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Abstract: In practical quantum communication networks, the scheme of continuous-variable
quantum key distribution (CVQKD) faces a challenge that the entangled source is controlled
by a malicious eavesdropper, and although it still can generate a positive key rate and security,
its performance needs to be improved, especially in secret key rate and maximum transmission
distance. In this paper, we proposed a method based on the four-state discrete modulation and
a heralded hybrid linear amplifier to enhance the performance of CVQKD where the entangled
source originates from malicious eavesdropper. The four-state CVQKD encodes information by
nonorthogonal coherent states in phase space. It has better transmission distance than Gaussian
modulation counterpart, especially at low signal-to-noise ratio (SNR). Moreover, the hybrid linear
amplifier concatenates a deterministic linear amplifier (DLA) and a noiseless linear amplifier (NLA),
which can improve the probability of amplification success and reduce the noise penalty caused by
the measurement. Furthermore, the hybrid linear amplifier can raise the SNR of CVQKD and tune
between two types of performance for high-gain mode and high noise-reduction mode, therefore it
can extend the maximal transmission distance while the entangled source is untrusted.

Keywords: untrusted source; discrete modulation; heralded hybrid linear amplifier

1. Introduction

Quantum key distribution (QKD) allows two legitimate parties to share the secure key string over
an insure quantum channel [1–5]. The continuous-variable QKD (CVQKD) is one of alternative
protocol of QKD, can provide higher detection efficiencies than original discrete-variable QKD
(DVQKD) [6–12]. Furthermore, using the lase to generate the entangled source makes it easier to
integrate with existing fiber network systems. However, compared with the DVQKD, the CVQKD has
one of fatal disadvantages, which is the short secure transmission distance [11,13,14], especially if the
entangled source is untrusted [15]. In fact the safety of CVQKD protocol has been proved where the
entangle source is originated from the malicious eavesdropper [15], and it still can distill a positive key
rate. However, the performance of this protocol is not great in terms of secret key rate and transmission
distance, and thus could restrict the practical application of CVQKD in development. One of the main
reasons for the short transmission distance of CVQKD is that traditional Gaussian modulation CVQKD
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cannot maintain relatively high reconciliation efficiency in long-distance transmission, but discretely
the modulation scheme can solve this problem even better than using error correcting code [16].
The four-state discretely modulation scheme produces four nonorthogonal coherent states in phase
space and thus it can randomly select those coherent states by different quadrature to encode
information rather than using the x̂ and p̂ quadratures themselves. Due to the fact that, the received
coherent state will be easier to distinguish with a traditional Gaussian counterpart. That is the reason
why the discrete modulation scheme can reach relative longer transmission distance even at very low
SNR [16].

The penalty noise caused by detector in Bob side will also directly affect the transmission distance
performance of CVQKD protocol where the entanglement source is untrusted. In practice, the intrinsic
disadvantage of the receiver’s apparatus, such as the efficiency of detector and the electrical noise
referred by measurement, will decrease the secret key rate and thus shorten the transmission distance.
In fact, optical amplifiers can solve such problem, for instance, the noiseless linear amplifier (NLA)
is one of existing methods to overcome this limitation of detector. It can compensate the noise
penalty and thus preserve the signal-to-noise ratio (SNR) [17–21]. However, the CVQKD scheme
with non-traditional light source modulation and non-Gaussian operation, such as the discrete or
unimensional modulation and photon subtraction operation, cannot directly implement via NLA.
To overcome this problem, the measurement-based NLA (MB-NLA) has been proposed [22,23],
which installs a dual homodyne detection ahead of NLA. The MB-NLA not only solve the application
problem of NLA in CVQKD shceme with non-Gaussian modulation, but also can simulate the action
of post-selection with amplifier. Furthermore, the quantum filter induced by the MB-NLA can simply
model an appropriate postprocessing [24,25]. Although MB-NLA has the advantages mentioned above,
its property of post-selective restricts it in point-to-pint application such as CVQKD. To overcome this
defect, the hybrid amplifier has been proposed, which concatenates a deterministic liner amplifier
(DLA) behind the MB-NLA to form a feed-forward loop [25]. Due to the installation of the DLA,
the amplification function uncertainty caused by NLA has been solved [24]. Furthermore, the DLA
also can compensate the degeneration of SNR caused by NLA. It is worth noting that DLA can be
divided into a phase-sensitive amplifier (PSA) and phase-insensitive amplifier (PIA) [26,27]. If Bob
adopts heterodyne measurement, we only can deploy PIA as the DLA, on the contrary, it can deploy
PSA [28,29].

