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Abstract: On the purpose of detecting communities, many algorithms have been proposed for
the disjointed community sets. The major challenge of detecting communities from the real-world
problems is to determine the overlapped communities. The overlapped vertices belong to some
communities, so it is difficult to be detected using the modularity maximization approach. The major
problem is that the overlapping structure barely be found by maximizing the fuzzy modularity
function. In this paper, we firstly introduce a node weight allocation problem to formulate the
overlapping property in the community detection. We propose an extension of modularity, which is
a better measure for overlapping communities based on reweighting nodes, to design the proposed
algorithm. We use the genetic algorithm for solving the node weight allocation problem and detecting
the overlapping communities. To fit the properties of various instances, we introduce three refinement
strategies to increase the solution quality. In the experiments, the proposed method is applied on
both synthetic and real networks, and the results show that the proposed solution can detect the
nontrivial valuable overlapping nodes which might be ignored by other algorithms.

Keywords: data mining; community detection; overlapping communities; modularity

1. Introduction

Determining the group with some particular properties helps the analysts to capture the common
properties from the members in the community. Many applications could be considered based on
the community detection. For example, the precise information delivery, e.g., Google AdWords [1]
increases the transaction amounts for sending the advertisement information to the right person.
Therefore, detecting communities is a popular research topic [2–8].

Many results focus on the disjoin community sets that each node belongs to exactly one
community [2,3]. However, in the real-world networks, many people may belong to multiple
communities, so the communities may overlap with each other. For example, an engineer may
belong to many projects in a company. Thus, instead of strict partitions, fuzzy partitions are more
appropriate for understanding the network structures [9,10]. Fuzzy partitions allow a node belongs to
multiple communities simultaneously. Considering a real-world situation, some staff work together in
a building, and the manager would like to track the movement history for each staff [11]. Each one
may move to various rooms, and the move purpose comes from the role of each staff. When we treat
the purpose of all staff to be the communities, the staff may belong to different communities.
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The modularity function proposed by Newman and Girvan [12] is the famous measurement of
network partitions to measure the structure of a given network. The modularity function calculates
the difference between the number of real intra-community edges and the expected number of edges
to identify the qualities of the communities. The partition with larger modularity value has better
community structure than those with lower modularity values. Finding the partitions with maximum
modularity is a straightforward solution to the community detection. However, the modularity
maximization has been proved as an NP-hard problem [13], and finding the partition with maximum
modularity is difficult. Therefore, many results are proposed to calculate the near optimal solutions,
such as the random walk processes [14], the structural clustering [15], and the polynomial-time
approximation algorithms [16].

On the other hand, besides the computation complexity, the modularity maximization has two
problems in detecting communities:

Resolution limits Fortunato et al. introduced that small communities cannot be detected in large
networks [17,18]. Since the null model of modularity provides the global connectivity, the expected
number of edges between two small groups in a large network might be very small. Eventually,
the two small groups will be treated as one community. Many approaches are proposed for solving
resolution limits to provide high solution qualities, such as greedy algorithms [19,20], spectral
algorithms [21–23], simulating annealing algorithms [24] and mathematical programing [25].
Overlapping community Some nodes may belong to several communities, so simply assigning
the nodes to one community is difficult. Thus, the straightforward solution is to modify the
modularity for allowing the nodes belonging to multiple communities at the same time [26–30].
Figure 1 shows two benchmarks about overlapping communities. In Figure 1a, the node v9 is the
overlapping node, and we assign v9 to community B and C. Thus, we get three communities, and
they are {{v1, v2, v3, v4}, {v5, v6, v7, v8, v9}, {v9, v10, v11, v12, v13, v14}}. Moreover, v5 is assigned to
A and B in Figure 1b.

(a) G4415, an example with three communities (b) G415, an example with two communities
Figure 1. The benchmark with more than two communities and two communities.

