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Abstract: Recent advances in single-molecule science have revealed an astonishing number
of details on the microscopic states of molecules, which in turn defined the need for simple,
automated processing of numerous time-series data. In particular, large datasets of time series
of single protein molecules have been obtained using laser optical tweezers. In this system,
each molecular state has a separate time series with a relatively uneven composition from the
point of view-point of local descriptive statistics. In the past, uncertain data quality and heterogeneity
of molecular states were biased to the human experience. Because the data processing information is
not directly transferable to the black-box-framework for an efficient classification, a rapid evaluation
of a large number of time series samples simultaneously measured may constitute a serious obstacle.
To solve this particular problem, we have implemented a supervised learning method that combines
local entropic models with the global Lehmer average. We find that the methodological combination
is suitable to perform a fast and simple categorization, which enables rapid pre-processing of the
data with minimal optimization and user interventions.

Keywords: single-protein dynamics; entropy-based classification; signal pre-processing

1. Introduction

Only the set of averaged characteristics can be captured by bulk experimental methods,
which significantly limits our understanding of the heterogeneity of molecular states. On the other
hand, single-molecule techniques provide deep insights into the complex dynamics of individual
molecules [1]. Namely, the detection of various molecular sub-states, conformations as well as interstate
transformations is one of the main benefits of single molecule techniques [2].

Hence, in general, single-molecule techniques offer the possibility to characterize molecular
heterogeneity and to quantify a number of sub-states, interconversion rates, and their occurrences.
A development of advanced approaches is essential to enhance experimental resolution, which is
needed for describing rare, low-populated states of molecules. It is important to note that in biological
systems, such low-populated rare sub-states can have profound effects. For example, the rare,
low-population infectious states of prion protein PrP are highly crucial as they act as a nucleated
seed that recruits native PrP into fibrils that ultimately contribute to amyloid disease [3]. Importantly,
single-molecule force spectroscopy of prion protein PrP has identified and characterized low populated
rare misfolded states [4]. This example demonstrates the power of single-molecule techniques to
detect relevant low-populated rare sub-states. Naturally, capturing and detecting low-populated
rare sub-states using single-molecule techniques is experimentally challenging; it requires extensive
time-series data collection, selection, and categorization. Additionally, several complications arise from
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the presence of inactive, latent states. For example, single-molecule force spectroscopy utilizes relative
high laser powers, which can lead to dormant states that need to be identified and distinguished from
other molecular states. At the moment, such states can be filtered out only after user intervention
during the data pre-processing analysis. In other words, single-molecule detection of heterogeneous
states needs to sample, to analyze, and to handle extensive number of datasets. However, large data
handling can be very laborious and time consuming. For example, more than 8 h are needed for a
single investigator to analyze and visualize time trajectories of 100 molecules under a gross assumption
that 5 min are required for data loading, visualization, and inspection of a single time trace.

Thus, to evaluate more extensive time-series data efficiently, there is a strong need for the
development of methods to allow fast, special purpose tailor-made pre-processing of the time series
samples. The effort to quantify the intrinsic information in the data is a crucial general principle of the
pre-processing method described here.

The principal concept related to information content is entropy. It is natural, therefore, that the
method of choice, that we are mainly dealing with is linked to the entropy variants. Given that the
experimental signal is not stationary, calculations of the entropy for its small time sections should be
used. In general, two basic forms of implementation are devoted to the concept of entropy in time series
analysis tasks. The complexity analysis of dynamic systems is often based on the Kolmogorov-Sinai
entropy [5,6], also known as metric entropy. It relies on the division of phase space into hypercubes.
While this method offers a well-defined information-based predictability assessment, it faces the
fundamental problems that have arisen concerning data processing. Efforts for less demanding
processing, especially of biologically relevant data, were subsequently reflected in the design of
approximate entropy (ApEn) and later in the modified sample entropy variant (SampEn) [7,8]. Some of
the shortcomings of these approaches have been addressed by the adjustments contained in the
multiscale description (MSE) [9].

In contrast to these procedures, studying the properties of the molecules in an experiment in which
the data provided focus on the properties of the individual molecules imposes different requirements
on the evaluation and pre-processing of data. In our case, therefore, to ensure compatibility, the entropy
estimates are tracked via time-truncated local histograms. This aspect of the description is highly
consistent with the use of Hidden Markov Models (HMM) used to characterize structural changes
and dynamics of biomolecules [10]. The methods we proposed to use is an adaptive approach to the
formation of histogram bins. Specifically, there is a focus on implementing entropy models where
free parameters can be integrated into optimization or learning paradigms. In particular, we refer to
the entropy forms of Tsallis [11,12]. The analogous adaptation can also be done by analysis of Rényi
entropy [13].

The paper structure is as follows. We start with the description of the experimental methods
and methodologies used in Section 2. Section 2.1 deals with description of the methodology of
optical tweezers and character of the data used. The model details such as corresponding structure of
histograms, related entropy evaluations and the specific role of the Lehmer averages are explained in
Section 2.2. It is a specific local form used for the scrolling time window. The evaluation of 63 data
samples of PrP in Section 3 follows. The comparison with other classification methods which are not
related to Tsallis entropy is presented in Section 3.1. Some other pre-processing options regarding
integral forms of indicators are included, as well as ideas for further improvement and relations to the
statistical testing are provided in Section 3.2. Finally, in the conclusions we present possible avenues
for further research, especially those that are in line with HMM.

2. Materials and Methodology

2.1. Experiments, Protocols, Signal Detection

All experiments were performed using a custom-built, high-resolution back focal plane detection
optical tweezers setup, as published previously [14]. For details on experimental procedures, see [15]
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and [16]. Briefly, the E. coli Hsp70 nucleotide-binding domain protein construct was genetically
modified to serve cysteine residues for the attachment of the required double-stranded DNA
handles [15,16]. These DNA handles carried the modifications on each end to ensure coupling
to the one µm functionalized beads. The beads could be trapped in our optical tweezers setup and
manipulated in a so-called passive mode (for details see [17]). Trapped beads were calibrated according
to a method [18], trap stiffness was between 0.25 to 0.30 pN/nm. Signals were acquired for a 10–30 min
at a sampling rate of 30 kHz. For the data analysis, the difference between both signals was calculated
after the experiment to increase the signal-to-noise ratio [14].