From the inspiration of the discrete modulation and hybrid amplifier mentioned above, in this
paper, we proposed a scheme of discretely modulated CVQKD with hybrid amplifier to improve the
performance of CVQKD with untested entangled source. Here, the four-state discrete modulation can
improve the transmission distance of CVQKD even on the low SNR. Moreover, a hybrid amplifier
deployed on the Bob side can reduce the influence of electrical noise caused by the detection and
thus further enhance the transmission distance and secret key rate. The hybrid amplifier not only
integrates the advantages of MB-NLA and DLA, but also provides a fully tunable gain for NLA and
DLA. The proposed scheme outperforms the classical Gaussian modulation CVQKD with untested
source in terms of the key rate, and also transcends the traditional discrete modulation CVQKD with
untested source in terms of the maximal transmission distance.

This paper is structured as follows. In Section 2, we introduce the scheme design for four-sate
discrete modulation CVQKD with untested source involving the hybrid amplifier. In Section 3,
we demonstrate the secret key rate for the proposed scheme. In Section 4, we analyze the results of its
performance. In Section 5, we provide a conclusion.

2. Discretely Modulated CVQKD with Untested Source via Hybrid Amplifier

In this paper, we consider to integrate a hybrid amplifier at Bob side in discretely modulated
CVQKD scheme with untested source and thus leading to the performance improvement of
transmission distance at low SNR. In this section, we will introduce the Alice side, Eve side, and Bob
side according to the order from left to right in Figure 1, namely, the four-state discrete modulation
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will be introduced at first, next we consider about the CVQKD scheme with untested source model,
and the last part is the description of hybrid amplifier.

Figure 1. (Color online) Schematic of the entangled source in middle (ESIM) CVQKD using a hybrid
amplifier. In the entanglement-based model, Alice detects one of the EPR states by heterodyne detector
and the hybrid linear amplifier is installed before Bob uses either the homodyne or heterodyne detector
to measure the other half of EPR states. Eve’s attack consists of two entangling cloner attacks on either
side of the source. The yellow box of gn̂ shows the hybrid linear amplifier.

2.1. Deploying a Four-State Discrete Modulation at Alice Side

We first begin by introducing the four-state discrete modulation scheme. The four-state protocol
is belonged to the discrete modulation protocol. In the discrete modulation CVQKD, Alice produces N
coherent states at phase space with

|αN
k 〉 = |αe

i2kπ
N 〉. (1)

For the four-state protocol, we only prepare four coherent states at phase space (see the

Figure 2) [12], namely, here we have |αN
k 〉 = |αe

i(2k+1)π
4 〉, k ∈ {0, 1, 2, 3}, and α is a positive parameter

and relates to the modulation variance with α =
√

VM
2 .

Figure 2. (Color online) Four-state discrete modulation in phase space.
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In the scheme of prepare-and-measure (PM), Alice randomly selects one of coherent state
|α4

k〉, k ∈ {0, 1, 2, 3}, and transmits it to Bob by quantum channel with transmission efficiency T and
excess noise ε. Bob use detector to measure the received coherent states with detection efficiency Td
and electronics noise vel . The mixture of four coherent state received by Bob can be denoted as

ρ4c =
1
4

3

∑
k=0
|α4

k〉〈α
4
k |. (2)

At the equivalent scheme of entanglement-based (EB), we can more convenient to calculate the
secret key rate. First, the ρ4c is transformed to

ρ4c = trA(|Φ〉〈Φ|), (3)

the mixture coherent state can be diagonalized and thus rewritten as the following form,

ρ4c = µ0|φ0〉〈φ0|+ µ1|φ1〉〈φ1|+ µ2|φ2〉〈φ2|+ µ3|φ3〉〈φ3|, (4)

here
µ0,2 =

1
2

e−α2
[cosh(α2)± cos(α2)], (5)

µ1,3 =
1
2

e−α2
[sinh(α2)± sin(α2)], (6)

and

|φk〉 =
e−

α2
2

√
µk

∞

∑
n=0

α4n+k√
(4n + k)!