In this paper, we focus on the overlapping community detection, and propose the node weight
allocation problem denoted by NWAOCD to formulate the community overlap. Since computing the
partition with maximum modularity is NP-complete, decreasing the computation cost to seek the
near optimal partitions is the popular approach in solving the overlapping community detection.
The heuristic algorithms are outstanding in seeking better solutions in large search space, especially
for the genetic algorithms (GAs) [2,3,8]. Therefore, some works consider GA as the core approach in
their solutions. Mu et al. use a hybrid heuristic approach including GA and the simulated annealing
to find out the communities [2]. Shang et al. use GA with an extra local search [3]. The heuristic
algorithms perform well in seeking the solution with high quality in a large search space. However,
the above results do not deal with the overlapping properties. The overlapping networks have
various properties, so some approaches consider the multi-objective approach to find the balanced
results [4–6,31]. The balanced results mean that most properties are considered, but the derived results
may not be closed to the real-world properties. Therefore, Behera et al. check the similarity between
each pair of nodes [8]. The node similarity is also considered by Ezeh et al. to the overlapping nodes
and their neighbors [32]. To emphasize the community attribution of each node, Shakya et al. combine
fuzzy with the GA to calculate the detail properties of the nodes [7]. Shakya et al. consider the GA to
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reduce the computation time without decreasing the solution quality too much and adopt the fuzzy
communities to identify the overlapping nodes.

Even if some approaches provide the solutions with high modularity, the partitions may not
reflect the properties of the real-world networks in some situations. We found that the solution quality
could be refined by considering following issues: ignoring overlapping nodes, merging clusters,
and reweighting nodes. Therefore, we consider the modularity to design the solution searcher of the
approach GANWA

IMR . We firstly modify the fitness function in GANWA
IMR to show the network properties by

considering the null model, so the revised fitness function could output the partitions that are closer
to the real-world behavior. Moreover, we design three refinement strategies to make the solutions to
reflect the real-world properties.

In the simulation, we consider the synthetic network and popular networks that include Zachary
Karate Club Network, Books about American Politics, and American College Football to evaluate
the solution quality calculated by GANWA

IMR and other approaches. The derived networks correctly
reflect the real-world properties in the synthetic networks and the real-world networks. Moreover, the
proposed refinement strategies are also evaluated, and the refinement strategies provide higher quality
of the derived partitions in the perspective of the real-world behavior. Therefore, the simulation results
show that GANWA

IMR outputs the partitions, and the results are closed to the real-world properties.
This paper is organized as follows. The overlapping communities and the problem definition are

introduced and formulated in Section 2. The proposed approach GANWA
IMR is shown in Section 3, and the

refinement strategies are also listed in this section. The simulation and comparisons are arranged in
Section 4, and we show the network partitions in this section. Eventually, the conclusion and future
works are stated in Section 5.

2. Preliminary

2.1. Modularity in Overlapping Communities

The community detection of a given network involves two processes. The first one is to find out the
network structure and the other one is to determine the numbers of communities. Here we introduce
the works proposed by Nepusz et al. [33] to explain the modularity in overlapping communities.
Nepusz et al. consider a belonging coefficient matrix U = [αic]n×k, where n is the number of nodes,
and k is a given number of communities. Each entry αic shows how strongly the node vi belongs to the
community c. The constraint of the relationship between vi and all communities is:

k

∑
c=1

αic = 1, ∀αic ∈ [0, 1], 0 <
n

∑
i

αic < n. (1)

So, the objective function is:

DG(U) =
n

∑
i,j=1

wij(s̃ij − sij)
2, (2)

where wij is the predefined weight, sij = ∑k
c=1 αicαjc, and s̃ij is the prior similarity of vi and vj.

By minimizing Equation (2), the nodes with high similarity will be grouped together. So, U with
optimal result DG(U) is the overlapping community structure.

To determine an appropriate number of communities k, Nepusz et al. iteratively increase the
value of k from 2, and then choose the value of k with the highest fuzzy modularity value calculated
by Equation (3).

QNe
ov =

1
2m

k

∑
c=1

n

∑
i,j=1

(Aij −
kik j

2m
)αicαjc (3)
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2.2. Problem Definition

The overlapping community detection problem is considered as a node weight allocation problem,
denoted by NWAOCD for short. Given a network G(V, E), a maximum number of communities k,
and a null model weight γ. Find a modified belonging coefficient matrix M = [λic]n×k, such that the
Q
′
ov value is maximized. The objective function and constraints are:

max Q
′
ov =

1
2m

k

∑
c=1

n

∑
i,j=1

(Aij − γ
kik j

2m
)λicλjc

s.t. λic ∈ [0, 1]
|C|

∑
c=1

λ
inc f
ic = 1.

(4)

We consider inc f as the increasing factor. Given inc f > 1, the total weight of an overlapping node over
all communities is larger than one, i.e., ∑k

c=1 λic > 1. The total weight of a non-overlapping node is
still equal to one exactly, i.e., ∑k

c=1 λic = 1.
By solving the NWAOCD problem, the overlapping community structure will be obtained by

modifying the optimal solution. Note that if inc f = 1 and γ = 1, Equation (4) is the same with
Equation (5), which means the fuzzy modularity is a special case of the NWAOCD problem.

max Qov =
1

2m

k

∑
c=1

n

∑
i,j=1

(Aij −
kik j

2m
)αicαjc

s.t. αic ∈ [0, 1]
k

∑
c

αic = 1.