The signals were corrected for a cross-talk for both due to the depolarization and proximity of
the beams. For the final analysis, long time traces were analyzed after the resampling to 10 kHz.
Glass beads (1 µm in diameter; Bangs Laboratories, Inc., Fishers, Indiana, United States), which were
previously covalently functionalized with a digoxigenin Fab fragments (Roche), were mixed
with protein–DNA constructs. After the addition of streptavidin-coated silica beads (1 µm in
diameter; Bangs Laboratories, Inc.), the protein–DNA–bead mixture was introduced into a flow cell.
Measurements were carried out at∼28 ◦C in PBS (10 mM phosphate buffer, 2.7 mM potassium chloride,
137 mM sodium chloride, pH 7.4, at 25 ◦C), with an added oxygen scavenger system (26 U/mL glucose
oxidase, 17 000 U/mL catalase, 0.65% glucose). During the single-molecule mechanical measurements,
trapped beads were brought into proximity to build a bead–DNA–protein dumbbell. Protein–DNA
concentrations were adjusted to sparsely cover the beads leading mainly to single-tether formation.
The trapping potentials were held at a constant separation to record passive-mode force vs. time traces.

Problem Formulation—Data Categories

We will now describe the idea of activities and the role of an expert in the classification.
The expert will assume that she/he disposes of a set of single-molecule force experiments (see Figure 1).
For simplicity, let us consider the experiments generating two types of time series data, i.e., two types
(categories) of samples, which are denoted as A and B. For type A (category A), further detailed
processing and research is necessary to gain insights into single-molecule kinetics. On the other
hand, experiments of type B are considered to be the result of entirely different molecular states
(e.g., damaged molecule, or in a transient misfolded state) and will not be further investigated in detail.
Still, the counting of such experiments in category B provides numbers for statistical evaluations.
Type A (category A) means that the measurement provides only a few discrete molecular states.
There are visible transitions between these states. With the type B, the states are not spatially and
temporally separated enough or only the molecules resting in a single state, and hence no transitions
can be identified.

Only high-quality single-molecule data can provide reliable information on the underlying free
energy landscape. Here we show that histogram analysis can play a dual role in the data processing
from single-molecule force spectroscopy. Single-molecule data pre-processing, as demonstrated
in the presented study, can be included in the beginning of the data analysis pipeline. As our
histogram-based pre-processing method energy is general and independent of the underlying energy
landscape, the outcoming experimental data in category A can be further processed. There are several
ways to extract effective free energy landscapes from single-molecule time series using histogram
analysis [19,20]. The procedure identifies a distribution of the observable associated with each local
equilibrium state. By assessing how often the molecule visits and resides in a chosen state and
escapes from one state to another, their analysis naturally leads to a reconstruction of the free energy
landscape. In another approach, the time series of a single intramolecular distance can be analyzed
by a network-based method for determining basins and barriers of complex free energy surfaces
(e.g., the protein folding landscape).
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Figure 1. The figure depicts the scheme of the single molecule experiment. Panel (a) shows the
molecular force assay on a single-molecule level where the elastic responses are generated. The time
series responses (tools for probing energy landscapes) followed by a respective expert categorization
are illustrated in panel (b).

2.2. Measures and Methods of Supervised Classification

In the next we go step by step through the main elements of the classification system described in
Sections 2.2.1–2.2.3.

2.2.1. Time Series, Averages, Adaptive Histograms

In compliance with data, we consider time series {x}t real-valued subsequent observations xt.
The experimental conditions do not allow us to assume that observations are uniformly distributed.
To make the problem computationally feasible, the situation can be improved by splitting the original
signal into smaller parts - time windows. The data is considered to be partially stationary in the
respective window. For each window, t ∈ [Twdn, Twup], Twup − Twdn = Tw = const. the local mean
values resulting from the iterative evaluation can be obtained as presented in the Algorithm 1.

Algorithm 1: Conditional mean values for given time window.
Result: Three local numbers: µL < µM < µT

Inputs:

• number of the iterations Nit

• time window bounds: Twdn, Twup with Twup − Twdn = Tw

• the data to process { xt }; t ∈ [Twdn, Twup]

Begin with the counter citer ← 1

Calculate µM(citer)← Arithmetic Mean (. . . xt−1, xt, xt+1 . . .});
while ( citer ≤ Nit ) do

µL(citer + 1)← Arithmetic_Mean
(
. . . xt . . .

∣∣ xt < µM(citer)
)
;

µH(citer + 1)← Arithmetic_Mean
(
. . . xt . . .

∣∣ xt ≥ µM(citer)
)
;

µM(citer + 1)← Arithmetic_Mean
(
. . . xt . . .

∣∣ xt ≥ µL(citer + 1)
∧ xt ≤ µH(citer + 1)

)
;

Update citer ← citer + 1;
end

Because histograms change dynamically, the peak heights and valley depths of valleys between
different time windows, we have designed a processing method which we called adaptive. In this
particular framework, it is envisaged that the shape of the bins can be adapted to immediate situations
rather than just inefficiently increasing the number of breaks to achieve a certain level of complexity.
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Specifically, we gain adaptability by sustaining a constant number of breaks in a changing
position. After the repeated stabilization and iterative improvements of the respective average values,
we calculated the respective conditional probabilities

π0 = Prob( x| x ≤ µL ) (1)

π1 = Prob( x| x ∈ (µL, µM] )

π2 = Prob( x| x ∈ (µM, µH] )

π3 = Prob( x| x > µH ) .

For the sake of simplicity, the values π..., x..., µ... are not provided with a time stamp.
Another rationale for this reduction is that we are concerned of some form of possible window
rearrangement at this level, as there is no influence on the outcome. The result can be considered in
the form of a elementary histogram with only three adaptive breakpoints µL, µM, µH. Adaptability is
essential because data properties can change over time. A well-adapted, concise and substantially
reduced histogram can consist of only a few uneven breaks.

