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Abstract: The capacity limits of fiber-optic communication systems in the nonlinear regime are
not yet well understood. In this paper, we study the capacity of amplitude modulated first-order
soliton transmission, defined as the maximum of the so-called time-scaled mutual information.
Such definition allows us to directly incorporate the dependence of soliton pulse width to its
amplitude into capacity formulation. The commonly used memoryless channel model based
on noncentral chi-squared distribution is initially considered. Applying a variance normalizing
transform, this channel is approximated by a unit-variance additive white Gaussian noise (AWGN)
model. Based on a numerical capacity analysis of the approximated AWGN channel, a general
form of capacity-approaching input distributions is determined. These optimal distributions are
discrete comprising a mass point at zero (off symbol) and a finite number of mass points almost
uniformly distributed away from zero. Using this general form of input distributions, a novel
closed-form approximation of the capacity is determined showing a good match to numerical results.
Finally, mismatch capacity bounds are developed based on split-step simulations of the nonlinear
Schrödinger equation considering both single soliton and soliton sequence transmissions. This relaxes
the initial assumption of memoryless channel to show the impact of both inter-soliton interaction and
Gordon–Haus effects. Our results show that the inter-soliton interaction effect becomes increasingly
significant at higher soliton amplitudes and would be the dominant impairment compared to the
timing jitter induced by the Gordon–Haus effect.

Keywords: achievable information rate; channel capacity; nonlinear fiber optics; soliton communication;
solitonic interaction; variance normalizing transform

1. Introduction

It is predicted that the capacity of data transfer network, mainly consists of optical fibers,
will fall behind the data traffic demands in the near future [1]. The prediction implies the need
for exploiting current optical fiber infrastructure to their limits before migrating to the next generation
of optical fiber systems. However, the fundamental information transmission capacity of the most
basic optical fiber link (i.e., standard single-mode fiber) is not fully known in the nonlinear regime.
Different approaches have been used to tackle this problem in the literature including the recent
application of nonlinear Fourier transform (NFT) to approach the limits of the nonlinear optical
fiber [2,3]. Using NFT, the nonlinear dispersive fiber channel, defined by the nonlinear Schrödinger
equation (NLSE), is transformed to linear channels in nonlinear spectral domain, redefining the
capacity problem formulation for nonlinear optical fibers.
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By applying NFT, the available degrees of freedom in temporal domain are transformed to
two types of spectra in the nonlinear spectral domain, namely the discrete and continuous spectra.
Therefore, NFT is regarded as a base for development of new techniques of data transmission,
and different communication system designs have been proposed using NFT [4–13]. The performance
of such NFT-employed system for long-haul communication is investigated by simulation and
experiment [14,15]. However, it has been observed that the noise behavior is not trivial in these
systems [16–18], and the performance largely depends on the design. Moreover, the application of
NFT in estimating the capacity of nonlinear optical fibers is not straightforward since the NFT and
inverse NFT (INFT) must be performed numerically and are computationally complex [19,20].

An estimation of the capacity of the nonlinear optical fiber by only signaling on its continuous
spectrum defined by NFT is provided in [21,22]. Achievable rates have been predicted, but it has been
shown that due to the signal dependency of the noise, the capacity will be saturated at high power.
Moreover, several works in the literature have been focused on estimating the achievable information
rates (AIR) of the fiber when the discrete spectrum (i.e., soliton transmission) is used as the signal space.
In [23], a capacity lower bound for amplitude modulated first-order soliton communication system is
estimated using a half-Gaussian input distribution. In [24], an achievable rate is estimated taken into
account the Gordon–Haus effect that leads to timing jitter at the receiver. In [18], AIR is estimated for a
more complicated system that modulates both the eigenvalue and the norming constant in the discrete
spectrum. Assuming a receiver capable of detecting variable pulse duration, in [25], the time-scaled
mutual information (MI) is numerically optimized considering the memoryless channel model for
soliton communication.

In this paper, we investigate the capacity of the optical fiber channel when only a single discrete
spectrum point is encoded and the data is mapped on the imaginary part of the corresponding
eigenvalue. This is essentially equivalent to the amplitude modulated soliton communication
in [26]. As mentioned above, a number of capacity bounds for such channel has been derived
previously [18,23,24], and AIR in bits per second were also discussed in [25]. However, some intrinsic
limitations, such as dependence of bandwidth on soliton amplitude and the interaction between
neighboring soliton pulses have been ignored. Compared to the state-of-art works in the literature
(e.g., [23,25]), we investigate the effect of channel memory induced by solitonic interaction, which is
mostly ignored in the literature. In order to incorporate the time-bandwith degrees of freedom into
the capacity problem formulation, we study the maximization of time-scaled MI similar to [25] but
by assuming a more practical communication system that uses a fixed symbol duration (i.e., soliton
pulse width). A general form of capacity-approaching input distributions are proposed through the
optimization of an approximated normalized channel model, providing important insights into the
optimal design of soliton communication systems. In addition, an analytical estimation of the capacity
of amplitude modulated soliton transmission is provided.