(5)

Although Griechisch et al. [34] apply the fuzzy modularity to find overlapping communities,
there are still some networks are unresolved. We introduce the networks with more than two
communities and two communities to show this issue. The benchmark is shown in Figure 1. The values
of Qov for G4415 and G415 are shown in Table 1. We can see that v9 belongs to B in G4415 while v5

belongs A in G415, and they are not overlapping nodes.
The major difference between Equations (4) and (5) is the coefficient matrix. Each entry in

Equation (5) is unweighted while that is weighted in Equation (4). Therefore, we need a mapping as
shown in the following equations.

λic = inc f
√

αic

αic = λ
inc f
ic

(6)

Table 1. The values of Qov in G4415 and G415.

(a) The Qov values with different assignments of v9 in G4415.

α9,B α9,C α9,D Qov

1 0 0 0.5736
0.7 0.3 0 0.5709
0.3 0.7 0 0.5664
0 1 0 0.5624
0 0 1 0.5560

(b) The Qov values with different assignments of v5 in G415.

α5,A α5,B α5,C Qov

1 0 0 0.4305
0 0 1 0.4151
0 1 0 0.4058
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3. Allocate Node Weight by Genetic Algorithms

Computing the partition with maximum modularity has been proved as the NP-complete
problem [13]. Even if we consider the solution with high computation performance, e.g., the cloud
computing [35,36] and the parallel computing [37], to compute the partitions for maximizing the
modularity, it still requires huge computation resource. Therefore, we propose a GA-based approach
to get the near-optimal solution with minimum computation. The proposed algorithm GANWA

IMR
includes two steps. We first apply GA to obtain a high-quality feasible solution, and then design three
refinement strategies to improve the derived solution to modify the derived partition to be closer to
the real-world behavior. In the following context, we will introduce the revised GA algorithm and the
refinement strategies.

3.1. Genetic Algorithm

The iterative process of GA as shown in Algorithm 1 includes three major processes: crossover,
mutation, and selection. Before invoking the iterative process, the initial population P with indin
chromosomes will be determined firstly. Each chromosome is represented by M = [λic]n×k, as shown
in Figure 2. Each entry λic is a weight to indicate the assignment from vi to c. The initial population
is generated randomly, and each row of M must satisfy the problem constraints. Given a maximum
number of iterations maxt, the GA then invokes following processes.

1. Crossover: we randomly select two chromosomes CA and CB form P, and a random column.
The offspring is generated by the selected column of CB and the remaining part of CA as shown
in Figure 3. The number of offsprings is determined by indin, and in other words, we will obtain
2× indin chromosomes after the crossover.

2. Mutation: the mutation process is launched in 80% probability after finishing the crossover.
Once the mutation is invoked, one λic of a randomly selected chromosome will be picked up
within [−0.1, 0.1]. Eventually, the offspring will be normalized to be a feasible solution to fit the
requirements in NWAOCD.

3. Selection: we consider the modularity to be the objective function, and finding the partition with
maximum modularity is the purpose of GA. We use Q

′
ov to be the fitness function and calculate

Q
′
ov of each solution. Moreover, all chromosomes are sorted in the descending order of Q

′
ov.

Computing the chromosomes with maximum Q
′
ov is the major goal of the GA, so we select top

indin individuals, and they will survive to the next generation.

Algorithm 1: Genetic algorithm for allocating node weight
Data: maxt: the maximum number of iteration, indin: the number of survival genes

1 P← initialization(indin);
2 for t = 1 : maxt do
3 P′ ← crossover(P);
4 P′ ←mutation(P′);
5 P←selection(P′);

Figure 2. The representation of a chromosome.
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Figure 3. The idea of the crossover operation. Two chromosomes are switched the selected area to
generate one offspring.

To keep the heavily overlapping nodes, a threshold αT in terms of α is given. We transform αT to
the corresponding λ with the threshold λT by Equation (6).

3.2. Refinement Strategies

GA provides an elite solution from the population, but this solution may not be suitable for
all instances. In the pre-analysis phase, we observed three situations derived by GANWA

IMR , and we
could receive better solutions by some extra processes. The situations are (1) lightly overlapping
nodes, (2) mergeable clusters, and (3) reweight nodes. We call the processes that are used to get better
solutions the “refinement strategies”. Therefore, we provide three refinement strategies to refine the
solutions for the above situations, respectively.