2.2.2. Entropy of Histograms

Further considerations are central to the concept of entropy, which is a natural and integral and
universal part of the probabilistic description. The entropy measure does not highlight some of the
details of the histogram, but reflects the level of organization required for the success of preprocessing.
The preprocessing information only becomes relevant when entropy values are affected by specific
control parameters. If the internal parameters (meta-parameters) of the data mapping model are
incorporated into the learning process, some of their instances may be more suitable for certain types
of processed data. The T-entropy introduced by Tsallis [11,21] is an ideal parametric candidate that can
provide distinguishable inter-class separation in the output values. Its form

ST(qT) =
1−∑3

j=0 π
qT
j

qT − 1
(2)

uses the real parameter qT. An alternative to this is, for example, the Reny’s form of the entropy.
It should be noted that we are not introducing the entropy of the entire time series, instead, our

proposal is T-entropy suggested for different time windows. Now it is useful to look at the overall
computational model depicted in Figure 2, which briefly describes the structure of data processing
flows as well as the organization of the time windows. Each data treatment is based on the exchangable
collection of T-entropy values constructed for the constant Tw. The selection of Tw uniquely determines
the number of the non-overlapping windows nw = floor( Number_of_ time_ series_tics / Tw ). Of course,
the overlaps are not ignored as they provide additional statistical information that partially eliminates
the reliance on selecting the initial time window. The overlap effect is characterized by the independent
positive integer nws (see details described by the Algorithm 2). The method described above transforms
the original data series into 2D array of the local T-entropies

ST,(1,0) ST,(1,1) . . . , ST,(1,nws−1)
ST,(2,0) ST,(2,1) . . . , ST,(2,nws−1)
. . . . . . . . . . . .
ST,(nw−2,0) ST,(nw−2,1) . . . , ST,(nw−2,nws−1)

(3)

with the structure
ST,( index of non-overlaping window , index characterizing overlap ) .

(4)

The statistics of ST,(.,.) became evidently non-Gaussian due to constraints and therefore ceased to be
suitable for simple characterization by mere arithmetic means.
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Algorithm 2: Lehmer mean of set of entropy values.
Result:

1. Update position of the sliding windows [Twdn, Twup]

2. Calculate L{ST} (see Equation (5)) for the array ST,(.,.)(qT); use Equation (6) which defines ∂pL L{ST}

• inputs: pL, qT, Tw, nws; complete time series {xt};
nw ← floor (Number_of_time_series_tics/Tw ) ;

• initialize sums: Σ0S(pL)← 0 (. . . numerator - Lehmer mean);
Σ1S(pL)← 0 (. . . denominator - Lehmer mean);
Σ0Sln(pL)← 0 ; Σ1Sln(pL)← 0 ;
• summation loops over the sliding time window:

for jw ∈ {1, 2, . . . , nw − 2} do

for jws ∈ {0, 1, . . . , nws − 1} do

Twdn ← floor [ Tw × (jw + ( jws/nws )) ];

Twup ← Twdn + Tw ;

Procedure: Local Tsallis entropy ST,(.,.)

(i) Algorithm 1 provides µL, µM, µH;

for the local sub-sequence { xt }, t ∈ [Twdn, Twup] as input;

(ii) π0, π1, π2, π3 defined by Equation (1);

(iii) partial, interval output : ST,(.,.) given by Equation (2);

( see also Equation (3))

summation of Lehmer mean values of ST(.,.)

Σ0S(pL)← Σ0S(pL) + SpL
T ;

Σ1S(pL)← Σ1S(pL) + SpL−1
T ;

Σ0Sln(pL)← Σ0Sln(pL) + SpL
T ln ST ;

Σ1Sln(pL)← Σ1Sln(pL) + SpL−1
T ln ST ;

end
end

• outputs: L{ ST} = Σ0S(pL)
Σ1S(pL)

;

∂pL L{ ST} = L{ST}
(

Σ0Sln(pL)
Σ0S(pL)

− Σ1Sln(pL)
Σ1S(pL)

)
;

Let us now turn to the main physical properties of the data that we want to identify and quantify.
Their details and manifestations fall within the scope of the classification, which will depend upon the
decisions of the specialist. The classification process in our specific application means that the sample is
assigned to one of the defined classes (A or B). We believe that after a series of transformations we make,
there will be a continuous separation zone between A and B that will be sufficiently wide enough.

Of course, more experiments with control parameters should point to the potential for higher
sensitivity of our transformation in data processing. Our concept evolved mainly from the preliminary
requirement that the transformation of a sample with bimodality or multimodality is adequately
separated from the transformation of a sample without these statistical characteristics. However,
we did not follow these requirements strictly below because we do not want to focus too much on a
specific pattern. Instead, we prefer a more general approach. T-entropy [11] could be ideal for this
purpose. In the following, we assume that T-entropy on relatively small scales or its generalized
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mean values (large scales) could be effective in the classification process. We realize that what we
are now proposing is a more abstract, not a definitively valid strategy, but that numerical analysis
can ultimately reveal knowledge and bring (parametric) improvements that can be applied in the
upcoming learning and optimization process. The numerical schemes we use here are in principle
consistent with supervised learning methods. We note that we have attempted several approaches,
but only a few attempts have worked well, leading to the basic empirical version that we publish in
this work.
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Figure 2. The scheme shows how partial blocks are organized into an overall algorithm. It is a kind of
nonlinear filtering of the input time series. In a hypothetical inference process, a comparison can be
made with the transformed elements sampled from data categories A or B. The result of the design is a
non-linear filter–classifier, which conceptually relies on the need for a supervised learning phase.

Nevertheless, let us also mention details regarding the numerical experiments with classification,
which initially do not produce satisfactory results. For example, an alternative direct calculation of the
so-called Sarle’s b ( bSarle), which is typically used to detect bimodality [22] (based on combination of
kurtosis and skewness), did not provide a proper segregation of A and B and was therefore not a valid
distinguishing feature for sets A and B. An obvious explanation is that the value of the bSarle fluctuates
considerably along time series values. For example, a particular window may not necessarily be in the
correct place to extract the entire statistically representative sample. In Section 3.1 we present several
examples of variants for which the averaging method is of high relevance. An interesting alternative
to the conventional approach to bSarle is described in Subsection 3.1.3.

2.2.3. Long-Term Transformation into Entropic Systems with Related Lehmer Means

Obviously, multimodality and bimodality can reduce entropy compared to uniform distribution
of states. However, this also applies to individual isolated distribution peaks that are not of interest.
Paradoxically, therefore, entropy may seem to be a relatively general and to some extent imperfect
indicator, which may not suit the needs of experts. In other words, this seems to be a weak alternative
to identifying detailed changes in each distribution. On empirical basis, the fundamental premises
regarding the entropy series will be sufficient for a given classification, and the entropy will be effective
enough to enable rapid classification of sample types.