This paper is structured as follows: In Section 2, we initially consider a commonly used
memoryless non-Gaussian channel model for the imaginary part of the eigenvalue [16]. By applying the
variance normalizing transform (VNT) [22,27], the original channel is transformed into an equivalent
channel with normalized noise power, which is then approximated by a unit-variance additive white
Gaussian noise (AWGN) model in Section 3. Taking into account a peak amplitude constraint
imposed by bandwidth limitations, the capacity in bits/normalized time and its corresponding input
distribution are estimated using the proposed AWGN model and also an approximate analytical
approach. Next, in the Section 4, we consider the effect of channel memory by developing the
mismatch capacity bounds based on the split-step simulation of single soliton and soliton sequence
transmissions over the NLSE. Based on the mismatch capacity results, the impact of inter-soliton
interaction and Gordon–Haus effects on the capacity of soliton communication systems is studied.
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2. Channel Model

At a low launch power, the optical fiber channel can be modeled as a linear dispersive channel
impaired by AWGN noise. However, the Kerr nonlinearity becomes significant when the signal power
increases to allow transmission over long haul fibers. The propagation of the complex envelope of a
narrowband optical field in a standard single-mode fiber can be described by the stochastic nonlinear
Schrödinger equation (NLSE), as discussed in ([28], Chapter 4). Assuming the fiber loss to be perfectly
compensated by an ideal distributed Raman amplification, the NLSE is given as

∂Q(T, Z)
∂Z

= −j
β2

2
∂2Q(T, Z)

∂T2 + jγ|Q(T, Z)|2Q(T, Z) + N(T, Z), (1)

where Q(T, Z) denotes the complex envelope of the optical field, N(T, Z) represents the amplifier
spontaneous emission (ASE) noise term, T and Z are time and propagation distance, and β2 and γ

indicate group velocity dispersion and Kerr nonlinearity respectively. Note that the fiber loss term α

here is omitted since ideal distributed Raman amplification is assumed. The ASE noise is modeled by a
zero mean white Gaussian noise with autocorrelation E[N(T, Z)N∗(T′, Z′)] = NASEδ(T− T′)δ(Z−Z′).
The spectral density of the noise in [W/(km · Hz)] is NASE = αhν0KT for the ideal distributed Raman
amplification assumed in this work, where hν0 denotes the photon energy and KT denotes the phonon
occupancy factor. The NLSE could be normalized into the form

j
∂q(t, z)

∂z
=

∂2q(t, z)
∂t2 + 2|q(t, z)|2q(t, z) + n(t, z), (2)

with the corresponding normalized parameters as

q =
√

γLDQ, z = Z/2LD, t = T/T0, (3)

where dispersion length is defined as LD = T2
0 /|β2|, and normalizing time T0 can be selected

independent of other parameters. Consequently, the autocorrelation of the normalized noise is,

E[n(t, z)n∗(t′, z′)] = σ2δ(t− t′)δ(z− z′), (4)

where σ2 = NASE
2γL2

D
T0

according to the normalization (3).
Using the inverse scattering method, NFT transforms the time domain optical signal into scattering

data, consisting of continuous spectrum ρ(λ, z), eigenvalues λm(z)
M
m=1 and corresponding norming

constants Cm(z)
M
m=1 which evolve linearly along the fiber in nonlinear spectral domain. It can be

shown that, in a noise-free and interaction-free scenario, the eigenvalues λm are preserved during the
evolution along the fiber [29]. If only one eigenvalue exists at z = 0 and ρ(λ, 0) = 0, the solution of
NLSE is a first-order soliton, which can be described analytically as

q(t, z) = 2ηe−2iζt+4i(ζ2−η2)z−i(ψ+π/2)sech(2ηt− 8ηζz− 2ε), (5)

where the only eigenvalue is λ1 = ζ + iη (η > 0). Also, e2ε = C1
2η and ψ = arg C1(z) where C1 denotes

the norming constant corresponding to eigenvalue λ1.
The Energy of the soliton in (5) is equal to 4η, where the temporal width and bandwidth are

proportional to 1/η and η respectively. Note that within this work, only the imaginary part of the
eigenvalue is modulated and the real part is set to zero, i.e., η = A, ζ = 0. Thus, at z = 0, the input
pulse can be expressed as

q(t, z = 0) = 2Asech(2At). (6)

The propagation of the soliton pulse over the fiber is described by NLSE, and at the receiver
side, the eigenvalue can be detected by NFT or pulse energy estimation. If the detected eigenvalue is
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denoted as R, the channel model for this amplitude modulated first-order soliton transmission system
can be described by a conditional PDF PR|A(r|a), which is non-Gaussian with a variance dependent on
its mean [16,30]. Ignoring inter-soliton interactions, a memoryless channel model can be defined for
the amplitude modulated soliton system based on a noncentral chi-squared distribution (NCX2) with
4 degrees of freedom as [16,23]

PR|A(r|a) =
2

σ2
N

√
r
a

exp

(
−2a + 2r

σ2
N

)
I1

(
4
√

ar
σ2

N

)
, (7)

where I1(·) denotes the modified first order Bessel function of the first kind. The mean and variance of
this distribution for large a are µNCX2(a) = σ2

N + a and σ2
NCX2(a) = 1

2 σ4
N + aσ2

N respectively, where σ2
N =

1
2 σ2 L

2LD
at distance Z = L and σ2 is the power spectral density of the normalized ASE noise as defined

in Equation (4). It can be seen that the channel model (7) for the imaginary part of the eigenvalue
(soliton amplitude, or soliton energy) is non-Gaussian with signal dependent variance. In the next
section, we develop different approaches to estimate the capacity of the channel described by (7).