Ignore slight overlapping nodes The overlapping degree of each λ is important for splitting
the communities. Determining the community with low value of λ is easier than that with a
higher value. We use a threshold λT corresponding to Equation (6) to determine that the entry
should be treated as an entry without overlaps. In addition, we also can derive λT by Equation (6).
When λ < λT , we set λ as zero. When λT is set as a higher value, more entries will be assigned to
single community.
Merge clusters Some small communities should be merged by other large community. If the
overlapping ratio of any two communities is larger than a given merge threshold mT , they should
be simply merged to a single community. Given two non-empty communities, we define ovratio =

|C1 ∩C2|/min(|C1|, |C2|) to be the overlapping ratio. When ovratio is larger than a given threshold,
C1 and C2 will be merged.
Reweight node values To calculate the weight distribution of each overlapping node, directly
converting λ to α via Equation (6) results in a situation that a node belongs to multiple
communities but the majority of its weight is allocated to one community. To avoid this problem,
we propose the reweight strategy. The weight should be proportional to the number of edges that
vi linked in c. Moreover, if the neighbors of vi in c are more than the average number of nodes in c,
c is more important than others for vi. Given a community c, avgNighborc = ∑i,j∈V(c) Aij/|V(c)|
represents the average number of neighbors and αi = ∑c∈C(i) ∑j∈V(c) Aij/avgNighborc be the
normalized term. Therefore, we have the new weight is:

αic =
1
αi

∑
j∈V(c)

Aij

avgNighborc
, (7)

where V(c) is the set of nodes belong to c and C(i) is the set of communities that vi belongs to.
We use αi for normalization, so we have ∑k

c=1 αic = 1.

4. Simulations

We consider a synthetic network and three real networks including Zachary Karate Club network,
Books about American Politics, and American College Football to evaluate the performance of GANWA

IMR .
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The evaluation criteria involve detecting overlapping community structure, detecting meaningful
communities, detecting dense overlaps, and detecting heavily overlapping nodes.

4.1. Synthetic Network

We consider G210 as our synthetic network which has 210 nodes and four pre-defined
communities A, B, C and D. Each of them has 60 nodes and 10 shared by any two continuous
communities, i.e., A = {v1 : v60}, B = {v51 : v110}, C = {v101 : v160}, and D = {v151 : v210}. Note that
A and B share nodes {v51, . . . , v60}, B and C share nodes {v101, . . . , v110} and so on. Each pair of nodes
has 3% chances to be linked to each other, and for each community they shared, an extra 55% chances
for them to be linked. Thus, overlapping parts will be denser than non-overlapping parts [38].

Since the fuzzy modularity is a special case of the NWAOCD problem, we could use the same
optimization strategy to solve the problem. The parameter settings are inc f = 1.5 and 1, αT = 0,
mT = −1, k = 6, and γ = 1. Figure 4 shows the bitmaps of sorted adjacency matrices. The black and
white points represent the entries of 1s and 0s respectively. The adjacency matrices are sorted by the
following strategy:

1. Nodes are grouped by the detected community id. For the overlapping nodes, only the smallest
id is counted.

2. For each c, all nodes are sorted in descending order of λic. Therefore, the overlapping nodes will
be in the bottom area of each community.

(a) Result of our method (b) Result of fuzzy modularity

Figure 4. The comparison between GANWA
IMR and fuzzy modularity.

Figure 4a is the result obtained by GANWA
IMR . The dense blocks indicate four communities, and two

continuous blocks have an overlapping part which is composed of overlapping nodes. In this result,
all the overlapping and non-overlapping nodes are correctly identified. Figure 4b is the result of fuzzy
modularity. Four communities are detected too, but no overlapping nodes are identified.

Although the maximum number of communities is six, only four communities were detected
while the other two were empty communities. Since the number of communities could be captured by
modularity [39], it is unnecessary to know the exactly value of number of communities in our method.

4.2. Zachary Karate Club Network

Zachary karate club network [40] is a popular benchmark for community detection algorithms.
It has 34 nodes and 78 edges while nodes are members and edges are friendships between them.
This network includes two groups due to a disagreement between the administrator and the instructor.
Figure 5 is the result captured by the fuzzy modularity. In this experiment, we evaluate the results with
different inc f settings, and show the importance of “ignore slight overlapping nodes” and “reweight
node values”. Finally, we apply our method on the case with the value k = 2, and halved the
null model.
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Figure 5. Detected communities of the karate network by fuzzy modularity.

