arXiv 2016, arXiv:1605.07146.
29. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385.
30. Wilson, A.; Roelofs, R.; Stern, M.; Srebro, N.; Recht, B. The marginal value of Adaptive Gradient methods in

Machine Learning. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS),
Long Beach, CA, USA, 4–9 December 2017.

31. Keskar, N.; Socher, R. Improving generalization performance by switching from Adam to SGD. arXiv 2017,
arXiv:1712.07628.

32. Cho, D.; Yoo, C.; Im, J.; Cha, D. Comparative assessment of various machine learning-based bias correction
methods for numerical weather prediction model forecasts of extreme air temperatures in urban areas.
Earth Space Sci. 2020, 7, e2019EA000740. [CrossRef]

c© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.tcs.2010.04.006
http://dx.doi.org/10.3390/e20110823
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1029/2019EA000740
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Approach
	Experiments
	Discussion
	Conclusions
	References