3. Capacity Formulation for Memoryless Soliton Communication Channel

Here, the capacity problem for the channel defined by the conditional PDF (7) is formulated
considering a peak amplitude constraint since the bandwidth occupied by soliton pulses is
directly related to their amplitudes. That is, the modulating data on higher amplitudes requires
larger bandwidth while the maximum signal bandwidth is restricted by physical limitations.
Moreover, in practical scenarios, peak power is also constrained due to device limitations. Another
important issue that needs to be considered for soliton communications systems is that soliton pulses
defined as in (6) are not time-limited, and thus, they should be truncated for practical implementations.

We define the practical width of a soliton pulse (denoted by ts) as the temporal width that
contains 1− δ of the soliton energy. Recalling the energy of the normalized soliton (6) is equal to 4A,
this practical width can be obtained by solving the equation below for ts∫ +ts/2

−ts/2

∣∣2Asech(2At)
∣∣2dt = (1− δ)4A, (8)

which is given by

ts(A, δ) =
1

2A
ln
(

2
δ
− 1
)

, (9)

where the fixed value δ should be sufficiently small to make the truncation error negligible compared
to noise. For example, assuming that the soliton pulse width is defined based on containing 99.9%
of its energy (δ = 0.001), we have ts = 3.8/A. Noting that the temporal width of soliton pulses is
inversely related to their amplitudes, we can also introduce a minimum amplitude constraint to limit
the utilization of the temporal resources. Based on the constraints mentioned above, the capacity
problem can be formulated as

Cbpcu = sup
PA(a):A∈{0}∪[Alb,Aub]

I(A; R), (10)

where Cbpcu denotes the capacity in bits per symbol per channel use, I(A; R) represents the MI.
Denoting the transmitted and received eigenvalues with random variables A and R respectively, Aub is
the maximum amplitude constraint determined by maximum bandwidth or peak power and Alb is the
minimum amplitude constraint determined by the maximum allowed symbol duration. Note that we
also consider the possibility of transmitting no soliton over a symbol duration (i.e., off symbol) with
probability p0, which is denoted by A = 0 here.
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Noting that the signal space and the temporal resources are inter-related in the underlying soliton
communication system, we will use an alternative capacity formulation that maximizes time-scaled
MI [25] to get better insights into AIRs of the system in bits per second. Unlike [25], we assume a fixed
symbol duration for all transmitted solitons to facilitate practical implementation. Since the pulse width
is inversely related to the amplitude of the soliton, the minimum nonzero soliton amplitude Amin ≥ Alb
(i.e., maximum pulse width) in a given input distribution determines the symbol duration. Note that
Amin is not necessarily equal to the minimum amplitude constraint Alb and P(A < Amin) = p0.
The time-scaled MI (MI) is thus defined as

R(A; R) =
I(A; R)

ts(Amin, δ)
, (11)

where MI is divided by the normalized symbol duration, resulting in a unit of [bits/normalized time].
The data rate in [bits/second] can be estimated by dividing the time-scale MI (11) with the normalizing
time T0 in (3). The corresponding time-scaled capacity formulation is then given by

C = sup
PA(a):A∈{0}∪[Alb,Aub]

R(A; R). (12)

Note that the minimum amplitude constraint Alb can be also relaxed, since it is already inherently
imposed by the modified objective function, i.e., the time-scaled MI. This is because the optimal
solution would not include the small soliton amplitudes that consume the available temporal resources
inefficiently due to their very large pulse width. Hence the capacity problem can be also written as

C = sup
PA(a):A∈[0,Aub]

R(A; R). (13)

In Section 3.2, it is shown that a minimum nonzero soliton amplitude Amin naturally appears in
the optimal distribution of the capacity problem in (13).

3.1. Equivalent Channel Model Based on VNT

To simplify the capacity analysis, similar to the method used in [22,30–32], variance normalizing
transform (VNT) is applied here to transform the original signal-dependent noise channel to a channel
with a fixed noise power at sufficiently large signal-to-noise ratios. In general, the VNT can be applied
to any random variable R where its variance σ2

R is related to the mean µR as σ2
R = f 2(µR). Then the

variance of the transformed random variable, Y = T(R), is normalized to one (i.e., mean independent)
at sufficiently large values of µR. The general form of VNT can be written based on [33] as

T(u) =
∫ 1

f (u)
du. (14)

Therefore the normalized random variable Y = T(R) has the moments σ2
Y ≈ 1 and µY =

E[y] ≈ T(µR) for sufficiently large value of µR. Substituting the statistics of the NCX2 channel
µNCX2(a) = σ2

N + a and σ2
NCX2(a) = 1

2 σ4
N + aσ2

N = σ2
N(

1
2 σ2

N + a) = σ2
N(µNCX2(a)− 1

2 σ2
N) considered in

this work, the VNT will be given as

T(u) =
∫ 1√

σ2
N(u−

1
2 σ2

N)
du = 2

√
u

σ2
N
− 1

2
≈ 2

√
u

σ2
N

, (15)

where the approximation is made for mathematical simplicity and due to the fact that the variance
normalization itself defined by VNT is only precise at large values of u/σ2

N where the adopted
approximation is also precise [22,27,31,32].
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As shown in Figure 1, an equivalent soliton communication system can be defined based on the
VNT approach where the noise power is signal-independent at large signal levels. Note that, in order
to perform the coding and decoding at the same signal space, it is convenient to include both VNT and
inverse VNT (IVNT) meaning that the soliton amplitude, A, is determined from the original input data
X = T(A) as