Let’s turn to the details now that we need a generalized averaging of the entropy series.
Any candidate averaging method that seeks to achieve a sufficient separation of A and B should take
into account the fact that not all entropy data should be considered with the same weight. For example,
the Lehmer mean can characterize the asymmetric distributions of { ST } values reliably. To be more
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explicit, when consider the set {Xj | Xj ∈ R+ } the Lehmer mean [23–26] is given by L{X}(pL, .) =

∑j XpL
j / ∑j′ XpL−1

j′ . There is, of course, freedom of assessment samples using the weights ∼ x(pL−1)
j

depending on the pL ∈ R parameter.
The above framework helps us to create a particular mean of the entropy sequence, equipped with

a variety of window indices. The entropy events collected according to the scheme from Equation (3)
lead to the mean

L{ST}(pL, qT) =

nw−2
∑

jw=1

nws−1
∑

jws=0

(
ST,(jw,jws)(qT)

)pL

nw−2
∑

j′w=1

nws−1
∑

j′ws=0

(
ST,(j′w, j′ws)

(qT)
)(pL−1)

. (5)

Since we do not know yet which component of the recognition and classification system will be
more productive in terms of the projected data, we are also interested in the derivative

D̂pL L{ST} ≡ ∂pL L{ST} = L{ST}

∑ SpL
T,(.,.) ln ST,(.,.)

∑ SpL
T,(.,.)

−
∑ S(pL−1)

T,(.,.) ln ST,(.,.)

∑ S(pL−1)
T,(.,.)

 . (6)

Here we have intentionally omitted the sum information used in ST,(.,.) (see Equation (5)).
More specifically, it would be helpful at this point to grasp the details of the information gathered.
For this purpose, the Scheme Algorithm 2 is provided, to give details of how partial contributions are
summed up to determine the Lehmer mean values.

In order to differentiate inputs using various techniques of the filtering, we have implemented
two entropy-based weighing versions

w1 ≡ L{ST} , w2 ≡ D̂pL L{ST} . (7)

Their effectiveness for a given type of data will be directly examined and commented in the
numerical part of the paper. Subsequently, these alternatives were involved in the introduced here
system of the effective Tsallis indices

qTEyz ≡
[∫ qM

qm
dq′T

(
q′T
)z wy(q′T)∫ qM

qm
dq′′T wy(q′′T)

] 1
z

, for y ∈ {1, 2} ,
z ∈ {1, 2} .

(8)

In the applications, we limit ourselves to 1 < qm ≤ qM region. In such case we do not need to
go through the singular point qT = 1 (although the singularity is removable). Factor 1/z represents
an attempt to "power z compensation" in its essence. We used only qTEyz (z > 0) for the four
variants of y, z in the implementation of the proposed method. Of course, the use of very small z
should be avoided because of a poor separation effect expected. Regarding the order O(.) of the
output we have O(qTEyz) = O [(w̃y/ ˜̃wy)1/z] O(q̃T), where w̃y and ˜̃wy are two independent mean
estimates w̃y ∼ ˜̃wy, thus O(w̃y) = O( ˜̃wy). In addition, let q̃T ∈ [qm, qM] is some representative value
which characterizes the interval [qm, qM]. Assuming that the choice of qM supports O(q̃T) = O(qM),
we have O(qTEyz) = O(q̃T). Thus, with the limitations on qT, the constraints on qTEyz are produced.
The assumption beyond Equation (8) is that the corresponding qTEyz indicator provides values of
the expected order. This also implies the standardization. The reason for this is that construction is
subordinated to Tsallis concept where qTEyz is by some convolution interlinked to qT. Let us repeat
again for a better understanding that qTEyz characterizes the whole time series.

While predictions of qT are not directly included into the underlying theories, many scientific
works assume that qT is near the Boltzmann limit qT → 1. As we will demonstrate in the results
section, this also applies to the effective version of the parameter with the weights w1, w2. Although
the methodology we are discussing can in principle provide information on a macroscopic statistical
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property called non-extensivity, it is not clear what happens when the series is processed by Lehmer
averaging. Therefore, no attention is paid to this particular issue in the paper.

3. Numerical Results

For the purposes of analysis, we have chosen the following parameter values Nit = 6, nws = 8.
There are also three primary alternatives Tw = 500, 1000, 2000 which we will later justify by examining
the Tw dependencies. The behaviour of qTEyz as a function of pL is depicted on the partial plots of
Figure 3. The common basis for the simulation is the use of the boundaries qm = 1.01 and qM = 6.01
(see Equation (8)). As checked by our preliminary studies, the efficiency of the separation A and B is
highly determined by a sufficiently large qM choice. Initially, we approximated the quadrature by the
summation over 1000 evenly spaced nodes. However, we later revealed that numerical quadrature
based only upon 10 rectangular sampling of qT not only reduce the calculation load by a factor of 100
but also allow the separation of A and B to be preserved. Exact integration in the sense of Equation (8)
is therefore not necessary. In our computational approach, we deal with a quick estimate by means
a strongly diluted integration grid (over qT). Note that there is a parallel with experimental data
analysis that only uses a selection of several different exponent of different regimes using Tsallis
distribution [27].

The detailed calculations of pL have been done for three alternatives Tw ∈ {500, 1000, 2000}
that offer qualitatively the same result. We are not providing results for the last value here for
reasons of redundancy, as there is no significant qualitative impact. We will explain later why the
Tw performance comparison leads to a benefit of Tw ∈ {1000, 2000} variants. (According to the
redundancy, there is no figure for Tw = 2000, because there are no qualitatively new effects in the
analyzed scenarios). The partial plots of Figure 3 are organized according Tw and the choices of w1

and w2: w1 (case y = 1), w2 (case y = 2), and z = 1, z = 2 (see Equation (7)). As one can see, the use of
different weights and various intervals of pL changes the separation effects of A and B. For instance,
y = 1 admits the substantial separation for the control parameter −150 < pL < −50. On the other
hand, there is no change in the variant y = 2 (i.e. for w2 ∼ D̂pL) but there might be hope in the
−150 < pL < −100 domain.

However, how does the size of the window affect the separation into A, B? Obviously, not all
window sizes are the source of appropriate solutions. Systematic results from Tw ∈ [0, 1800] are
summarized in Figure 4 for four combinations y, z as well as for constant pL = −100. Prior to these
calculations, we verified that above pL = −50 the separation between A and B is blurred. In addition,
somewhere above Tw = 2000, the results are burdened by considerable diversification and specimen
specificity. Another extreme of classification is the small Tw domain (for given data, say Tw < 200).
This provides very good statistical estimates of averages, but determined only on the basis of a series
of significantly biased local entropy.