4.2.1. Effects of Weight Increasing Factor

We first evaluate the communities captured by GANWA
IMR in the networks with inc f =

{1, 1.2, 1.5, 1.7} while αT = 0.01, mT = −1, k = 8, and γ = 1. The corresponding Q
′
ov =

{0.419, 0.422, 0.427, 0.430}. We consider the fuzzy modularity with inc f = 1 as our baseline since it
outputs the correct solution.

Figure 6a is the result with inc f = 1.2, and we get four communities and three overlapping nodes
while λ is shown in Table 2a. The network separation in Figure 6a is identical to that in Figure 5,
but maximizing the modularity outputs a larger one than that we derived. When inc f is increased
from 1.2 to 1.5, we get two extra overlapping nodes, and they are v12 and v34. When inc f is set as 1.7,
the values of λ are changes as shown in Table 2c, and others are identical to that derived by inc f = 1.5.
Therefore, larger settings of inc f results in more overlapping nodes.

Table 2. The comparison with various inc f settings.

(a) λ values of overlapping nodes in Figure 6a with inc f = 1.2

Node λiA λiB λiC λiD

v1 0.967 0.068
v10 0.747 0.362
v24 0.419 0.696

(b) λ values of overlapping nodes in Figure 6b with inc f = 1.5

Node λiA λiB λiC λiD

v1 0.917 0.246
v3 0.986 0.075
v10 0.700 0.556
v12 0.993 0.048
v24 0.553 0.703
v34 0.993 0.048

(c) λ values of overlapping nodes in Figure 6b with inc f = 1.7

Node λiA λiB λiC λiD

v1 0.888 0.369
v3 0.987 0.108
v10 0.694 0.636
v12 0.926 0.290
v24 0.600 0.726
v34 0.989 0.097
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(a) Detected communities with inc f = 1.2 (b) Detected communities with inc f = 1.5 and 1.7

Figure 6. The communities detected by GANWA
IMR under various inc f settings.

Considering that a node has only one edge connecting to an overlapping node, e.g., v12,
the isolation has the same property with that held by the overlapping node. Moreover, we found that
Q
′
ov derived by GANWA

IMR is higher than the optimal Q. It implies that the overlapping structure is easier
to be detected as assigning higher weight to the overlapping nodes.

Here we consider an extreme case that all nodes are overlapped, i.e., inc f = 4. We analyze the
obtained result, and then find the “duplicate communities”. Two or more communities are extremely
overlapped with each other, and even some of them are just the same community.

Figure 7 shows the fuzzy partition result. Four communities are detected, but two of them
denoted by dotted lines are the subsets of the rest two communities denoted by solid lines. Therefore,
two sets should be merged to a correct community. After merging the communities, we derive two
communities, and there is only one overlapping node v10. However, the value of Q

′
ov is decreased

from 0.526 to 0.371 simultaneously.

Figure 7. Duplicate communities result.

Even if we derive the result with maximized value of Q
′
ov, the solution does not show the correct

properties of the communities. We use the refinement strategies to get the solution with lower quality
but more closed to the real-world properties. Therefore, the refinement strategies are useful for
improving the solution quality in terms of the real-world consideration.

4.2.2. Effects of Ignoring Slight Overlapping Nodes

We consider the network with inc f = 1.5 to evaluate the effects of the ignore step. The result
with and without the ignore step are 0.427114 and 0.427117, respectively. Figure 8 and Table 3 are
the detected communities and values of λ. Two overlapping nodes v28 and v30 are ignored. Since
most of their weights were kept in a specific community, reducing the weights will not decrease Q

′
ov



Entropy 2020, 22, 819 10 of 19

dramatically. Therefore, the process of ignoring slight overlapping nodes helps to keep those heavily
overlapping nodes.

Figure 8. Detected communities with inc f = 1.5 (before ignoring).

Table 3. λ values of overlapping nodes in Figure 8 with inc f = 1.5 (before ignoring).

Node λiA λiB λiC λiD

v1 0.917 0.246
v3 0.986 0.075
v10 0.700 0.556
v12 0.993 0.048
v24 0.553 0.703
v28 0.002 0.999
v30 0.999 0.004
v34 0.993 0.048

4.2.3. Effects of Reweight Strategy

To emphasize the importance of the communities, we propose a reweight strategy to assign
various weights. The result with reweight strategy is identical to that shown in Figure 6b. Table 4a,b
show the value of λ without and with considering the reweight strategy, respectively. The reweight
strategy reduces the gap of the number of edges for connecting the inside-community nodes and
outside-community nodes. However, the structure of the main community may be changed after
reweighting, because the values are inversely proportional to the average number of neighbors in the
communities to that out of communities. For example, v12 is unbalanced before reweighting, but the
value of λ of v12 reflect the real-world behavior.