(−1)n|4n + k〉. (7)

Then, we purify the system by the Schmidt decomposition

|Φ〉 = 1
2

3

∑
k=0
|ψk〉|αk〉, (8)

where the non-Gaussian (NG) state |ψk〉 can be expressed as

|ψk〉 =
1
2

3

∑
m=0

e−i(1+2k)m( π
4 )|φm〉. (9)

2.2. Eve Producing the Untrusted Entanglement Source

In practice, we need to consider any possible scenarios like that Eve that could have controlled
the entangled source and generate it to any state. In this case, we first assume that Eve adopts
Gaussian modulation and compare its performance to discrete modulation counterpart. That is
because the Gaussian state can produce the maximum Shannon mutual information. In Gaussian
attack, Eve perfectly uses its own quantum channel to replace the quantum channel which is placed
between Alice and Bob. The loss channels are simulated by two independent beam splitters with
transmissions T1 and T2 [12]. Note that if there is a symmetric transmission (T1 = T2), it can be
considered as entangled source in middle (ESIM) CVQKD protocol, and if these two transmissions
are asymmetric with T1 = 1 (T1 6= T2), it can be recovered to the traditional CVQKD protocol where
entangled source is generated at Alice or Charlie. In this case, we hypothesize entangled source
is generated by Eve, but Eve is close to Alice side. Here, we have the distance between Alice and
Eve with L1 and Eve between Bob with L2, therefore the channels transmissions can be rewritten as
T1 = 10−0.02L1 , T2 = 10−0.02L2 , and thus T = T1T2.

Eve’s Einstein–Podolsky–Rosen (EPR) state |ψ〉AB is created by two single-mode squeezed states,
|z〉 and | − z〉 with

|z〉i = Ôi(z|0〉, (10)
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here Ôi(z) is the squeezing operator and can be expressed with

Ôi(z) = exp[− z
2
(â†2

i − â2
i )], (11)

where âi and â†
i represent the creation and annihilation operation, and z is the squeezing parameter.

The combining two single-mode squeezed states (ẑA0 and ẑB0) become a EPR state |ψ〉AB by a 50:50
beam splitter. We can denote each entangled mode (X̂A and X̂B) as

X̂A =
(ẑA0 + ẑB0)√

2
, (12)

X̂B =
(ẑA0 − ẑB0)√

2
. (13)

The EPR state |ψ〉AB can be represent as

|ψ〉 = ÔAB(−z)|0〉A|0〉B = δ
∞

∑
n=0

λn|n, n〉, (14)

where ÔAB represents a squeezing operator on two modes (modes A and B),

ÔAB(z) = exp[−z(â†
A â†

B − âA âB)], λ =
√

V−1
V+1 , here V is variance of two modes and δ =

√
1− λ2.

Then, we assume that Eve performs the best collective Gaussian attack on the entangled source modes.
The entangling cloner, a common collective Gaussian attack, is used to prepare two ancilla modes,
X̂E1 and X̂E2 , from an entangled Gaussian state with symmetrized variance (W1 = W2). In each pulse,
Eve stores modes E11 and E21 in her quantum memory and injects the other two modes E12 and E22

into the beam splitter, thus obtains the output modes E13 and E23. In the end of protocol, Eve measures
the quadratures of E11 and E21 to obtain the communication information between Alice and Bob.

2.3. Implementing a Hybrid Linear Amplifier at Bob Side

First, we introduce the conceptual layout of our scheme, and in order to overcome the
post-selective nature and thus promote the point-to-point application for traditional linear amplifier,
we set a feed-forward loop outputted to a quantum state instead of the original state as follows [24],

ρ̂out = ZTrv{D̂gD gn̂
N ρ̂in ⊗ |0〉〈0|vgn̂

N D̂†
gD
}. (15)

where the Z is the normalization factor and the operators D̂gD and gn̂
N are used to model the action of

NLA and DLA. In addition, the input coherent state can be written as

ρ̂in =
1
π

1− λ2

λ2

∫
d2αe−

1−λ2

λ2 |α|
2
|α〉〈α|. (16)

here the λ (0 ≤ λ < 1) relates to the variance of coherent states with V. Due to the operations of NLA
and DLA, the variance has been changed to

V =
1 + λ2

1− λ2 =⇒ Vg =
1 + g2

Nλ2

1− g2
Nλ2

. (17)

The mean variance of two quadratures of the electric field can be written as

〈X̂〉 = â + â†, (18)

〈P̂〉 = −i(â− â†). (19)
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when the signal feed through the hybrid amplifier, the expectation of the measurable value M̂ = (â, â†)

is further amplified by DLA, and the outcomes can be expressed as

âout = âingD + â†
int

√
g2

D − 1, (20)

â†
out = â†

ingD + âint

√
g2

D − 1. (21)

