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Abstract: In this paper, we discuss the implementation and tuning algorithms of a variable-,
fractional-order Proportional–Integral–Derivative (PID) controller based on Grünwald–Letnikov
difference definition. All simulations are executed for the third-order plant with a delay. The results of
a unit step response for all described implementations are presented in a graphical and tabular form.
As the qualitative criteria, we use three different error values, which are the following: a summation
of squared error (SSE), a summation of squared time weighted error (SSTE) and a summation of
squared time-squared weighted error (SST2E). Besides three types of error values, obtained results
are additionally evaluated on the basis of an overshoot and a rise time of the output signals achieved
by systems with the designed controllers.

Keywords: fractional differences; PID control; variable-order

1. Introduction

Proportional–Integral–Derivative (PID) controllers are undoubtedly used in most automatic
process control applications in the industry today. They are renowned for example as an excellent tool to
regulate flow, temperature, pressure, and many other industrial process variables. Historically, the first
PID controllers were built in 1939 by the Taylor and Foxboro instrument companies. Despite the
various tuning methods most of present-day controllers are based on those original proportional,
integral, and derivative modes. One of the first methods of PID tuning was Ziegler–Nichols,
described in [1], which was widely extended along last decades. One of the directions of making
PID controllers more robust is the use of fractional-order operators for both cases: continuous-,
and discrete-time models. The review of fractional controllers is presented in [2]. The fractional
PID controller was introduced by I. Podlubny in [3]. After this work, various authors designed
fractional PID controllers using different tuning methods. It was shown in many papers, see for
example [4–9], that the use of fractional PID controllers could make the entire control system perform
better. The reason is that FOPID (fractional-order PID) controllers, in addition to standard Kp, Ki, Kd,
introduce two more tuning parameters—integral and derivative order values, which provide wider
flexibility during the control process. Although most of the controllers are devoted for analog systems,
nowadays, the control of a system performance is mainly carried out with the aid of microcontrollers
and microprocessors, see [10]. Many processes described by an analog system can be controlled by
a digital system. The switching between analog and digital signals is obtained by the sampling of
signals and zero-order hold part. The generalised transfer function of analog fractional PID controller
depends on three gains: Kp, Ki, Kd; and two fractional values: λ and µ. The transfer function of such
controller is described by the following formula: GPID(s) = Kp +

Ki
sλ + Kdsµ, where λ is the order of

integration, and µ is the order of differentiator. All the classical PID controllers are particular cases of
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the fractional-order controller, where both orders are equal to one. For discrete-time (digital) FOPID
parameter, λ is an order of summation, while µ is an order of difference part of the controller.

In the paper, the implementation of fractional-, variable-order PID (FVOPID) controller is
described. FVOPID controller is a generalisation of FOPID (fractional order PID). The controller
has two (one for integral and one for derivative) order functions instead of having constant order
values assigned to integral and derivative actions. It means that both orders are changed during
the control process. An introduction to variable-, fractional-order differences can be found in [11–13],
and an example algorithm of finding parameters of FVOPID controllers is presented in [14]. One can
find more about potential applications in modelling in [15–17], where authors provide a survey
of the recent relevant literature and findings in primary definitions, models, numerical methods,
and their applications of variable-order fractional differential equations. We emphasise that in our
paper we use the digital version of fractional controllers, and we can compare obtained results to those
used for example in [18]. However, we use difference operator based on Grünwald–Letnikov difference
definition; in the paper [18], it can be compared to the type A operator. We propose a new method
of finding parameters and order values. The paper describes implementation and parameters for
the tuning algorithm of digital FVOPID controller which is implemented using FVOGLD (fractional-,
variable-order Grünwald–Letnikov difference). It is assumed that the designed controller has five
different order values of integral and five different values of derivative order functions that depend
on the ratio between the current error and the setpoint. Implemented controller parameters are set up
to minimise three error criteria which are integral squared error (SSE), integral squared time weighted
error (SSTE), and integral squared time-squared weighted error (SST2E).