A = T−1(X) = σ2
N

X2

4
. (16)

NCX2 Channel

INFT 
Transmitter

NFT 
Receiver𝑋𝑋

𝐴𝐴
Fibre

𝑞𝑞(𝑡𝑡, 𝑧𝑧 = 0) 𝑞𝑞(𝑡𝑡, 𝑧𝑧 = 𝑙𝑙)

𝑅𝑅
𝑌𝑌

𝐴𝐴 = IVNT(𝑋𝑋) 𝑌𝑌 = VNT(𝑅𝑅)

Variance Normalized Channel

Figure 1. Block diagram of an amplitude modulated soliton communication system with inverse
variance normalizing transform (IVNT) and VNT, A and R denote the transmitted and received
soliton amplitude, X and Y denote the transformed input and output signals, and q denotes the time
domain signal.

Noting the square root form of the VNT defined in (15) and considering that the NCX2 model
in (7) defines the channel between the soliton eigenvalues A and R in Figure 1, the equivalent channel
model between the transformed random variables X and Y is described by a noncentral chi (NCX)
conditional PDF as

PY|X(y|x) =
y2

x
exp

(
−y2 + x2

2

)
I1(xy), (17)

where X = T(A) = 2
√

A/σN and Y = T(R) = 2
√

R/σN.
The capacity in bit per symbol of the system in (10) can then be rewritten based on the random

variables X and Y as
Cbpcu = sup

PX(x):X∈{0}∪[Xlb,Xub]

I(X; Y), (18)

where Xlb = T(Alb) and Xub = T(Aub). Moreover, the corresponding time-scaled capacity formulation
is given by

C = sup
PX(x):X∈{0}∪[Xlb,Xub]

R(X; Y), (19)

or based on the relaxed constraint as

C = sup
PX(x):X∈[0,Xub]

R(X; Y), (20)

where the time-scaled MI can be written as

R(X; Y) =
I(X; Y)

ts(Amin, δ)
=

σ2
NX2

min
2 ln(2/δ− 1)

I(X; Y), (21)

and Xmin denotes the minimum nonzero symbol amplitude, i.e., Amin = T−1(Xmin) = σ2
NX2

min/4. It is
important to notice that the VNT transformation does not affect the MI between input and output,
i.e., I(A; R) = I(X; Y), since the VNT function (15) is a monotonic and invertible function within
the interested domain (See Lemma in [22]). Hence, the capacity formulations in (12) and (19) are
equivalent.
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3.2. Approximate AWGN Channel Model

It has been shown that the probability distribution of the normalized random variable after VNT
tends to Gaussian distribution for a family of originally non-Gaussian probability distributions [22,31].
In this section, we first show that this is also true for the NCX distribution (17) in a Kullback–Leibler
(KL) divergence sense. This inspires us to propose an approximate AWGN channel model to describe
the amplitude modulated soliton communication system after VNT transformation as

Y = X + Γ, (22)

where the additive noise Γ is Gaussian with zero mean and unit variance.

Proposition 1. The KL divergence between the NCX distribution, PY|X(y|x), given in (17) and a Gaussian
distribution QY|X(y|x) with mean x and unit variance tends to zero for a sufficient large x, that is

lim
x→+∞

DKL(P, Q|x) = 0, (23)

where KL divergence, DKL(P, Q|x), is defined as

DKL(P, Q|x) =
∫ +∞

−∞
PY|X(y|x) ln

PY|X(y|x)
QY|X(y|x)

dy, (24)

Proof of Proposition 1. The detailed proof of Proposition 1 is shown in Appendix A

Proposition 1 indicates that the NCX channel model (17) behaves similar to the approximate
AWGN channel for a sufficiently large x. For example, The KL divergence DKL is estimated as small
as 1.77× 10−12 for x = 86.67. This is by assuming that the pulse width contain 99.9% of the energy
(δ = 0.001) and some typical fiber parameters as in Table 1. Next, we will show that the proposed
approximate AWGN channel converges to the original NCX channel at sufficiently large large Xlb.

Theorem 1. Given the input X ∈ {0 ∪ [Xlb, Xub]} at a sufficiently large Xlb, the mismatch capacity of the
NCX channel with the approximate AWGN channel defined by (22) as auxiliary channel converges to the actual
capacity of the NCX channel.

Proof of Theorem 1. The detailed proof of Theorem 1 is shown in Appendix B.

In [34,35], it is shown for the AWGN channel with amplitude constraints that the
capacity-achieving distribution is discrete with a finite number of mass points for such channels.
An upper bound is proposed in [36] for the number of mass points. However, these works focus on
the MI-based capacity formulation. In the next Proposition, we extend the result in [34] to show the
discreteness of the optimal solution to the time-scaled MI maximization problem for the proposed
approximate AWGN channel.

Proposition 2. Given an AWGN channel with the input amplitude constraint of X ∈ {0∪ [Xlb, Xub]} and
Xlb → ∞, the optimal input distribution for the capacity formulation in (19) is discrete with a finite number of
mass points.