3.1. Comparison of Methods for Specific Time-Series Classification

The purpose of this subsection is to show the broader context and specific comparison
between methods. The scope and proposals of comparison are based on the following principles
and motivations:

1. the evaluation with the goals to emphasize the gains within the framework of applicability;
2. the design of new potential classifiers with unified and specific mathematical structure;
3. the comparison of new and previously established classification schemes;
4. the identification of the proper parameters (meta-parameters) that are useful for the classification.
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Figure 3. The pL dependencies of qTEyz obtained for 32 (category A) plus 31 (category B) independent
time-series samples. The results do not change too much with Tw. The panels also include four cases
of qTEyz according to Equation (7). We can see that there is an effective area of negative pL where the
classification becomes clear. The projections of experimental samples can be improved by means of
z = 2 choice.

Three other indicators are used to compare with Tsallis-based strategies. On the one hand,
although the new effective indicators focus on specific aspects, their common feature is the use of the
Lehmer average.
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Figure 4. An analysis of the extent to which projections qTEyz of A, B are separated. The panels in
the figure show the Tw dependencies of four qTEyz indicators. Each point on the graph represents
output of a separate, parameter-dependent treatment of a single time series. The upper and lower
separability bound is better in the z = 1 case. For example, we see that the separability scheme works
above Tw = 500.

3.1.1. Classification Adapted from Kullback–Leibler Form

To adapt our attempts to one of the more traditional approaches of classification, we let ourselves
be inspired by the concept of difference and dissimilarity. Therefore, in one of our alternative proposals
we favor the use of Kullback–Leibler form.

Let us consider a problem-specific form of Kullback–Leibler divergence

SKL(θKL) =
3

∑
k=0

πk ln
πk

πref,k(θKL)
(9)

measuring the difference between the original {πk}3
k=0 and the symmetric reference distribution

πref,0(θKL) = πref,3(θKL) =
θKL

2
, (10)

πref,1(θKL) = πref,2(θKL) =
1
2
(1− θKL)

controlled by the free scalar "homotopy" parameter θKL ∈ [0, 1]. The reference distributions are
consistent with the constraint ∑k=0 πref,k = 1. It is obviously assumed that {πk} and {πref,k(θKL)}
are from the same probability space. We have checked and confirmed that the choice of symmetric
{πref,k(θKL)}3

k=0 could provide a good approximation of {πk}3
k=0.
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The parametric form dependent on θKL is suggested to play role similar to qT. To be consistent
with the previous classification by means of qTE11, we proposed

θKLE ≡
∫ θM

θm
dθ′KLθ′KLL{SKL}(pL, θ′KL)∫ θM

θm
dθ′′KLL{SKL}(pL, θ′′KL)

. (11)

In addition to testing by means of SKL(θKL), we work with symmetrized form SKL,sym = SKL+

SKL|[{π}→replace→{πref}, {πref}→replace→{π}]. Then, analogously as in the case of Equation (11), we defined
θKLE,sym. Obviously, the symmetry achieved by the exchange of distributions brings the classification
process much closer to the concept of distance.

The numerical results obtained for θKLE(pL), θKLE,sym(pL) are shown in Figure 5. They indicate
that symmetrization does not provide remarkable differences in the outputs. In addition, there is some
robustness in the process of integration. The use of many simulation cycles shows that the choice off
[θm, θM] is less important for the global quality of the classification. This is in part due to observed fact
that specific regions of pL may improve the accuracy classification process.

The classification based θKLE is freely inspired by the nearest centroid classification method (see,
e.g., application in protein detection [28]). The method is based on the premise of distance from the
positions of centroids. Inspired by this approach, we have used parametrized reference distributions
instead of centroid to define the possible neighbors. The concept of distance, albeit in probability
space, remains the basic determinant. Nevertheless, we assume that the positions of centroids are not
critical to successful classification. We replaced them by simple reference distribution approach. This is
due to the classification refinement by the application of L{.} with pL choices, which represent the
meta-optimization type settings.

3.1.2. Classification which Converts the Original Time Series into Rényi Entropy Series

In analogy with the structure of the effective parameter qTE11 defined by Equation (8) we propose

αRE =

∫ αM
αm

dα′R α′R L{SR}(pL, α′R)∫ αM
αm

dα′′R L{SR}(pL, α′′R)
. (12)

The scheme is built on Rényi entropy

SR(αR) =
1

1− αR
log2

(
3

∑
j=0

παR
j

)
(13)

in which one parameter αR > 0 is present. Similar to other applications we propose here, the values
of αR are delimited by the selection of the interval [αm, αM]. The averaging of the entropy series
represented by L{SR}(pL, αR) is understood in the sense of Equation (5). Again, as in the case of
qTEyz, two 1d integrations over α′R and α′′R are present in Equation (12). In agreement with previous
minimalist implementation of integration rules we delimit ourselves to the ten function values that
contribute to integration quadrature.

3.1.3. Problem of Sarle’s b Revisited

In this subsection we revisit the problem of Sarle’s coefficient which standarly serves for
diagnosing bimodality. In distinction to previous models we do not use probability distributions,
but instead conditional local statistical averages which are constructed by

Skewness(Twdn, Twup) = Arithm.Mean
(

z3
t

∣∣∣ t ∈ [Twdn, Twup]
)

, (14)

Kurtosis(Twdn, Twup) = Arithm.Mean
(

z4
t

∣∣∣t ∈ [Twdn, Twup]
)
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with auxiliary variable

zt =
xt − Aritm.Mean

(
xt

∣∣∣ t ∈ [Twdn, Twup]
)

√
Var( xt

∣∣∣ t ∈ [Twdn, Twup]
) . (15)

By combining Equation (14) terms, we get the interval (local) value

bSarle(Twdn, Twup) =
1 + Skewness2 (Twdn, Twup)

Kurtosis(Twdn, Twup)
(16)

applicable for ∀t ∈ [Twdn, Twup].
However, observations showed bSarle(., .) sequence highly fluctuates in time within the samples.

It implies that some generalized form of signal averaging is required to evaluate samples as a whole.
Previous practice has indicated that we must be selective in dealing with fluctuations in the different
signal parts. Thus, the Lehmer average L({ bSarle} )(pL) over the { bSarle(Twdn, Twup)} set of events is
powerful option. With the selective averaging we obtained results depicted in Figure 5. They clearly
explain why the original Sarle’s indicator (its value can be roughly associated with small pL) is not
sufficient for the classification and why the modification by means of the selective Lehmer weights
play crucial role in the classification.