2. Materials and Methods

The most important part in our investigations plays the definition of fractional, variable-order
h-difference of Grünwald–Letnikov type. In some papers, e.g., [14,18,19], this operator is referred
as the type A. In the definition, there is a sequence aνl

k of coefficients used depending on a given
variable-order function. It is important to notice that the sequence tends quite fast to zero and
the smallest parts of it, for the considered step, are multiplied by the oldest trials. Then, in a certain
sense, the sequence tries to forget older values but it does not vanish them completely. One can
find this in some past papers, where based on this matter, authors truncate the whole sequence after
a fixed amount of steps. Due to the property of forgetting the sequence of coefficients, it is also called
the oblivion function, see [11,20].

Definition 1. For k, l ∈ Z and (νl)l∈Z the oblivion function is defined as aνl
k = 0 for all k < 0 and l ∈ Z,

aνl
0 = 1 and

aνl
k = (−1)k νl (νl − 1) · · · (νl − k + 1)

k!
(1)

for k > 0.

Formula (1) in Definition 1 can be translated into the recurrence with respect to k ∈ N0:

aνl
0 = 1 , aνl

k = aνl
k−1

(
1− νl + 1

k

)
, k ≥ 1 . (2)

Let h > 0 be a sample step and let us denote hZ := {. . . ,−2h,−h, 0, h, 2h, . . .}.
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Definition 2. (FVOGLD) Let h > 0 and x : hZ→ R be a bounded function. The fractional-, variable-order
Grünwald–Letnikov h-difference operator of a function x with step h > 0 and an order function ν : Z→ R is
defined as a finite sum

∆νk
h xk =

1
hνk

k

∑
i=0

aνk
i xk−i =

1
hνk

[
1 aνk

1 · · · aνk
k

]


xk
xk−1
· · ·
x1

x0

 , (3)

where xk := x(kh).

Definition 2 as a fractional-, variable-order summation that can be treated as discrete-time version
of fractional-, variable-order integration (if the sample step h goes to zero). Observe that Definition 2
agrees with definition of type A, presented for example in [18,19], only if an order function has
non-negative values and can be treated as an extension of difference operators. For constant-order
function ν ≡ α, the operator given in Definition 2 agrees with the Grünwald–Letnikov fractional-order
backward difference if α ≥ 0, or becomes fractional summation for α < 0. For constant-order functions,
we refer the reader to [21,22].

A Digital Fractional-, Variable-Order PID Controller

A digital fractional-, variable-order PID controller can be defined in a similar way as a first-order
PID. The implemented FVOPID controller of type A is given by the Equation (4)

yk = Kpek + Ki∆
µk
h ek + Kd∆νk

h ek . (4)

In Equation (4), coefficients Kp, Ki, Kd are proportional, summation, and difference gains
respectively; µk and νk are values of order functions of summation and difference actions; k is
the number of a sample; h > 0 is a sampling time; ek is an input; and yk is an output of the controller.
It is worth mentioning that if both order functions µk and νk are non-negative at the same time, then the
controller acts like it has two differences with gains Ki and Kd and no summation. Similarly, if both
order functions are simultaneously nonpositive, then the controller would work like it has two
summations with gains Ki and Kd and no difference. One of the assumptions, which was taken during
the controller implementation, was that there are five possible order values, vi1, . . . , vi5 for summation;
and five possible order values, vd1, . . . , vd5 for difference operator. Selected number of order values
is a compromise between control flexibility provided by variable-order controller (higher number of
different order values could possibly give more control options) and computational time required
by optimisation algorithms to find the order values (the time that optimisation algorithms require to
find the optimal solution depends on the number of parameters). An additional assumption is that
the order values depend on a ratio of an error value ek and a set-point value uk, defined as

ρk :=
ek
uk

. (5)

Based on the current value of ratio ρk, the controller has summation and difference orders set
according to the following rules:

• vi1, vd1 for the ratio ρk > 0.8;
• vi2, vd2 for the ratio ρk ∈ (0.6, 0.8〉;
• vi3, vd3 for the ratio ρk ∈ (0.4, 0.6〉;
• vi4, vd4 for the ratio ρk ∈ (0.2, 0.4〉;
• vi5, vd5 for the ratio ρk 6 0.2.
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The main idea of designed variable-order controller is, in this case, to make the order values
(which induces control characteristic) dependent on the current stage of the control process which
is represented by the ratio (5). In order to find parameters of FVOPID controller, two versions of
the tuning algorithm were developed. The first version of the algorithm (which will be referred as
FOPID based) can be described by the following steps:

1. Finding parameters Kp, Ki, and Kd of the first-order PID controller using some selected method
(e.g., Ziegler–Nichols or any other tuning approach).

2. Using Nelder–Mead optimisation to find new parameters Kp, Ki, and Kd of first-order PID
controller (as the starting point of the optimisation, Kp, Ki, and Kd values calculated in step 1
should be used).

3. Using Nelder–Mead optimisation to find fractional order PID (FOPID) controller parameters
(as the starting point of the optimisation, Kp, Ki, and Kd values calculated in step 2 should
be used). In this case, besides Kp, Ki, Kd parameters, the optimisation algorithm additionally
searches for optimal constant order values vi (summation) and vd (difference).

4. Using Nelder–Mead optimisation to find new parameters Kp, Ki, and Kd and order values vi1− vi5,
vd1 − vd5 of variable, fractional-order PID controller (as the starting point of the optimisation, Kp,
Ki, Kd, vi, vd values calculated in step 3 should be used).

The second version of the algorithm (which will be referred to as PID-based) is similar to
the FOPID-based algorithm. The difference is that FVOPID parameters are searched starting from
the parameters of optimal PID controller instead of FOPID controller. Note that by optimal PID
controller we mean the PID controller designed with the Nelder–Mead optimisation to minimise given
error criteria. Additionally, it was assumed that vi5 and vd5 order values should be set to 1 in this case.
The reason of setting the order values to 1 (which means first order integral/derivative) for small
values of error is to eliminate steady-state error which is characteristic for fractional order controllers.
The PID-based algorithm can be described by the following steps:

1. Finding parameters Kp, Ki, and Kd of the first-order PID controller using some selected method
(e.g., Ziegler–Nichols or any other tuning approach).

2. Using Nelder–Mead optimisation to find new parameters Kp, Ki, and Kd of first-order PID
controller (as the starting point of the optimisation, Kp, Ki, and Kd values calculated in step 1
should be used).

3. Using Nelder–Mead optimisation to find new parameters Kp, Ki, and Kd and order values vi1− vi4,
vd1 − vd4 of variable, fractional-order PID controller (as the starting point of the optimisation, Kp,
Ki, Kd values calculated in step 2 should be used).

Parameter searching procedures are based on minimisation of three types of summation
errors which are as follows: sum squared error (SSE), sum squared time weighted error (SSTE)
and sum squared time-squared weighted error (SST2E). Mentioned errors are calculated based
on the Equations (6)–(8).

SSE =
k

∑
i=0

e2(ih). (6)

SSTE =
k

∑
i=0

(ih)2e2(ih). (7)

SST2E =
k

∑
i=0

(ih)4e2(ih). (8)
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3. Results

The simulations were performed for the plant described by the following transfer function:

Gs =
e−5s

(s + 1)3 . (9)

The plant model was taken from [23], where the authors presented a design method for PID
controllers based on constrained optimisation. The simulations were performed in Matlab Simulink
with the sampling time set to h = 0.02s. The simulation time used for controllers parameters search
was set to 60 s. The initial parameters of PID controller (which corresponds to step 1 of the described
algorithms) were set to Kp = 0.555, Ki = 0.1729, Kd = 0.9657 according to [23]. The simulations were
executed for both unconstrained and constrained control signal values. A rise time and an overshoot
presented in the result tables were calculated with Matlab stepin f o function. A rise time in this case
is considered as a time needed for the output signal to rise from 10% to 90% of the steady-state
response [24].