Proof of Proposition 2. The detailed proof of Proposition 2 is shown in Appendix C.
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Now, approximating the channel in (19) with an AWGN model based on Theorem 1 and
considering the conclusion of Proposition 2 on the discreteness of the optimal input distribution
asymptotically, the MI between X and Y can be expressed as

I(X; Y) = h(Y)− h(Y|X) = h(Y)− h(Γ)

=
M

∑
k=0

∫
pX(xk)QY|X(y|xk) log2

1

∑M
j=0 pX(xj)QY|X(y|xj)

dy− log2

√
2πe, (25)

where h(Y) denotes the output differential entropy, h(Γ) denotes the differential entropy of the unit
variance AWGN noise, xk and pX(xk) denote the input symbols and their corresponding probabilities
within the input source alphabet, M denote the size of the nonzero alphabet, x0 = 0 and pX(x0) = p0

denotes the corresponding probability. Hence, the problem in (19) can be rewritten as

C = max
M

[
max

[x,pX ]: xk∈{0}∪[Xlb,Xub]
R(X; Y)

]
, (26)

where the time-scaled MI function R(X; Y) is a function of two (M + 1)-length vectors x and pX which
denote the mass points and their probabilities. As mentioned in the previous sections, the minimum
amplitude constraint can be also relaxed yielding

C = max
M

[
max

[x,pX ]: xk∈[0,Xub]
R(X; Y)

]
. (27)

Since the input distribution is discrete, the vector [x, pX] is sufficient to describe the input
random variable X. The discreteness of the capacity-achieving input distribution allows for
numerical evaluation of the capacity expression using similar algorithms as in [30,34]. In this work,
the optimization over [x, pX] is performed using an interior-point optimizer in MATLAB given the
number of nonzero mass point is fixed at M. The optimization on M is then performed based on an
exhaustive search approach which will keep increasing M until additional mass points can no longer
improve the optimized time-scaled MI.

Table 1. Fiber Parameter.

length L 2000 km

Loss α 0.2 dB/km

Group velocity dispersion factor β2 −2.1 × 10−26 s2/m

Kerr nonlinearity factor γ 1.27 × 10−3 /W/m

Phonon occupancy KT 1.13

Signal wavelength ν0 1.55 µm

Normalizing time T0 0.1 ns

Figure 2 shows the capacity-achieving distributions obtained by solving (26) and the
corresponding capacity estimation using the optimized input distribution. For these results, we assume
an ideal distributed Raman amplified 2000 km fiber with the parameters detailed in Table 1. Using the
constraint from Xub = 200 to Xub = 500. This range of peak amplitude constraint corresponds to the
range of maximum eigenvalue from Aub = 0.4 to Aub = 2.5, which represent the peak optical power
−5 dBm and +10 dBm, respectively.
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(d)
Figure 2. The optimal input distribution and the corresponding optimized time-scaled mutual
information (MI) obtained as the numerical solution of (26) subject to the peak amplitude constraint
Xub assuming δ = 0.001. (a) The location of the optimal mass points (the peak amplitude is shown as
the purple solid line with star) (b) The optimal probability of the mass point at zero (i.e., off symbol) (c)
The optimal probabilities of the nonzero mass points, (d) The maximum Time-scaled MI given based
on the solution of (26) and the lower bounds on the time-scaled capacity of the original noncentral
chi-squared distribution (NCX) channel achieved by using different input distributions, including,
on-off keying (OOK), 4 pulse amplitude modulation (4-PAM) and the input distribution given in (a) to
(c). Note that the additional power axis denotes the power level of the solitons corresponds to the peak
amplitude Xub assuming δ = 0.001.

In Figure 2a–c, the optimal distributions are shown for various peak amplitude constraints Xub.
The figures show that the optimal distributions consist of an isolated mass point at zero (off symbol),
and a uniform-like distribution starting from a minimum nonzero symbol (denoted by Xmin) to the
maximum symbol amplitude (denoted by Xmax = Xub). It is also important to point out that the
probabilities at Xmin and Xmax getting closer to the probabilities of the mass points in between as Xub
increases, showing a convergence towards a uniform distribution. Note that the results in [25] shows a
nonuniform distribution of optimal mass points since the pulse width is assumed to be variable.

Figure 2d presents the capacity of the approximate AWGN channel based on the solution of (26)
as well as some lower bounds on the capacity of the original NCX channel (17). The best lower bound
is obtained by applying the optimal distribution of the approximate AWGN channel as in Figure 2a–c
to the time-scaled MI of the NCX channel. This lower bound precisely overlaps with the capacity of the
approximate AWGN channel, further confirming the result of Theorem 1, in a MI sense, i.e., that the
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AWGN channel is a very good approximation of the NCX channel within the range of consideration.
Figure 2d also includes the time-scaled MI estimated for the transmission of conventional on-off
keying (OOK) and 4 pulse amplitude modulation (4-PAM) signals over the original NCX channel.
As expected, both conventional modulations show lower time-scaled MI comparing to the optimized
input distribution. However, the conventional 4-PAM signal achieves even lower time-scaled MI
than OOK. This is due to the fact that the fixed symbol duration is inversely related to the amplitude
of the minimum nonzero amplitude Xmin, which is Xmin = Xub/3 for 4-PAM but Xmin = Xub for
OOK. In general, for a K-PAM modulation scheme, the time-scaled MI can be upper bounded by

the time-scaled source entropy, H(X)
ts(Amin,δ) =

σ2
NX2

min
2 ln(2/δ−1) log2(K), where the Xmin = Xub/(K− 1). It can

be then shown that the time-scaled source entropy for K-PAM will always decrease with respect to
K for K ≥ 2. This suggests that K-PAM with higher K cannot achieve better time-scaled MI than
OOK. It is also worth noting that some of the sub-optimal distributions proposed in the literature
(e.g., the half-Gaussian bound proposed in [23]) is not included here as the half-Gaussian input source
would give a zero time-scaled MI when a fixed symbol duration is considered as in this paper.