So that, according to above Equations ( 18)–( 21), we can give the corresponding outcome
quadratures of amplitude and phase as

〈X̂〉out = 〈X̂〉ingN gD, (22)

〈P̂〉out = 〈P̂〉ingN gD. (23)

In this proposed scheme, we take the GG02 protocol [2] (the GG02 protocol is a fundamental
CVQKD protocol) as usual but add a hybrid amplifier at Bob side, so that the secure key rate should
depend on the covariance matrix with presence of the hybrid amplifier. However, the output of the
linear hybrid amplifier remains in the Gaussian regime, therefore we use an equivalent channel to
replace the previous one (Figure 3). Here, the corresponding system parameters are changed from
(|λ〉, T1, T2, ε, χ) to (|ζ〉, η1, η2, εgn, χgd), those equivalent parameters are listed below,

ζ = λ

√
(g2

N − 1)(ε− 2)T − 2
(g2

N − 1)εT − 2
, (24)

η =
g2

NT
(g2

N − 1)T[ 1
4 (g2

N − 1)(ε− 2)εT − ε + 1] + 1
, (25)

εgN = ε− 1
2
(g2

N − 1)(ε− 2)εT, (26)

χ
gD
hom =

(1− Td) + vel
gDTd

, (27)

and

χ
gD
het =

1 + (1− Td) + 2ve + (gD − 1)Td
gDTd

. (28)

Figure 3. (Color online) An EPR state |λ〉 sent through a Gaussian quantum channel with transmittance
T1, T2, excess noise ε, and detection-added noise χ has been replaced by an EPR state |ζ〉 sent through
a Gaussian quantum channel with transmittance ηa, η2, excess noise εgn, and detection-added noise
χgd, but without the hybrid amplifier.
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Finally, we present the equivalent experimental layout for our scheme. As mentioned above,
we consider applying a hybrid linear amplifier at Bob’s station (as shown in Figure 4). The input mode
B1 is first fed through a beam splitter with transmissivity Tg = (gN/gD)

2, here gN and gD represent
gains of NLA and DLA, respectively. After that, the reflected mode is fed through a measurement-based
noiseless linear amplifier (MB-NLA), which consists by a dual-heterodyne detection and a noiseless
linear amplifier. Here, one of the heterodyne detectors is used to measure the X quadrature of the
coherent state, and other one measures the P quadrature. The MB-NLA has some special features,
including a probabilistic of Gaussian filter and rescaling of amplifier gain factors. Here, the rescaling
of gain NLA is given as g′N = 1

gN
, and thus the success probability of Gaussian filter is given as [25,30]

P(αm) =

{
exp(|αm|2 − |αc|2)[1− (gN)

2], |αm| ≤ αc

1. |αm| > αc
(29)

The measurement outcomes of the dual-heterodyne detection is applied as [23]

αm =
xm + ipm√

2
, (30)

and αc represents a tunable cut-off parameter, which directly determines the success probability of
the protocol and how closely the MB-NLA approximates to an ideal NLA (αc > 0). In this scheme,

we couple a DLA before the MB-NLA to further improve the probability of success byg′D =
√

2(g2
D − 1).

Finally, the output signal feeds through an elector-optic modulator (EOM) and a beam splitter with
transmissivity 99:1.

Figure 4. (Color online) The heralded hybrid linear amplifier is applied at Bob side. The mode B1 first
goes through into a beam splitter with transmissivity Tg, then the reflected mode goes through into the
MB-NLA concatenated by a dual-heterodyne detection and NLA. Here, the dual-heterodyne detection
is used to measure the X and P quadrature of the reflected mode, respectively. After that we set a DLA
and an elector-optic modulator (EOM) to dispose the amplified signal pulse and output mode B2 by a
beam splitter with transmissivity 99:1.

Notice that the performance of our hybrid amplifier depends on the respective gain of two
different amplifiers. A relatively larger NLA gain cloud increases the signal-to-noise ratio (SNR),
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but also leads to a lower success probability. In contrast, a relatively larger DLA gain would increase
the success probability, but will also bring the added noise.

3. Simulation of the Secret Key Rate

In this section, we will demonstrate the calculation process of the asymptotic secret key rate
for traditional Gaussian modulation and discrete modulation. The traditional Gaussian modulation
scheme is based on two quantum states (coherent or squeezed states) and two measurement methods
(homodyne or heterodyne detection). The discrete modulation scheme is based on coherent state
four-state modulation and homodyne detection.