3.1. Simulation Results for Controllers with Unconstrained Control Signal Values

During the first phase of the research, the simulations were performed with the assumption that
there are no constraints set to the values of control signals generated by the controllers. As the starting
point for the experiment, we chose a controller referred as Initial PID. By Initial PID, we understand
PID controller with parameters set to Kp = 0.555, Ki = 0.1729, Kd = 0.9657 (step 1 of previously
described algorithms). The error values, rise time, overshoot, and minimum/maximum control values
for the Initial PID controller setup are presented in Table 1. The step responses and the values of
control signals generated by the controllers designed with SSE, SSTE, and SST2E error minimisation
are presented in Figures 1–9. To make figures more transparent/readable, presented simulation time
was limited to 50 s (the parameters were searched for 60 s simulation). Additionally, control values
presented in Figure 3 were limited to a range of −15 to 15 and in Figures 6 and 9 to a range of −2
to 5. This is because at the beginning of the control process, the signals generated by the controllers
reach very high values which would make analysis of the signals in later phase of the control difficult.
The maximum/minimum controllers output signal values (which usually occur at the beginning of
the simulation) can be found in the last two rows of Tables 2–4.

Table 1. Initial Proportional–Integral–Derivative (PID) results.

SSE 1 SSTE 2 SST2E 3 Rise Time Overshoot Control Min. Control Max.

3.438234 × 102 9.559020 × 103 1.705381 × 106 4.1219 s 22.6163 0.5619 48.8435
1 Integral squared error 2 Integral squared time weighted error 3 Integral squared time-squared weighted error.

Optimal PID is a first-order controller, for which parameters were found by Nelder–Mead
optimisation (steps 1 and 2 of described algorithms). FOPID controller is a fractional order PID
for which parameters were found according to steps 1–3 of FOPID based algorithm. The values
of implemented controllers parameters, rise time, overshoot, and minimised error of Optimal PID,
FOPID, and FVOPIDs controllers are presented in Tables 2–4. Column ’Optimal PID‘ contains results for
Optimal PID controller, ’FOPID‘ column represents results for Fractional order PID, while ’FVOPID-FO‘
and ’FVOPID‘ columns contain data respectively for FVOPID controller tuned with FOPID-based
algorithm and FVOPID tuned with PID-based algorithm.
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Figure 1. Comparison of the results for SSE error minimisation—constant-order controllers,
unconstrained control signal value (Table 2).

Figure 2. Comparison of the results for SSE error minimisation—fractional-order controllers,
unconstrained control signal value (Table 2).

Figure 3. Control signal generated by controllers which minimise SSE error—unconstrained control
signal value (Table 2).
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Table 2. SSE minimisation results—unconstrained control signal (Figures 1–3).

Optimal PID FOPID FVOPID-FO FVOPID

Kp 0.637404 1.142785 1.333838 1.008945
Ki 0.173603 0.121679 0.159479 0.182504
Kd 1.777942 2.875904 3.184161 2.814701
vi1 1.000000 1.096174 −1.255358 0.205089
vi2 1.000000 1.096174 1.329446 0.814011
vi3 1.000000 1.096174 1.016607 1.194610
vi4 1.000000 1.096174 2.359346 1.738563
vi5 1.000000 1.096174 1.039244 1.000000
vd1 1.000000 1.498183 1.508917 1.357796
vd2 1.000000 1.498183 1.054854 −0.203925
vd3 1.000000 1.498183 2.468621 0.998131
vd4 1.000000 1.498183 0.974423 1.176751
vd5 1.000000 1.498183 1.010596 1.000000

Rise Time 2.7540 s 2.7461 s 0.9507 s 1.4970 s
Overshoot 17.1629 21.0487 5.1426 3.6411

SSTE 3.069558 × 102 2.798207 × 102 2.693099 × 102 2.768806 × 102

Control Min. 0.5882 −501.8611 −597.4076 −203.0352
Control Max. 89.5359 1.0108 × 103 1.1887 × 103 571.6405

Figure 4. Comparison of the results for SSTE error minimisation—constant-order controllers,
unconstrained control signal value (Table 3).