3.3. Analytical Capacity Approximation

Inspired by the optimal input distributions obtained in the last section as presented in Figure 2,
in this section, we focus on developing an analytical approach for time-scaled capacity estimation of the
soliton communication system. Assuming that the peak amplitude constraint Xub is sufficiently large,
Figure 2 shows that the capacity-achieving input distribution obtained by solving (26) is discrete with
a finite number of mass points including an almost uniform distribution within [Xmin, Xmax = Xub],
and an additional mass points at zero, where the optimal Xmin needs to be found by solving the
optimization problem. We therefore consider a general form of discrete input distribution with a
mass point at zero with probability p0 and a discrete uniform distribution within [Xmin, Xmax] to find
an analytical estimation of the solution to the capacity problem given in (26). Note that the upper
boundaries of the distribution is denoted by Xmax ≤ Xub rather than Xmax = Xub to keep it inline with
the peak amplitude constraint introduced earlier.

To write the corresponding MI based on (25), we first need to define the statistics of the channel
output given the input signal parameters, PY(y|p0, Xmin, Xmax). In order to make the capacity analysis
tractable, we make an approximation that the distribution of the noisy output signal Y given the
transmission of nonzero mass points, i.e., PY(y|X ∈ [Xmin, Xmax]) is approximated by a continuous
uniform distribution within the range [Xmin, Xmax]. This approximation is reasonable when the number
of mass points M are large and the noise variance is small compared to the signal level. Based on this
approximation and also considering the Gaussian noise added to the zero mass point, we can write

PY(y|p0, Xmin, Xmax) ≈ p0 fG(y) +
1− p0

Xmax − Xmin
u(y|Xmin, Xmax), (28)

where the fG(·) denotes the PDF of a zero mean, unit variance Gaussian distribution and
u(y|Xmin, Xmax) denotes the step function that is equal to 1 when y is within [Xmin, Xmax] and
0 otherwise.

Considering the approximate PDF in (28), we now calculate the differential entropy of the received
signal as
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h(Y) =
∫ +∞

−∞
PY(y) log2

1
PY

dy

a≈
∫ Xmin

−∞
p0 fG(y) log2

1
PY

dy +
∫ +∞

Xmin

PY(y) log2
1

PY
dy

b≈
∫ Xmin

−∞
p0 fG(y) log2

1
p0 fG(y)

dy +
∫ Xmax

Xmin

1− p0

Xmax − Xmin
log2

Xmax − Xmin

1− p0
dy

= p0 log2
1
p0

+ p0 log2

√
2πe + (1− p0) log2

Xmax − Xmin

1− p0
, (29)

where the approximation a leads from applying the approximate output distribution in (28), and the
approximation b is valid under the assumption that Xmin � 0, i.e., fG(y ≥ Xmin) ≈ 0. Substituting (29)
into the Equation (25), the approximated MI is then given as a function of p0, Xmin and Xmax as

Iapp(X; Y) = p0 log2
1
p0

+ (1− p0) log2
Xmax − Xmin

1− p0
− (1− p0) log2

√
2πe. (30)

Noting that the scaling time (9) is a function of the minimum mass point Xmin, the approximate
time-scaled MI function Rapp(X; Y) is then given as

Rapp(X; Y) =
σ2

NX2
min

2 ln(2/δ− 1)

[
p0 log2

1
p0

+ (1− p0) log2
Xmax − Xmin

1− p0
− (1− p0) log2(

√
2πe)

]
. (31)

Theorem 2. Given the approximated time-scaled MI function in (31), the solution to the capacity problem
given in (26), is obtained as

Capp = Rapp(X; Y)|p∗0 ,X∗min,X∗max
, (32)

where the optimal parameters of the input distribution are given as

X∗max = Xub, (33)

X∗min = (Xub +
√

2πe)

1− 1

2W( Xub
2
√

2π
+
√

e
2 )

 , (34)

p∗0 =
2
√

2πeW
(

Xub
2
√

2π
+
√

e
2

)
Xub +

√
2πe

, (35)

where W(·) denotes the Lambert W function.

Proof of Theorem 2. The detailed proof of Theorem 2 is shown in Appendix D.

Using Theorem 2, the approximate solution to the capacity problem in (26) can be calculated
analytically. As it can be observed in Figure 3, this approximate capacity result demonstrates a close
match to the exact capacity results obtained numerically.
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Figure 3. Time-scaled MI estimated from the additive white Gaussian noise (AWGN) model
optimization in (26), the analytical approximation in (32), and the corresponding mismatch capacity
bound in (36) for a 2000 km long fiber, assuming δ = 0.001. The subplot shows the zoomed figure of
Xub ∈ [330, 380].