4.2.4. The Network with Two-Communities

We examine the network with exactly two communities to verify the property illustrated in
Figure 1b can be captured by GANWA

IMR . We consider inc f = 1.5, αT = 0.01, mT = −1, k = 2, and γ = 0.5.
In this case, we easily find out the overlapping nodes. The results are shown in Figure 9 and Table 5.

GANWA
IMR derives three overlapping nodes as shown in Table 5. From Figure 9, we have Q

′
ov = 0.628,

and the dotted curve is the real split of the club network. v3 is the main overlapping node since it has a
roughly balanced weight value. In summary, the two-community problem is solved by reducing the
number of expected edges.
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Table 4. The comparison of GANWA
IMR with reweighting and without reweighting.

(a) Before reweighting

Node λiA λiB λiC λiD

v1 0.917 0.246
v3 0.986 0.075
v10 0.700 0.556
v12 0.993 0.048
v24 0.553 0.703
v34 0.993 0.048

(b) After reweighting

Node αiA αiB αiC αiD

v1 0.611 0.389
v3 0.709 0.291
v10 0.52 0.48
v12 0.440 0.560
v24 0.468 0.532
v34 0.725 0.275

Figure 9. Detected communities with k = 2, and γ = 0.5

Table 5. λ values of overlapping nodes in Figure 9.

Node λiA λiB

v3 0.493 0.753
v9 0.987 0.071
v10 0.984 0.085

4.2.5. Compare with Different Algorithms

In the above simulations, GANWA
IMR detects two communities, and we compare the result with

previous algorithms in this dataset. Shen et al. captured three overlapping communities [30], and the
overlapping nodes are v1, v3 and v9. However, v12 is missed in the method of Shen et al. The property
of the overlapping communities in v12 is not discovered. The node v12 has exactly one neighbor that is
node v1, so v12 should have the same overlapping properties as that of v1.

Chen et al. captured two overlapping communities [29], and their results are similar to ours as
shown in Figure 9. Chen et al. found one overlapping node v10. Node v10 has two edges that one
connects to the left community while the other one comments to the right community. Therefore,
considering v10 as the overlapping node is reasonable. However, the node v3 has five edges where
three edges connect to the left community while two connect to the right community. v3 is more
appropriate than v10 to be the overlapping node.

From the above observation, the communities are split more precisely by GANWA
IMR than the

previous works. For the considerations of the split appropriateness, e.g., the number of detected
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communities, and the split correctness, e.g., the overlapping nodes, GANWA
IMR provides more precise

results than other approaches.

4.3. Books about American Politics

This network is built from the transaction data from amazon.com [41]. The network has 105 nodes
and 441 edges while nodes indicate books and edges are frequent co-purchase events. The nodes are
labeled by three categories including liberal, neutral, or conservative. Each category has 43, 13, and 49
nodes respectively. In this simulation, we consider inc f = 1.5, αT = 0.01, mT = 0.5, k = 8, and γ = 1.
We evaluate the performance of the merge strategy. Figure 10a,b are the solutions with and without
merge strategies respectively. The text on each node is the node id and the real label. The results of
Q
′
ov are 0.528 and 0.533 for the results with and without merge strategy.

(a) Book communities after merging (b) Book communities before merging

Figure 10. The book comparison between GANWA
IMR with merging and without merging.

4.3.1. The Result with Merge Strategy

GANWA
IMR with the merge strategy detects four communities denoted by W, X, Y, and Z. Most nodes

belong to two large communities W and X, which are mainly consisted of conservative and liberal books
respectively. Most neutral books belong to two small communities. This result is similar to that obtained
by Newman [39]. Table 6 is the values of λ for ten overlapping nodes. There are four neutral nodes,
that is 40% of all overlapping nodes and 30% of all neutral nodes. The result implies that neutral books
are often co-purchased with different books.

4.3.2. The Result without Merge Strategy

GANWA
IMR without the merge strategy splits W and X into two parts respectively denoted by W1,

W2, X1 and X2. A small community including v48, v49 and v57 has been detected by the modularity
maximization [25]. Therefore, we also found this community and labeled it by W2.