Figure 5. Comparison of the results for SSTE error minimisation—fractional-order controllers,
unconstrained control signal value (Table 3).
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Figure 6. Control signal generated by controllers that minimise SSTE error—unconstrained control
signal value (Table 3).

Table 3. SSTE minimisation results—unconstrained control signal (Figures 4–6).

Optimal PID FOPID FVOPID-FO FVOPID

Kp 0.626576 0.905323 0.984849 0.602993
Ki 0.149453 0.144390 0.164533 0.160865
Kd 1.253809 2.140174 2.416669 2.053849
vi1 1.000000 1.024119 0.129042 0.684564
vi2 1.000000 1.024119 1.048072 −0.177614
vi3 1.000000 1.024119 0.985392 0.842508
vi4 1.000000 1.024119 1.009021 1.941464
vi5 1.000000 1.024119 1.003853 1.000000
vd1 1.000000 1.326989 1.268651 0.889926
vd2 1.000000 1.326989 1.947691 0.990233
vd3 1.000000 1.326989 2.148687 0.916384
vd4 1.000000 1.326989 1.232540 1.689788
vd5 1.000000 1.326989 1.083751 1.000000

Rise Time 3.8204 s 3.2553 s 1.6809 s 1.8856 s
Overshoot 9.8411 14.3733 3.5313 9.6220

SSTE 4.917492 × 103 3.672276 × 103 3.056599 × 103 3.779749 × 103

Control Min. 0.6326 −124.8473 −91.7940 −0.7087
Control Max. 63.3196 385.4887 346.7894 67.3750

Figure 7. Comparison of the results for SST2E error minimisation—constant-order controllers,
unconstrained control signal value (Table 4).
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Figure 8. Comparison of the results for SST2E error minimisation—fractional-order controllers,
unconstrained control signal value (Table 4).

Figure 9. Control signal generated by controllers which minimise SST2E error—unconstrained control
signal value (Table 4).

Table 4. SST2E minimisation results—unconstrained control signal (Figures 7–9).

Optimal PID FOPID FVOPID-FO FVOPID

Kp 0.576304 0.728516 0.733325 0.708525
Ki 0.135226 0.142496 0.154479 0.150976
Kd 0.933056 1.492910 1.929674 1.264259
vi1 1.000000 1.005405 0.411674 −0.306919
vi2 1.000000 1.005405 0.681375 1.055421
vi3 1.000000 1.005405 1.423439 1.199411
vi4 1.000000 1.005405 1.005424 1.273247
vi5 1.000000 1.005405 1.003021 1.000000
vd1 1.000000 1.185370 1.025674 0.680862
vd2 1.000000 1.185370 2.117634 0.415573
vd3 1.000000 1.185370 1.521393 1.035127
vd4 1.000000 1.185370 1.425342 1.179871
vd5 1.000000 1.185370 1.062023 1.000000

Rise Time 4.5937 s 3.9967 s 2.2262 s 2.2649 s
Overshoot 3.7552 6.9269 2.0505 3.0619

SST2E 2.140708 × 105 1.407958 × 105 8.475202 × 104 1.071856 × 105

Control Min. 0.5817 −27.8483 −1.9650 0.2866
Control Max. 47.2320 154.8977 107.4541 19.3490
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3.2. Simulation Results for Controllers with Constrained Control Signal Values

During the second phase of the research, the simulations were performed with the assumption that
the absolute value of the control signal generated by the controllers should not exceed the maximum
value returned by Initial PID (PID tuned with step 1). In this case, the controllers output signals are
limited to the range of −48.8435 to 48.8435 (because the maximum value returned by the Initial PID
controller is 48.8435). It is worth noticing that the limitation of the signal generated by the controllers
is not achieved by adding saturation block to the controllers output, but by modifying the tuning
algorithm so it searches for parameters for which the constraint criteria are met. This additional
condition is simply achieved by checking the minimum and maximum controller output values
in every optimisation step (for every set of parameters produced by Nelder–Mead optimisation) and
if the values exceed the defined limit, then the maximum possible value is assigned to the minimised
error (which forces the optimisation algorithm to search for another set of parameters). The obtained
results for constrained controllers output values are presented in Figures 10–18 and in Tables 5–7.