3.1. The Gaussian Modulation with Untested Source via Hybrid Amplifier Scheme

In the Gaussian modulation scheme, we will mainly introduce calculation of direct reconciliation,
and for the reverse reconciliation the calculation process can be simply derived form the covariance
matrix ΓA2B2 by switching a and b. The secret key rate is defined as [2]

K = βI(A2 : B3)− χE, (31)

here β represents the reconciliation efficiency and I(A2 : B3) is the Shannon mutual information
between Alice and Bob [31]; furthermore, the χE is Eve’s mutual information connected between
Eve and Alice for direct reconciliation or between Eve and Bob for reverse reconciliation. When we
consider the situation of untested entangled source CVQKD protocol with hybrid amplifier at Bob side,
the covariance matrix of the Gaussian state ζA2B3 is given by (notice that here we assume that Alice
and Bob both have deployed the ideal detectors)

ΓA2B3 =

(
aI cσz

cσz bI

)
,

where I and σz are the Pauli matrices a = η1V + (1 − η1)W1, b = η2V + (1 − η2)W2,
and c =

√
η1
√

η2
√

V2 − 1; therefore, the covariance matrix ΓA2B3 can be rewritten as(
η1V + (1− η1)W1 I

√
η1
√

η2
√

V2 − 1σz√
η1
√

η2
√

V2 − 1σz η2V + (1− η2)W2 I

)
,

here Wi = ηiχline/(1− ηi)(i = 1, 2) and χline = (1− ηi)/(ηi + εgn) represents the added noise inputted
by Gaussian channel. We first introduce the case of squeezed states with homodyne or heterodyne
detection. In this case, when Bob adopts homodyne measurement, the mutual information between
Alice and Bob can be defined as [2]

I(A2 : B3)
S
hom =

1
2

log2(
a

a− c2/b
), (32)

with heterodyne measurement the mutual information is given as

I(A2 : B3)
S
het =

1
2

log2(
a

a− (c2/(b + 1))
). (33)

Then, we will introduce the Eve’s mutual information, namely, the χE mentioned in
Equation ( 31). Here,

χE = S(E)− S(E|A), (34)

and it has the same calculation process for both homodyne and heterodyne detections. Due to the
direction reconciliation implemented in this scheme, which only depends on the measurement results
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with Alice but not Bob. Furthermore, Eve provides a purification for Alice and Bob’s matrix, so that
we can rewrite S(E) as

S(AB) = G[(λ1 − 1)/2] + G[(λ2 − 1)/2]. (35)

Here, G(x) = (x + 1)log2(x + 1)− xlog2x, thus the symplectic eigenvalues are represented as

λ2
1,2 =

1
2
[A±

√
A2 − 4B2]. (36)

where A = a2 + b2 − 2c2 and B = ab − c2, then Eve uses the same purification for Alice
and Bob’s matrix, thus we can rewrite S(E|A) as S(B|A). Here, S(B|A) = G[(λ3 − 1)/2] and
λ3 =

√
b(b− (c2/a)). Therefore, we now can calculate the secret key rate mentioned in Equation ( 31).

Next, when Alice adopts coherent state, the mutual information for Alice and Bob with homodyne
and heterodyne detections are given by

I(A2 : B3)
C
hom =

1
2

log2(
a + 1

a + 1− c2/b
), (37)

I(A2 : B3)
C
het = log2(

b + 1
b + 1− c2/(a + 1)

). (38)

in the case of coherent state with homodyne detection and heterodyne detection, the S(E) mentioned
in Equation ( 34) is same with the counterpart of squeezed state, but the S(E|A) is replaced by S(BC|A)

and expressed as follows,

S(BC|A) = G[(λ4 − 1)/2] + G[(λ5 − 1)/2], (39)

here

λ2
4,5 =

1
2
[Chom ±

√
C2

hom − 4Dhom]. (40)

where, in the case of homodyne detection, the Chom and Dhom can be denoted as

Chom =
Aχ

gD
hom + V

√
B + η(V + χline)

η(V + χtot)
, (41)

Dhom =
√

B
V +
√

Bχ
gD
hom

η(V + χtot)
. (42)

For the heterodyne case, the symplectic eigenvalues 6 and 7 can be expressed as

λ2
6,7 =

1
2
[Chet ±

√
C2

het − 4Dhet], (43)

and Chet and Dhet are denoted as follows,

Chet =
A(χ

gD
het)

2 + B + 1 + 2χ
gD
het[V

√
B + η(V + χline)] + 2η(V2 − 1)

[η(V + χtot)]2
, (44)