Moreover, we also detect an extra community X2. After analyzing the edge density of X1 and X2,
they are both denser than the merged community X. Besides, the overlapped part is even denser as
shown in Table 7. The density function definition is as follows:
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D(c) =
1

(|V(c)|
2 )

∑
i,j∈V(c)

Aij

2
. (8)

Table 6. λ values of overlapping nodes in Figure 10a.

Node λiW λiX λiY λiZ Label

v3 0.986 0.076 conservative
v7 0.254 0.913 neutral
v9 0.975 0.11 conservative
v18 0.528 0.724 neutral
v22 0.955 0.164 conservative
v25 0.922 0.236 conservative
v28 0.72 0.533 neutral
v46 0.921 0.238 neutral
v50 0.458 0.781 conservative
v85 0.981 0.093 liberal

Table 7. Density value of each part of community X.

X X1 X2 X1 ∩ X2

D(c) 0.20 0.27 0.34 0.63

The overlapping ratios of (W1, W2) and (X1, X2) are 57% and 53%, respectively. High overlapping
ratios indicate that we could merge each pair of them without decreasing Q

′
ov too much. Therefore,

modularity can not detect X2 because of high overlapping ratio and dense overlapped part. This result
shows the dense overlaps can be discovered by GANWA

IMR correctly.

4.4. American College Football

This is the network of American football games between Division IA colleges in 2000 [42]. It
has 115 nodes, 613 edges and 12 conferences as shown in Table 8. Nodes are teams and edges are
games between the corresponding two teams while nodes are labeled by the conferences they belong
to. We apply inc f = 1.5, αT = 0.01, mT = −1, k = 15, and γ = 1 in this simulation.

Table 8. Labels of conferences.

Label Conference #Teams Label Conference #Teams

0 Atlantic Coast 9 6 Mid-American 13
1 Big East 8 7 Mountain West 8
2 Big Ten 11 8 Pacific Ten 10
3 Big Twelve 12 9 Southeastern 12
4 Conference USA 10 10 Sun Belt 7
5 Independents 5 11 Western Athletic 10

Figure 11 shows the result with Q
′
ov = 0.607, true labels are on the nodes. Ten communities and 17

overlapping nodes are detected. Most conferences are well matched to the detected communities except
for the conferences Independents (Label 5) and Sun Belt (Label 10). There are total seven overlapping
nodes in these two conferences. From Table 9, 41% overlapping nodes and 58% nodes are in the
two conferences.
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Figure 11. Football communities.

Table 9. λ values of overlapping nodes in Figure 11.

Node λiA λiB λiC λiD λiE λiF λiG λiH λiI λiJ Label

v2 0.06 0.99 2
v8 0.058 0.991 8
v9 0.971 0.123 7
v11 0.937 0.204 10
v23 0.981 0.094 7
v36 0.575 0.682 5
v44 0.11 0.975 4
v50 0.902 0.274 10
v58 0.961 0.149 11
v66 0.067 0.989 4
v67 0.05 0.993 11
v69 0.992 0.054 10
v78 0.05 0.992 8
v80 0.941 0.121 0.126 5
v82 0.065 0.082 0.097 0.953 5
v97 0.704 0.326 0.368 10
v112 0.065 0.989 4

The conference Independents has five teams, and only one game was held. This is the major reason
that makes this conference undetectable. However, the teams often play with other teams in varied
conferences, and this phenomenon results in the overlapping property. For example, v82 is assigned to
four communities, although it connected to community G with four edges. v82 still connects to other
three communities with a significant number of edges, so that is why it belongs to many communities
simultaneously as shown in Figure 12. On the other hand, Sun Belt is in the similar situation. In this
example, the heavily overlapping nodes could be detected by our method.
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Figure 12. The node v82 and its neighbors in football network.

4.5. Dolphin Network

The Dolphin Network is a common benchmark for evaluating the overlapping communities.
Some results consider the Dolphin Network to evaluate the community quality [26,43]. We compare
the proposed GANWA

IMR with related results in this simulation. The Dolphin Network includes 62 nodes
and 159 edges, and two communities are detected eventually for a long-term observation.

The distribution of λ for overlapping nodes is listed in Table 10 while the separation with
Q′ = 0.535 is illustrated in Figure 13. According to the refinement strategy Ignore slight overlapping
nodes, we get three overlapping nodes v20, v28, and v44 after decreasing the setting of λT from 1.0 to
0.9. The overlapping nodes are marked by the red circle with dot lines, and they are marked by the
overlapping nodes based on the distribution of λ. On the other hand, we also consider mT = −1 in
Dolphin network as the same setting in the above simulations. The community B, C, D, and E are
merged according to the refinement strategy Merge clusters. Eventually, we get two communities.