4. Mismatch Capacity for Soliton Communication over the NLSE Channel

So far, we have focused on the capacity estimation of the first-order soliton transmission based on
the commonly used memoryless channel model defined by the noncentral chi-squared distribution
in (7). In this section, we study the capacity limits of the soliton transmission over a more realistic
description of the fibre-optic channel defined by the NLSE. Hence, both the Gordon–Haus effect
and the nonlinear interactions between adjacent soliton pulses can be incorporated into the capacity
analysis. For this purpose, we use the numerical evaluation of mismatch capacity bounds based on
split-step simulation of the NLSE. The mismatch capacity approach is commonly used to provide a
lower bound on the capacity of a communication system, by assuming a mismatch distribution for
decoding the received signal [32,37]. If the mismatch distribution is denoted by QY|X(y|x) and the
real channel statistics is denoted by PY|X(y|x), the time-scaled mismatch capacity bound for a discrete
input signal is expressed as

CMismatch =
1

ts(Amin, δ)

M

∑
k=0

∫ +∞

−∞
pX(xk)PY|X(y|xk) log

QY|X(y|xk)

∑M
j=0 pX(xj)QY|X(y|xj)

dy

=
1

ts(Amin, δ)

M

∑
k=0

pX(xk)EPY|X(y|xk)

[
log

QY|X(y|xk)

∑M
j=0 pX(xj)QY|X(y|xj)

]
, (36)

where pX(xj) denotes the input probability of symbol xj taken from optimization (26), and EPY|X(y|xk)
[·]

denotes an expectation operation over the channel model PY|X(y|xk) . Recall from Section 3.1 that
the unit-variance Gaussian distribution and the NCX distribution are well matched for the interested
range of interest. Thus, a unit-variance Gaussian distribution QY|X(y|x) is a reasonable mismatch
distribution to be employed in the calculation of the mismatch capacity.

To take into account the impairments introduced by ASE noise, such as Gordon–Haus timing jitter,
as well as intersoliton interaction effects, we use the split-step method to simulate the propagation of
single soliton or soliton sequence transmission over the fiber. Hence many realizations of the fiber-optic
channel can be generated based on the simulation of NLSE to establish the statistics of the realistic
channel given the capacity-approaching input distribution obtained in Section 3.2, (i.e., P(y|xk)).
The generated channel statistics can then be used to numerically estimate the mismatch capacity in (36)
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through a Monte Carlo approach. Noting that the input distribution applied here is not necessarily
the optimal distribution for the realistic channel, our results, CMismatch, provide a lower bound on
the mismatch capacity, which in turn gives a lower bound on the capacity of the realistic soliton
communication system. The simulation of the channel realization required for the Monte Carlo
estimation of mismatch capacity is generated following each function block of the proposed system
as in Figure 1. The pulses correspond to the input alphabet will be transmitted into a simulated fiber
perturbed by ASE noise via split step Fourier method based on NLSE (1). The output pulse from the
simulated fiber will then be put through an NFT detector, which extracts the eigenvalue R from the
detected pulse. The received eigenvalue R will then be VNT transformed into the transformed domain
for decoding the information. Unless otherwise mentioned, δ = 0.001 is assumed to calculate the
soliton duration, i.e., 99.9% soliton energy pulse-width.

4.1. Mismatch Capacity for Single Soliton Transmission

We first focus on single soliton transmission over the NLSE which takes into account the
Gordon–Haus effect while ignoring the inter-soliton interaction effects. Using identical fiber parameters
as in Table 1, Figure 3 compares the time-scaled mismatch capacity calculated based on 1000 realizations
per possible symbol for Xub ∈ [200, 500] with the time-scaled capacity of AWGN model obtained in
Section 3.2 and the analytical approximation derived in Section 3.3. From Figure 3, it can be observed
that the time-scaled MI increases as the peak amplitude constraint increases. It is also observed all the
curves provide a well-matched estimations of the capacity, confirming that the Gordon–Haus effect is
not so significant within the range of interest here. Nevertheless, we can see that, for larger Xub, the gap
between mismatch and AWGN curves increases, which can be due to the stronger Gordon–Haus effect,
that will be experienced by larger amplitude soliton pulses. Note that the timing jitter introduced by
the Gordon–Haus effect can shift the soliton beyond the limited timing window over which the NFT is
applied, which leads to energy loss and possible errors in eigenvalue detection.

4.2. Mismatch Capacity for Soliton Sequence Transmission

The memoryless channel model of soliton communication considered in Section 3 and in most of
the literature is only valid when there is no intersoliton interactions, limiting the accuracy of the model
to the cases where the sequence of soliton pulses are well separated. In this section, we use the mismatch
capacity approach introduced above to provide some insights on the impact of inter-soliton interaction
effects on the capacity of soliton communication systems. In the previous section, the performance
of the system is discussed based on simulating the transmission of a single soliton pulse through
a long haul fiber-optic channel, which neglects the inter-solitonic interactions. In this section, the
transmission of a sequence of three soliton pulses is considered, where the middle soliton is considered
to be the target soliton for detection. Meanwhile, the neighboring solitons (i.e., the first and the third
solitons) are assumed to be independently and randomly selected based on the statistics of the input
signal distribution taken from the solution of the AWGN capacity formulation in (26). Note that the
pulse width of a soliton is a function of δ and Xmin in the input signal distribution. The simulation is
performed based on the same split step Fourier method employed in Section 4.1, while the NFT-based
detection is only performed over the pulse width of the middle soliton.