Dhet = (
V +
√

Bχ
gD
het

η(V + χtot)
)2. (45)

χline = 1/η− 1+ ε is shot noise units and χtot = χline + χh/η is channel total noise, here χh is detection
added noise mentioned in Equations ( 27) and ( 28) with χ

gD
hom and χ

gD
het. We can now plot the final

secret key rate for both the Gaussian modulation squeezed state and coherent state.
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3.2. The Discrete Modulation with Untested Source via Hybrid Amplifier Scheme

In the discrete modulation scheme, we mainly consider direct reconciliation with the coherent state
scheme. The secret key rate is also same as Equation ( 31), but due to the state ζDM

A2B3
, is not Gaussian

anymore, and we should replace the Gaussian state ζA2B3 to ζDM
A2B3

as follows,

ΓDM
A2B3

=

(
aDM I cDMσz

cDMσz bDM I

)
,

here aDM = η1a0 + (1− η1)W1, bDM = η2bo + (1− η2)W2, and cDM =
√

ηc0, the a0,b0 and c0 can
express as following

a0 = 1 + 2α2, (46)

b0 = 1 + 2α2, (47)

c0 = 2α2
3

∑
k=0

µ3/2
k−1µ−1/2

k . (48)

where α =
√

VM
2 and VM = V− 1; the mutual information between Alice and Bob is also the same with

Gaussian counterpart in Equation ( 37), but the χE has been changed, χE = S(E)− S(E|A), here the
S(E) can be denoted as

S(E) = S(AB) = G[(λDM
1 − 1)/2] + G[(λDM

2 − 1)/2]. (49)

Here G(x) = (x + 1)log2(x + 1)− xlog2x, thus the symplectic eigenvalues are represented as

λDM
1,2 =

√
1
2
(ADM ±

√
A2

DM − 4B2
DM), (50)

with ADM = a2
DM + b2

DM− 2c2
DM and BDM = aDMbDM− c2

DM, furthermore the S(E|A) is also replaced
by S(BC|A)

S(BC|A) = G[(λDM
3 − 1)/2] + G[(λDM

4 − 1)/2], (51)

with

λDM
3,4 =

√
1
2
[CDM

hom ±
√
(CDM

hom )2 − 4DDM
hom ]. (52)

Here, CDM
hom and DDM

hom can be denoted as

CDM
hom =

ADMχ
gD
hom + V

√
BDM + η(V + χline)

η(V + χtot)
, (53)

DDM
hom =

√
BDM

V +
√

BDMχ
gD
hom

η(V + χtot)
. (54)

In the case of heterodyne detection, the symplectic eigenvalues are expressed as

λDM
5,6 =

√
1
2
[CDM

het ±
√
(CDM

het )2 − 4DDM
het ], (55)

and

CDM
het =

ADM(χ
gD
het)

2 + BDM + 1 + 2χ
gD
het[V

√
BDM + η(V + χline)] + 2η(V2 − 1)

[η(V + χtot)]2
, (56)
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DDM
het = [

V +
√

BDMχ
gD
het

η(V + χtot)
]2. (57)

Finally, we can plot the secret key rate for proposed scheme in terms of discrete modulation.

4. Performance Analysis and Results Discussion

In the process of parameter setting of the hybrid amplifier, an appropriate gain value of the
amplifier will directly determine the final performance of the scheme. As the main function of DLA is
to improve the functional uncertainty caused by NLA, its gain value does not significant improvement
for the performance of proposed scheme. Therefore, we mainly discuss the optimal range of NLA
gain first. As shown in Figures 5– 7, here we set the tunable distance to derive the optimal range for
gN in our proposed scheme. The parameters are set as fixed value with gD = 12, η = 1, ε = 0.01,
and VM = 0.3.

In the first scenario, we set different distance with d = 15 km, d = 20 km, and d = 25 km. As shown
in Figure 5, the public zone 1 highlighted with light gray denotes that two kinds of proposed scheme
can obtain relative higher secret key rate in this gain value range of gN (6.1 ≤ gN ≤ 8.6).

In the second scenario, we have different distance values with d = 30 km, d = 35 km, d = 40 km,
and d = 45 km. The public zone 2 has been highlighted with light gray in Figure 6, which represents our
proposed schemes can obtain relative higher secret key rate in this gain range with NLA (6 ≤ gN ≤ 14).