Figure 10. Comparison of the results for SSE error minimisation—constant order controllers,
constrained control signal value (Table 5).

Figure 11. Comparison of the results for SSE error minimisation—fractional order controllers,
constrained control signal value (Table 5).
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Figure 12. Control signal generated by controllers which minimise SSE error—constrained control
signal value (Table 5).

Table 5. SSE minimisation results—constrained control signal (Figures 10–12).

Optimal PID FOPID FVOPID-FO FVOPID

Kp 0.654698 0.381153 0.417026 0.882641
Ki 0.138119 0.237605 0.253014 0.172904
Kd 0.963717 1.655254 1.894754 1.594753
vi1 1.000000 0.869949 0.257874 −0.520604
vi2 1.000000 0.869949 0.837584 0.526714
vi3 1.000000 0.869949 1.335904 2.129147
vi4 1.000000 0.869949 1.242142 0.477752
vi5 1.000000 0.869949 0.877228 1.000000
vd1 1.000000 0.863119 0.823752 0.862873
vd2 1.000000 0.863119 0.938978 0.576656
vd3 1.000000 0.863119 0.727007 0.576989
vd4 1.000000 0.863119 1.134938 1.491228
vd5 1.000000 0.863119 0.281767 1.000000

Rise Time 3.9919 s 3.0231 s 2.1032 s 1.8657 s
Overshoot 11.0732 15.9887 5.9138 9.3329

SSE 3.266260 × 102 3.119663 × 102 3.003019 × 102 2.994700 × 102

Control Min. 0.6602 0.7358 0.0087 0.0346
Control Max. 48.8435 48.8388 48.0527 48.8412

Figure 13. Comparison of the results for SSTE error minimisation—constant-order controllers,
constrained control signal value (Table 6).
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Figure 14. Comparison of the results for SSTE error minimisation—fractional-order controllers,
constrained control signal value (Table 6).

Figure 15. Control signal generated by controllers which minimise SSTE error—constrained control
signal value (Table 6).

Table 6. SSTE minimisation results—constrained control signal (Figures 13–15).

Optimal PID FOPID FVOPID-FO FVOPID

Kp 0.597129 0.574524 0.639936 0.899289
Ki 0.137571 0.153988 0.157705 0.157568
Kd 0.964873 1.153461 1.920653 1.519192
vi1 1.000000 0.981612 0.093985 −0.801974
vi2 1.000000 0.981612 0.471846 0.651051
vi3 1.000000 0.981612 2.161123 1.718251
vi4 1.000000 0.981612 0.921158 1.271052
vi5 1.000000 0.981612 1.005050 1.000000
vd1 1.000000 0.954468 0.823224 0.862127
vd2 1.000000 0.954468 0.696274 1.116588
vd3 1.000000 0.954468 0.240237 1.398955
vd4 1.000000 0.954468 1.454721 1.250374
vd5 1.000000 0.954468 1.033150 1.000000

Rise Time 4.3902 s 3.9903 s 1.8090 s 1.9914 s
Overshoot 5.8941 8.6595 6.6260 4.9527

SSTE 5.301965 × 103 5.058847 × 103 3.700782 × 103 3.754522 × 103

Control Min. 0.6026 0.7589 −0.0899 0.0635
Control Max. 48.8434 48.8430 48.8425 48.8244
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Figure 16. Comparison of the results for SST2E error minimisation—constant-order controllers,
constrained control signal value (Table 7).