Figure 13. Five communities are detected by the proposed approach. There are three overlapping
nodes when using λT = 0.9. Therefore, the community B, C, D, and E could be merged by refinement
strategy Ignore slight overlapping nodes, and we find two communities eventually.
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Nicosia et al. found four communities in Dolphin network [26]. The overlapping nodes are
mentioned, but the authors did not list the overlapping nodes. Wang and Fleury provided detail
analysis and found two communities from Dolphin network with Q = 0.385 [43]. The separation
is acceptable, but the network structure is not so strong comparing to Figure 13. After considering
the refinement strategies, the separation derived by the proposed GANWA

IMR is similar to that provided
by Wang and Fleury in [43], but the structure of our network is stronger than the network in [43].
In summary, the refinement strategies are useful in revising the network separation to be closer to the
real-world behavior, and the strength of the network structure is also improved.

Table 10. λ values of overlapping nodes in Figure 13.

Node λiA λiB λiC λiD λiE

v0 0.008 0.999
v1 0.998 0.023
v2 0.076 0.986
v7 0.990 0.061
v8 0.022 0.998
v15 0.999 0.000 0.013
v19 0.986 0.074
v20 0.361 0.364 0.682
v23 0.909 0.261
v28 0.823 0.400
v30 0.051 0.992
v36 0.013 0.999
v37 0.990 0.062
v39 0.255 0.912
v40 0.998 0.021
v44 0.844 0.362 0.038
v45 0.992 0.053
v47 0.999 0.011
v50 0.928 0.175 0.103
v52 0.999 0.009
v59 0.138 0.965
v61 0.925 0.229

5. Conclusion and Discussion

Given a network, the modularity is used for measuring the partition quality while the fuzzy
clustering recognizes the overlapping communities. Combining above concepts together to be the
fuzzy modularity is an appropriate method to formulate the structure of the given network with
overlapping communities. Maximizing the modularity outputs the partition with well network
structure, but computing the partition with maximum modularity requires huge computation cost.
Therefore, the heuristic algorithms are outstanding in seeking high quality solution from a large
search space, and we can find some research results of using heuristic algorithms for finding the
partitions with maximum modularity. However, there are some special cases that we have to deal
with. We find out three common situations from the partitions derived from the GA with modularity
maximization and propose three solution refinement strategies to ignore overlapping nodes, merge
clusters, and reweight nodes to separate the network to be closer the real-world behaviors. Moreover,
we modify the fitness function of the GA to consider the null model for measuring the distance between
the derived partition and the random graph. Thus, the simulation results show that the proposed
GANWA

IMR provide significant improvement comparing with previous approaches. The derived partition
may not always have maximum modularity, but the community structure is more reasonable than
the partitions derived by previous works. GANWA

IMR measures the connectivity of nodes and reweight
the overlapping nodes to reflect the correct properties in the given networks. Eventually, GANWA

IMR
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determines the partitions appropriately, but the heavily overlapping nodes may be marked as the
interior nodes by other approaches.

The overlapping nodes could be detected and provided appropriate allocation by GANWA
IMR . During

the simulations, we found some extension works that will be address in the future, and they are listed
as follows:

1. In our simulations, we got an interesting result as shown in Figure 14 from the karate network
with inc f = 2. The result consists of three communities, and they are grouped by v33, v3 and v1.
The community with v3 that the nodes are marked by red could be consider as an overlapping set.
It means that the networks not only have overlapping nodes but also overlapping groups. Thus,
applying the fuzzy concept to the communities will eliminate the group with v3, and they may
be more closed to the real-world behavior. Since the members in the group with v3 may belong to
different communities based on the situations, e.g., the competitions or the events. Therefore,
assigning the red nodes to any community may be inappropriate.

2. The proposed algorithm invokes GA to compute the preliminary partitions and then
adopts proposed refinement strategies to correct the partitions by the secondary processes.
The refinement strategies could be considered as the local search to improve the partition quality
in each iteration. However, it is a tradeoff between the computation cost and the partition quality.
Once the refinement strategies are modified from the external processes to the internal processes
in GA, the computation cost will be increased. Moreover, the given networks may not always
consist of the target properties that could be improved by the refinement strategies. Therefore, the
refinement strategies could be designed as local search approaches, but the trigger of launching
the local search approaches should be analyzed in the future.

Figure 14. The 5th detected community of the karate network.
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