In the final scenario, the distance value are given as d = 90 km, d = 95 km, and d = 100 km.
Our proposed scheme can reach the relative higher secret key rate in the public zone 3, which has been
shown in Figure 7 with the gain value range (7.5 ≤ gN ≤ 20).

Therefore, considering the above three scenarios, we can get the overlapping area (7.5 ≤ gN ≤ 8.6)
in Figure 8, which represents the optimal gain range for proposed scheme.

Figure 5. (Color online) The optimal value range for gNLA. The X-coordination and Y-coordination
represent gain value of NLA and secret key rate, respectively. The figure shows that the proposed
scheme with different detector (homodyne detector and heterodyne detector) can obtain relative higher
secrete key rate in the public area 1. Here, the distance be set as 15, 20, and 25 km. Moreover, the fixed
parameter values are set with gD = 12, η = 1, ε = 0.01, and VM = 0.3.
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Figure 6. (Color online) The optimal value range for gNLA. The X-coordination and Y-coordination
represent the gain value of NLA and secret key rate, respectively. The figure shows that the proposed
scheme with different detectors (homodyne detector and heterodyne detector) can obtain relative
higher secrete key rate in the public area 2. Here, the distance be set as 30, 35, 40, and 45 km. Moreover,
the fixed parameter values are set with gD = 12, η = 1, ε = 0.01, and VM = 0.3.

Figure 7. (Color online) The optimal value range for gNLA. The X-coordination and Y-coordination
represent gain value of NLA and secret key rate, respectively. The figure shows that the proposed
scheme with different detector (homodyne detector and heterodyne detector) can obtain relative higher
secrete key rate in the public area 3. Here, the distance be set as 90, 95, and 100 km. Moreover, the fixed
parameter values are set with gD = 12, η = 1, ε = 0.01, and VM = 0.3.
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Figure 8. (Color online) Considering the above three public areas denoted in Figures 5– 7, we get the
overlapping region in this figure, which represents the optimal gain value range of proposed scheme.

Moreover, we find that the distance between Alice and Eve (L1) can also influence the performance
of our scheme. In Figure 9, here we set different distances, L1, to observe the schemes performance
with L1 = 0.2 km, L1 = 0.3 km, L1 = 0.4 km, L1 = 0.5 km, and L1 = 0.6 km. The fixed parameters
are set with gN = 8, gD = 12, η = 1, ε = 0.01, and VM = 0.3. As shown in Figure 9, the light
blue solid lines and red solid lines represent four-state discrete modulation with untested source
via heterodyne detection and homodyne detection, respectively. Furthermore, the dark blue solid
lines and orange solid lines denote four-state discrete modulation with untested source via hybrid
amplifier by heterodyne and homodyne detection, respectively. We can find that with the increasing of
L1 the maximum transmission distance of all schemes is increasing, and the increasing of scheme with
four-state untested source via homodyne detection is the most obvious, which is almost catching up
the scheme with four-state untested source by hybrid amplifier via heterodyne detection. However,
when the distance exceeds 0.6 (L1 > 0.6 km), the four-state with untested source schemes are on longer
to generate the secret key rate, and it has the same situation with the counterpart schemes of hybrid
amplifier in L1 > 50 km and L1 > 2 km, respectively (as shown in Figures 10 and 11). Therefore, in our
scheme we set the distance between Alice and Eve with L1 = 0.5.
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Figure 9. (Color online) The performance of proposed schemes for different L1. The fixed parameters
are set with gN = 8, gD = 12, η = 1, ε = 0.01, and VM = 0.3. Here, the light blue solid lines and red
solid lines express the scheme without hybrid amplifier, moreover dark blue solid lines and orange
lines represent the scheme with hybrid amplifier.

Figure 10. (Color online) The performance of schemes with four-state untested source via hybrid
amplifier and heterodyne detection in different L1. The fixed parameters are set with gN = 8, gD = 12,
η = 1, ε = 0.01, and VM = 0.3.
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Figure 11. (Color online) The performance of schemes with four-state untested source via hybrid
amplifier and homodyne detection in different L1. The fixed parameters are set with gN = 8 gD = 12,
η = 1, ε = 0.01, and VM = 0.3.