3.2. Integration over the pL Values-Option for t-Testing

We assume that it can be correctly expressed in the cumulative manner in which a particular
number is assigned to each sample. To this end, for j-th sample we introduced the indicator

I(j)
TEyz =

1
pM − pm

∫ pM

pm
dpL q(j)

TEyz(pL) , j ∈ label(A) ∪ label(B) . (17)

Here label(. . .) is the operator that assigns the respective label sets label(A), label(B) to the possible
inputs A or B. The following comments on the above formula must be made: (I) No high precision
integration over pL is required. The approximate tool for integral calculus we use is based on standard
Riemann partitioning by means of 10 uniform rectangles per [pm, pM]. It is important to note that it
is not the precision of the integration itself, but the contribution to the level of deviations between
the projections of A, B that matters most. (II) The integration boundaries pm, pM should be properly
chosen to include the negative relevant pL. We used pm = −150, pM = 0.

The selected statistical characteristics of {I(j)
TEyz} for j ∈ label(A) and j ∈ label(B) are summarized

in the Table 1. In all investigated cases of Tw, it was unexpectedly found that the average values of
the numerical indicators {I(j)

TE21}, {I(j)
TE22} showed higher relative medians (approximately 10 percent)

when comparing A, B. This also indirectly points to the importance of introducing w2 including the
derivative of L{.} (see Equation (7)). However, the illustrative summary involved in Table 1 does not
accurately represent the role of fluctuations.
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Figure 5. The differences in the alternative forms of the classification are subject to Lehmer selective
averaging. Some subtle differences between asymmetric and symmetrical KL divergence are visible.
In the case of θKLE, θKLE,sym, the integration is performed for boundaries θm = 0.6, θM = 0.9.
The classification derived from Renyi’s entropy is formulated in terms of αRE with αm = 1.01 and
αM = 6.01. The problem of Sarle’s b is revisited. We found that significant positive changes in the
classification performance occur with the intervention of Lehmer averaging (the transformation of
data to average is denoted by L{ bSarle}). All depicted examples show the importance of the specific
selection of pL. Surprisingly, with the exception of αRE, segregation of A from B requires relatively
high pL.

In the Table 2, a statistically more accurate standard view is given. It presents statistical testing
based on the two-sample t-values calculated using

tAByz =
Arithm. Mean(I(j∈label(A))

ETyz )− Arithm. Mean(I(j∈label(B))
ETyz )√

Var(I(j∈label(A))
TEyz )

#A +
Var(I(j∈label(B))

TEyz )

#B

, (18)

where #A, #B are the respective cardinalities, while Var(. . .) stands for the unbiased variance. Therefore,
by means of I(j)

TEyz we use guidelines developed in the hypothesis testing. The degrees of freedom
of t-distribution d f are taken in the consistence with the standard Welch’s modified statistics [29,30].
Two samples, two sided t-tests for mean difference, the null hypotheses tAByz = 0 are tested against
tAByz 6= 0 alternatives. As a result, the significance of p-values supports the rejection of the null
hypothesis tested in all four ITEyz cases. Owing to the tendency to believe alternative hypotheses,
the conclusions from the t-test are fully consistent with the classification proposed for A and B.
The t-test is interestingly in some contrast with findings regarding the best practice for the choice of
I(j)
TEy,z. The tests generally provide higher t for (y, z) ∈ {(1, 1), (1, 2)}. However, this result does not

preclude the use of (y, z) ∈ {(2, 1), (2, 2)} options, as the corresponding values of t remain very high
in all situations.
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Table 1. Summary of the descriptive characteristics of the system of samples. The evaluation performed

by means of R generic function summary(.) [29]. The respective averages calculated { I(j)
TEyz }, j ∈ {A, B}

with I(j)
TEyz, defined by Equation (17). In line with the previous considerations we deal with the three

selected values of Tw. The differences in the corresponding values of A and B in the respective columns
Min, 1st Qu, . . . , Max. (Note that 1st Qu means first quartile, while 3rd Qu is the label of the third
quartile of observations.) All A items are larger than B, indicating observable separability at different
time window sizes. For example, greater inter-group changes might indicate a better contrast in
distinguishing between classes A and B. For clarity, the items where the relative median changes
exceed 10 percent are marked with an asterisk F>10%. In such cases the corresponding rather strongly
varying indicators ITE21, ITE22 are marked in blue. More passive tendency regarding changes is labeled
by the circles ◦<2%.

Window Category Indicator Relative: Min 1st Qu Median Mean 3rd Qu Max

Tw Samples Median for A
to Median for B {I(j)

TEyz} {I(j)
TEyz} {I(j)

TEyz} {I(j)
TEyz} {I(j)

TEyz} {I(j)
TEyz}

500 A ITE11 ◦<2% 2.577 2.586 2.590 2.592 2.599 2.627
500 B ITE11 ◦<2% 2.558 2.559 2.559 2.560 2.560 2.565

500 A ITE12 ◦<2% 2.971 2.980 2.984 2.986 2.994 3.021
500 B ITE12 ◦<2% 2.953 2.954 2.954 2.954 2.954 2.959

500 A ITE21 F>10% 1.607 1.718 1.801 1.828 1.894 2.386
500 B ITE21 F>10% 1.427 1.511 1.522 1.520 1.541 1.629

500 A ITE22 F>10% 1.714 1.835 1.928 1.947 2.013 2.466
500 B ITE22 F>10% 1.524 1.623 1.636 1.633 1.658 1.749

1000 A ITE11 ◦<2% 2.583 2.589 2.595 2.597 2.601 2.628
1000 B ITE11 ◦<2% 2.554 2.555 2.556 2.556 2.556 2.559

1000 A ITE12 ◦<2% 2.978 2.984 2.991 2.991 2.996 3.023
1000 B ITE12 ◦<2% 2.949 2.950 2.950 2.950 2.951 2.954

1000 A ITE21 F>10% 1.735 1.818 1.918 1.940 2.020 2.473
1000 B ITE21 F>10% 1.476 1.542 1.567 1.558 1.578 1.589

1000 A ITE22 F>10% 1.867 1.944 2.050 2.069 2.135 2.576
1000 B ITE22 F>10% 1.584 1.660 1.689 1.679 1.704 1.716

2000 A ITE11 ◦<2% 2.579 2.588 2.591 2.592 2.595 2.608
2000 B ITE11 ◦<2% 2.553 2.554 2.554 2.554 2.555 2.556

2000 A ITE12 ◦<2% 2.973 2.982 2.986 2.986 2.991 3.002
2000 B ITE12 ◦<2% 2.948 2.949 2.949 2.949 2.949 2.951

2000 A ITE21 F>10% 1.711 1.787 1.834 1.867 1.933 2.220
2000 B ITE21 F>10% 1.564 1.577 1.583 1.584 1.590 1.601

2000 A ITE22 F>10% 1.816 1.929 1.985 2.012 2.090 2.328
2000 B ITE22 F>10% 1.686 1.703 1.710 1.711 1.719 1.733

Table 2. Comparison of A, B projections of the type I(j)
... quantified in terms of t-statistics. Calculated for

four types of I(j)
TEyz with the variants (y, z) ∈ {(1, 1); (1, 2); (2, 1); (2, 2)}. The effective number of

degrees of freedom d f is calculated, which represents the input of Student’s t distribution function.
Accordingly, these sufficiently small p-values imply the rejecting of H0: tAByz = 0.