Figure 17. Comparison of the results for SST2E error minimisation—fractional-order controllers,
constrained control signal value (Table 7).

Figure 18. Control signal generated by controllers which minimise SST2E error—constrained control
signal value (Table 7).



Entropy 2020, 22, 771 14 of 17

Table 7. SST2E minimisation results—constrained control signal (Figures 16–18).

Optimal PID FOPID FVOPID-FO FVOPID

Kp 0.576299 0.574701 0.717493 0.580432
Ki 0.135232 0.135173 0.147318 0.147948
Kd 0.933059 0.932648 1.082939 1.271947
vi1 1.000000 0.998071 0.113885 0.165591
vi2 1.000000 0.998071 1.170532 1.327732
vi3 1.000000 0.998071 0.731435 0.638619
vi4 1.000000 0.998071 1.206933 1.320971
vi5 1.000000 0.998071 1.001298 1.000000
vd1 1.000000 1.008807 0.708666 0.652788
vd2 1.000000 1.008807 0.856360 1.989044
vd3 1.000000 1.008807 1.256436 1.216525
vd4 1.000000 1.008807 1.393318 0.268185
vd5 1.000000 1.008807 1.027671 1.000000

Rise Time 4.5937 s 4.6411 s 2.5475 s 2.4746 s
Overshoot 3.7552 3.2868 3.9346 2.2612

SST2E 2.140708 × 105 2.070077 × 105 1.147133 × 105 1.119850 × 105

Control Min. 0.5817 0.1554 0.4744 0.3686
Control Max. 47.2320 48.8432 18.1338 17.0081

3.3. Computational Effort

One of the drawbacks of fractional-, variable-order PID controller is high computational cost,
which increases with the duration of the simulation. This is because the calculation of the current
value of fractional-, variable-order Grünwald–Letnikov h-difference operator, which is used by both
difference and summation controller actions, requires all the previous values returned by the controller
as shown in Definition 2. It means that FVOPID controller needs an additional buffer, big enough to
store mentioned values. Of course, in real-life implementation, the buffer would have to be periodically
cleaned. The strategy for efficiently cleaning said buffer of FVOPID controller without significantly
disturbing the control is an open topic that requires additional research. When it comes to the number
of operations required to calculate the output of FVOPID controller, we will first focus on Definition 1,
which describes the oblivion function. In the worst-case scenario, when the order function value is
changed in every step and when the given order value did not occur in the past, the controller would
have to recalculate all the values of oblivion vector. It means that if we assume that the current step of
the simulation is k, then k calculations of Equation (2) would have to be executed in this particular
step. At the same time, if the order function does not change very often (or does not change at all, like
for constant order FOPID controller) the generation of oblivion function vector could be simplified by
using previous calculation results (new value can be calculated by single invocation of Equation (2)).
As we can see, in this case, computational cost of FOPID controllers is significantly lower than the one
required by FVOPID. With the calculated vector of oblivion function values, backward difference can
be evaluated according to Definition 2. For the k− th step of the simulation we would have in this case
k + 1 multiplication and k + 1 summation operations. Additionally, we have to calculate the elements
of oblivion function vector to power of the current value of the order function and divide the final
result by hvk . Additionally, in this step, FOPID controller computational cost could be significantly
lower (in comparison to FVOPID) by reusing previously calculated values of oblivion function.

When it comes to the time required by Nelder–Mead optimisation algorithm to find optimal
parameters of the controllers, it (as could be assumed) highly depends on the number of searched
parameters. Table 8 shows the number of iterations and function evaluations required to find optimal
parameters of each designed controller (Nelder–Mead algorithm requires the evaluation of the function
at different points in each iteration [25]).
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Table 8. Parameters search Nelder–Mead number of iterations/number of cost function evaluations.