Based on the calculation process in the previous section, we show the performances of various
protocols over the lossy quantum channel. According to different modulation methods, we divide these
protocols into two categories that includes the protocol based on Gaussian modulation and discrete
modulation. For these schemes, we set the entanglement source in untested side, and implement
a hybrid amplifier at Bob side. In the case of Gaussian modulation we have the squeezed-state
with homodyne and heterodyne detection, or, equivalently, coherent-state with homodyne and
heterodyne detection (in Figure 12a). In the scenario of discrete modulation, we select coherent-state
with homodyne and heterodyne detection (in Figure 12b). The dashed lines in Figure 12a) indicate
the scheme without hybrid amplifier, and the solid lines denote the scheme implemented hybrid
amplifier. Where the red dashed line indicates that the scheme by coherent state with untested source
and heterodyne detection is far behind its corresponding scheme with hybrid amplifier, and the
red solid line, in terms of transmission distance by 36 km. Furthermore, although the scheme of
coherent sate with untested source via hybrid amplifier homodyne detection (the green solid line) has
lower initial secret key rate than its counterpart (the green dashed line), its transmission distance has
been increased 7 km compared to the same scheme without hybrid amplifier (the green dashed line).
The squeezed sate with untested source via hybrid amplifier schemes are indicated as a dark blue
solid line and light blue solid line, respectively; here, the scheme with homodyne detection (the light
blue solid line) reaches the maximal transmission distance of approximately 45 km, and the scheme
of heterodyne detection (the dark blue solid line) reaches it in 17 km. Therefore, in the case of the
scheme adopting traditional Gaussian modulation, the hybrid amplifier is helpful in improving the
transmission distance indeed.

Next, Figure 12b will show the performance result for Gaussian modulation and discrete
modulation schemes. In Figure 12b, the dot-dashed lines represent the discrete modulation with
untested source via hybrid amplifier, corresponding to the original schemes that did not adopt the
hybrid amplifier, marked with red dashed line and yellow solid line, respectively. The remaining
schemes are the Gaussian modulation with untested source and hybrid amplifier. We can see the
detailed relationship between each line of the scheme, and find that the scheme of classical four-state
modulation with untested source heterodyne detection has poorer performance than the same scheme
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with Gaussian modulation adopted hybrid amplifier, in terms of transmission distance (20 km
behind) and initial secret key rate (1.83 bit per pulse behind). However, after being amplified by
the hybrid amplifier, the four-state modulation with heterodyne detection scheme, the red dot-dashed
line, has better transmission distance performance by 72 km ahead than the Gaussian modulation
(red solid line) and 92 km ahead than the unamplified scheme (red dashed line). The scheme of
four-state modulation untested source via hybrid amplifier and homodyne detection, the yellow
dot-dashed line, reaches the maximal transmission distance with over 146 km. It is 68 km beyond
the scheme of discrete modulation unadopted hybrid amplifier (the yellow solid line), and 128 km
ahead the scheme of Gaussian modulation with hybrid amplifier. All the simulation results show that
even if the entangled source is untested, the discrete modulation with four-state modulation has better
performance in key rate and transmission distance than the scheme with Gaussian modulation.

Figure 12. (Color online) Panel (a) shows the relationship between the transmission distance and secret
key rate. It demonstrates the maximal transmission distance for the scheme with Gaussian modulation.
Here, the parameters are set as gN = 8, gD = 12, η = 1, ε = 0.01, and VM = 0.3. The dot-dash lines
in the figure represent Gaussian modulation with an untested source. Furthermore, the solid lines
represent Gaussian modulation with untested source via hybrid amplifier. Panel (b) also shows the
relationship between transmission distance and secret key rate. Here, the parameters are also set as
gN = 8, gD = 12, η = 1, ε = 0.01, and VM = 0.3. In panel (b), the green, dark blue, red, and light blue
solid lines represent the Gaussian modulation with untested source via hybrid amplifier. Furthermore,
the red dash line and yellow solid line represent the four-state discrete modulation with untested
source. The red dot-dash line and yellow dot-dash line denote our proposed scheme (four-state discrete
modulation with untested source via hybrid amplifier).

5. Conclusions

In this paper, we proposed a scheme of four-state discrete modulation with hybrid amplifier to
improve the performance of traditional Gaussian modulation CVQKD while the entangle source is
untested. The hybrid amplifier is composed of a MB-NLA and a DLA in series. Due to deployment of
the MB-NLA, the noise penalty caused by the detector in the Bob side can be compensated. Moreover,
the adoption of DLA compensated the problem of SNR degeneration and amplification probability
caused by NLA. The numerical simulations show that our proposed scheme can improve the maximal
transmission distance in the four-state modulation CVQKD and Gaussian modulation CVQKD for
both homodyne and heterodyne detection, where the entangled source is untested. In terms of possible
future research, it could be focusing to implement the hybrid amplifier in Alice and Bob side.
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