Tw (y, z) tAByz d f p-Value 95 % Confidence Interval

500 (1, 1) 17.583 33.058 2.409 × 10−18 [ 2.559, 2.591 ]
500 (1, 2) 17.101 32.944 5.987 × 10−18 [ 2.954, 2.986 ]
500 (2, 1) 10.260 34.032 5.945 × 10−12 [ 1.519, 1.828 ]
500 (2, 2) 10.520 34.998 2.213 × 10−12 [ 1.633, 1.946 ]

1000 (1, 1) 25.059 31.799 1.652× 10−22 [ 2.555, 2.596 ]
1000 (1, 2) 24.708 31.770 2.609× 10−22 [ 2.950, 2.991 ]
1000 (2, 1) 13.513 32.666 6.301× 10−15 [ 1.557, 1.939 ]
1000 (2, 2) 14.297 33.564 7.781 × 10−16 [ 1.679, 2.069 ]

2000 (1, 1) 32.646 31.643 6.133 × 10−26 [ 2.555, 2.591 ]
2000 (1, 2) 31.538 31.636 1.786 × 10−25 [ 2.948, 2.986 ]
2000 (2, 1) 13.536 31.419 1.178× 10−14 [ 1.583, 1.867 ]
2000 (2, 2) 14.365 31.654 2.041 × 10−15 [ 1.711, 2.012 ]
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4. Conclusions

While rich in information, single-molecule data are often heterogeneous and extensive.
Additionally, the detection of rare and slow exchanging molecular states (category A) can be
challenging due to interference with inactive, dormant states (category B). Here we have developed
a specific supervised learning approach to address state classification problems in time-series data
originating in a single molecule experiment. Our approach enables a clear identification of dormant
molecular states and, hence, it makes statistical evaluations possible. Once statistical evaluation
is performed, the analysis can proceed further to evaluate and characterize rare molecular states.
While our particular method, where entropy is an important component of the evaluation, has shown
progress, it can be further developed in a variety of directions.

For example, the additional goal and the next step might be to optimize the efficiency of
categorization. Thanks to the outcomes of the statistical tests, t-values can be used as an optimization
criterion. In this respect, there may be different choices for w1, w2, which may cause variations in the
efficiency of the separation of A from B time series classes. Thus, the next goal also be to concentrate
more systematically on the function spaces generated by w1, w2 arguments.

The comparison of several methodological variants shows that Lehmer averaging has a much
deeper impact on results than we originally expected. The optimality of the classification may come
from different sources and effects, which is also confirmed by the fact that it manifests itself in different
areas of the control parameter pL.

Using the transition probabilities for a sequence of stable molecular states, one can systematically
explore the potential of the entropy-based approach. For example, a transition study will certainly
offer a new perspective on updating the classification. Furthermore, adaptive conditional averages
used herein can improve the manner of discriminating the state of space. These inputs can be
implemented by HMM Viterbi’s method, which is considered standard in today’s analysis. Hence,
our new conceptual framework can further enhance an in-depth understanding of the dynamics of
individual molecules.

Author Contributions: Conceptualization, D.H. and G.Ž.; Funding acquisition, G.Ž.; Data curation, G.Ž.;
Methodology: D.H. and G.Ž.; Project administration, G.Ž.; Resources, G.Ž.; Software, D.H.; Supervision, G.Ž.;
Validation, G.Ž. and D.H.; Visualization, D.H. and G.Ž.; Writing—original draft, D.H.; Writing—review and
editing, G.Z. and D.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Slovak Research and Development Agency, project number APVV-18-0285,
and by the Scientific Grant Agency of the Ministry of Education, science, research and sport of the Slovak Republic
under the contract VEGA 1/0175/19; Part of the research reported here was supported by the grant APVV-18-0214.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Neuman, K.C.; Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic
force microscopy. Nat. Methods 2008, 5, 491–505. [CrossRef]

2. Ramanathan, A.; Savol, A.J.; Langmead, C.J.; Agarwal, P.K.; Chennubhotla, C.S. Discovering Conformational
Sub-States Relevant to Protein Function. PLoS ONE 2011, 6, e15827. [CrossRef]

3. Krammer, C.; Schatzl, H.; Vorberg, I. Prion-like propagation of cytosolic protein aggregates Insights from cell
culture models. Prion 2009, 3, 206–212. [CrossRef]

4. Yu, H.; Liu, X.; Neupane, K.; Gupta, A.; Brigley, A.; Solanki, A.; Sosova, I.; Woodside, M. Direct observation
of multiple misfolding pathways in a single prion protein molecule. Proc. Natl. Acad. Sci. USA 2012,
109, 5283–5288. [CrossRef] [PubMed]

5. Kolmogorov, A. New Metric Invariant of Transitive Dynamical Systems and Endomorphisms of Lebesgue
Spaces. Dokl. Russ. Acad. Sci. 1958, 119, 861–864.

6. Sinai, Y. On the Notion of Entropy of a Dynamical System. Dokl. Russ. Acad. Sci. 1959, 124, 768–771.

http://dx.doi.org/10.1038/nmeth.1218
http://dx.doi.org/10.1371/journal.pone.0015827
http://dx.doi.org/10.4161/pri.3.4.10013
http://dx.doi.org/10.1073/pnas.1107736109
http://www.ncbi.nlm.nih.gov/pubmed/22421432


Entropy 2020, 22, 701 17 of 18

7. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample
entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [CrossRef]

8. Xiong, J.; Liang, X.; Zhao, L.; Lo, B.; Li, J.; Liu, C. Improving Accuracy of Heart Failure Detection Using Data
Refinement. Entropy 2020, 22. 520. [CrossRef]

9. Costa, M.; Goldberger, A.; Peng, C. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005,
71, 021906. [CrossRef]

10. Tavakoli, M.; Taylor, J.N.; Li, C.B.; Komatsuzaki, T.; Pressé, S. Single Molecule Data Analysis: An Introduction.
In Advances in Chemical Physics (Book 162); Rice, S.A., Dinner, A.R., Eds.; O’Reilly: Sebastopol, CA, USA, 2013;
pp. 205–306.