Opt. PID FOPID FVOPID-FO FVOPID

SSE 63/118 196/334 949/1433 358/645
SSE–constrained 69/130 214/392 380/719 687/1068

SSTE 73/128 156/268 731/1171 286/569
SSTE–constrained 84/150 223/387 932/1447 517/890

SST2E 73/134 153/266 524/904 521/890
SST2E–constrained 69/127 144/255 604/1025 447/773

Average 72/131 181/317 687/1117 469/809

4. Discussion

In the first stage of the research, the simulations were carried out with the assumption that
the value of control signal produced by the controller is unconstrained. In this case, most of designed
FVOPID controllers achieved lower values of minimised errors than constant-order (first and fractional)
controllers. Only in one case, when SSTE error was minimised, using FVOPID in which parameters
search was based on PID controller parameters, resulted in higher value of error than then one returned
by FOPID. In all the cases, fractional-order controllers outperformed Optimal PID which shows how
beneficial in this case was the introduction of additional tuning parameters. When it comes to FVOPID
controllers, the ones that were tuned with ’FOPID-based‘ algorithm returned lower values of errors
than the controllers tuned with ’PID-based‘ algorithm. FVOPID controllers additionally achieved
the lowest values of the rise time with the smallest value of the overshoot at the same time. On the other
hand, the characteristics returned by PID controllers tend to be smoother (have less oscillations) than
corresponding FOPID and FVOPIDs characteristics. It is worth noticing that the selection of minimised
error had a great impact on the received results. SSE error minimisation results show short values of
rise time and high values of overshoot. At the same time, SST2E error-minimising controllers returned
high values of rise time with a very small overshoot.

In the second stage of the research, the controller output values were limited to the values returned
by the Initial PID controller (it was assumed that designed controllers’ absolute value of the output
signal cannot exceed the absolute maximum value returned by the Initial PID). As we can see, also in
this case, the best results when it comes to errors minimisation were achieved by variable order PID.
Due to the addition of control signal constraints, FVOPID controller tuned by ’PID-based‘ algorithm
gave a little better results than the one tuned with ’FOPID-based‘ algorithm for SSE and SST2E error
minimisation. When it comes to the rise time, both FVOPID controllers outperformed the other
constant-order (first and fractional) controllers. For overshoot, FVOPID controllers were also able
to achieve the lowest values of this criterion, but with the exception of SST2E error minimisation,
where FVOPID controller tuned with ’FOPID-based‘ gave slightly worse results than both FOPID and
even Optimal PID. In most of the cases, setting restrictions to the controller output signal (as could be
predicted) increased obtained error values. On the other hand, characteristics obtained by constrained
FVOPID tend to be smoother (smaller oscillations) than the ones which were achieved by the controllers
for which output values were not limited. What is also interesting is that in some cases, the order
values of FVOPID controllers were negative. It means that given controllers during some phase of
the control have two derivative blocks or two integral blocks instead of one derivative and one integral
(negative order means that integral action changes to derivative and vice versa).

When it comes to the control signals generated by FVOPID, we can observe a high rate of signal
changes in the initial phase of the control, when output value of the process starts to increase and
reaches the setpoint. This is the result of changing order values, which are adjusted based on the ratio
between the current error and the setpoint. What is worth noticing is that the control signal in some
cases reaches negative values, which has to be considered during control process design (not all systems
allow negative values of control). Additionally, FVOPID control technique could be implemented
in the systems that allow such dynamic control value changes. The potential application could in this
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case be, e.g., drone engine controllers, where both speed and direction of the propellers rotation could
be dynamically changed.

5. Conclusions

In the paper, the simulation results of PID; fractional order PID; and fractional-, variable-order
PID controllers were presented. Obtained results for the third-order plant with delay shows that for
this family of objects/processes usage of FVOPID controller may give better results than the usage of
PID/FOPID controllers tuned in a similar way (with Nelder–Mead optimisation). FVOPID control
in this case seems to provide additional flexibility and may help to create new control strategies
in the future. The main drawbacks of FVOPID controllers are high computational cost and the need to
have an additional buffer to store previously returned control values which are used to calculate new
controller response. The mentioned disadvantages could be the subject of further research in the future.
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