11. Tsallis, C. The nonadditive entropy Sq and its applications in physics and elsewhere: Some remarks. Entropy
2011, 13, 1765–1804. [CrossRef]

12. Nielsen, F.; Nock, R. On Renyi and Tsallis entropies and divergences for exponential families. J. Phys. A 2011,
45, 032003. [CrossRef]

13. Renyi, A. On measures of information and entropy. In Proceedings of the fourth Berkeley Symposium on
Mathematics, Statistics and Probability 1960, Berkeley, CA, USA, 20 June–30 July 1960; Neyman, J., Ed.;
Statistical Laboratory of the University of California, University of California Press: Berkeley, CA, USA, 1961;
Volume 1, pp. 547–561.

14. Moffitt, J.; Chemla, Y.; Izhaky, D.; Bustamante, C. Differential detection of dual traps improves the spatial
resolution of optical tweezers. Proc. Natl. Acad. Sci. USA 2006, 103, 9006–9011. [CrossRef] [PubMed]

15. Bauer, D.; Merz, D.; Pelz, B.; Theisen, K.; Yacyshyn, G.; Mokranjac, D.; Dima, R.; Rief, M.; Zoldak, G.
Nucleotides regulate the mechanical hierarchy between subdomains of the nucleotide binding domain of
the Hsp70 chaperone DnaK. Proc. Natl. Acad. Sci. USA 2015, 112, 10389–10394. [CrossRef] [PubMed]

16. Bauer, D.; Meinhold, S.; Jakob, R.; Stigler, J.; Merkel, U.; Maier, T.; Rief, M.; Zoldak, G. A folding nucleus and
minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy. Proc. Natl. Acad.
Sci. USA 2018, 115, 4666–4671. [CrossRef]

17. Gebhardt, J.; Bornschlögl, T.; Rief, M. Full distance-resolved folding energy landscape of one single protein
molecule. Proc. Natl. Acad. Sci. USA 2010, 107, 2013–2018. [CrossRef]

18. Tolic-Norrelykke, S.; Schäffer, E.; Flyvbjerg, H. Calibration of optical tweezers with positional detection in
the back focal plane. Rev. Sci. Instrum 2006, 77, 103101. [CrossRef]

19. Baba, A.; Komatsuzaki, T. Construction of effective free energy landscape from single-molecule time series.
Proc. Natl. Acad. Sci. USA 2007, 104, 19297–19302. [CrossRef]

20. Schuetz, P.; Wuttke, R.; Schuler, B.; Caflisch, A. Free Energy Surfaces from Single-Distance Information.
J. Phys. Chem. B 2010, 114, 15227–15235. [CrossRef]

21. Gell-Mann, M.; Tsallis, C. Nonextensive Entropy: Interdisciplinary Applications; Oxford University Press:
Oxford, UK, 2004.

22. Shade, A.; Jones, S.; Caporaso, J.; Handelsman, J.; Knight, R.; Fierer, N.; Gilbert, J. Conditionally Rare Taxa
Disproportionately Contribute to Temporal Changes in Microbial Diversity. mBio 2014, 5. [CrossRef]

23. Bullen, P. Handbook of Means and Their Inequalities (Mathematics and Its Applications); Mathematics and Its
Applications; Springer: Berlin/Heidelberg, Germany, 2003.

24. Sluciak, O. On Inflection Points of the Lehmer Mean Function. arXiv 2015, arXiv:1509.09277.
25. Ito, M. Estimations of the Lehmer mean by the Heron mean and their generalizations involving refined

Heinz operator inequalities. Adv. Oper. Theory 2018, 3, 763–780. [CrossRef]
26. Amat, S.; Magrenan, A.; Ruiz, J.; Trillo, J.C.; Yanez, D.F. On the application of Lehmer means in signal and

image processing. Int. J. Comput. Math. 2019, 97, 1–26. [CrossRef]
27. Burlaga, L.; Vinas, A. Triangle for the entropic index q of non-extensive statistical mechanics observed by

Voyager 1 in the distant heliosphere. Physica A 2005, 356, 375–384. [CrossRef]
28. Levner, I. Feature selection and nearest centroid classification for protein mass spectrometry. Bioinformatics

2005, 6, 68.

http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039
http://dx.doi.org/10.3390/e22050520
http://dx.doi.org/10.1103/PhysRevE.71.021906
http://dx.doi.org/10.3390/e13101765
http://dx.doi.org/10.1088/1751-8113/45/3/032003
http://dx.doi.org/10.1073/pnas.0603342103
http://www.ncbi.nlm.nih.gov/pubmed/16751267
http://dx.doi.org/10.1073/pnas.1504625112
http://www.ncbi.nlm.nih.gov/pubmed/26240360
http://dx.doi.org/10.1073/pnas.1716899115
http://dx.doi.org/10.1073/pnas.0909854107
http://dx.doi.org/10.1063/1.2356852
http://dx.doi.org/10.1073/pnas.0704167104
http://dx.doi.org/10.1021/jp1053698
http://dx.doi.org/10.1128/mBio.01371-14
http://dx.doi.org/10.15352/aot.1801-1303
http://dx.doi.org/10.1080/00207160.2019.1628222
http://dx.doi.org/10.1016/j.physa.2005.06.065


Entropy 2020, 22, 701 18 of 18

29. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2014.

30. Welch, B. The generalization of Student’s problem when several different population variances are involved.
Biometrika 1947, 34, 28–35. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2307/2332510
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methodology
	Experiments, Protocols, Signal Detection
	Measures and Methods of Supervised Classification
	Time Series, Averages, Adaptive Histograms
	Entropy of Histograms
	Long-Term Transformation into Entropic Systems with Related Lehmer Means 


	Numerical Results
	Comparison of Methods for Specific Time-Series Classification
	Classification Adapted from Kullback–Leibler Form
	Classification which Converts the Original Time Series into Rényi Entropy Series
	Problem of Sarle's b Revisited

	Integration over the pL Values-Option for t-Testing

	Conclusions
	References