It has been shown in [38] that, even in the absence of any noise, solitons can exert attracting
or repelling forces on each other when they are not place far enough, and this leads to inter-soliton
interaction effects. Thus, before implementing the soliton sequence transmission in the presence of the
ASE noise, we intend to estimate the mean squared error (MSE) induced by the noiseless inter-soliton
interaction to evaluate the significance of this effect for different soliton separations. Recall that the
ASE noise power after VNT is normalized to 1. Hence, the inter-soliton interaction effect would be
negligible relative to noise, if the inter-soliton interaction MSE is much less than 1, i.e.,

MSE = E[(Ynl − X)2]� 1, (37)
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where E[·] denotes expectation over all possible combination of the three-soliton sequences, Ynl denotes
the received VNT transformed eigenvalue in a noiseless scenario. The noiseless simulation is based on
the identical simulation parameters as in Table 1 but in the absence of ASE noise (i.e., assuming noiseless
ideal distributed Raman amplification) and using the input soliton amplitudes taken from the
capacity-approaching distribution given in Section 3.2. In this section, the signaling of the solitons are
based on four different δ parameters and their corresponding pulse width. Note that a smaller δ leads
to a longer symbol duration as defined by (9), which results in more separation between solitons an
thus less inter-soliton interaction.

Figure 4 shows the inter-soliton interaction MSE estimated by simulating the transmission of
all possible three-soliton sequences following the input distribution given in Section 3.2 assuming
different values of δ. The overall trend of the MSE is increasing as the peak amplitude constraint Xub
is increasing. Moreover, as expected, decreasing the δ parameter reduces the MSE. In fact, reducing
δ corresponds to the decreasing the fraction of energy truncation that essentially extends the soliton
temporal separation. The additional temporal separation will reduce the force between the solitons [38],
thus, the inter-soliton interaction is mitigated. Note that, for δ = 10−3, the MSE goes beyond unity for
Xub > 300 as shown in Figure 4, meaning that the inter-soliton interaction effect becomes comparable
to noise beyond that point, hence, the δ parameter needs to be reduced to maintain a low interaction
effect. Similarly, it is observed that the MSE becomes comparable to noise for δ = 3× 10−4 beyond
Xub = 400.
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10
-4
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-2

10
0

10
2

10
4

Figure 4. Inter-soliton interaction mean squared error (MSE) for different soliton pulse width
determined by different values of δ and based on the link parameters stated in Table 1.

In order to evaluate the impact of intersoliton interaction effect on the capacity of the system,
Figure 5 shows the time-scaled capacity results and the corresponding MI calculated based on different
proposed methods including the AWGN model and mismatch decoding with or without inter-soliton
interaction effects for different values of δ. Figure 5a shows the significant impact of intersoliton
interaction effects on the time-scaled capacity at higher peak amplitudes. For example, for δ = 10−3,
the time-scaled MI gradually drops beyond Xub = 300 and tends to zero before Xub = 400. It is also
observed that when δ decreases, the longer symbol duration scales down the time-scaled MI in the
whole range of Xub but the efficiency of the communication system in combating intersoliton interaction
effects improves (i.e., capacity drop shifts to higher soliton amplitudes). This indicates that there is a
trade-off in selecting the parameter δ. On the one hand, a smaller δ mitigates more effectively both
inter-soliton interaction and Gordon–Haus effects, and on the other hand, it reduces how efficiently the
temporal resources are being used. Hence, in future work, δ also needs to be included in the capacity
problem formulation. Nevertheless, Figure 5a gives an estimation of sensitivity of the time-scaled
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capacity with respect to δ by providing the mismatch results at different values of this parameter.
Therefore, by taking the supremum of the curves with different δ values in different parts of the
dynamic range, we can obtain a good estimation of the capacity lower bound in the presence of soliton
interaction. For example, based on the available results, the capacity result at δ = 10−3 is best up to
Xub = 300 while the capacity results for δ = 3× 10−4 and δ = 10−4 are best in ranges Xub ∈ [300, 400]
and Xub > 400, respectively.
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(b)
Figure 5. The capacity estimation of the soliton communication based on the AWGN model
optimization in (26), and the mismatch capacity bounds in the presence (mismatch inter) or absence
(mismatch no inter) of inter-soliton interaction effects in terms of (a) time-scaled MI and (b) MI,
for different values of δ and the link parameters stated in Table 1.

The MI results presented in Figure 5b is produced from scaling back the optimized time-scaled
MI results in Figure 5a. It therefore focuses on how efficiently each soliton is decoded rather than how
efficiently the temporal resources are being used. The figure shows that, for δ = 10−3, the inter-soliton
interaction effect strongly degrades the mismatch capacity beyond Xub = 300 as expected from
Figures 4 and 5a. By reducing δ, it is observed that the inter-soliton interaction effect decreases and it
almost matches the mismatch capacity results with no interaction at δ = 10−4. This is also expected
from Figure 4, as δ = 10−4 shows MSE� 1 for most of the range of interest. In addition, the mismatch
capacity at δ = 10−5 even outperforms the mismatch capacity with no interaction and almost matches
the AWGN result. This is because the mismatch with interaction at δ = 10−5 corresponds to the
transmission of a soliton sequence with longer symbol duration. The longer duration essentially
eliminates both the Gordon–Haus effect as well as the interaction effects while this is not the case in
the mismatch results with no interaction where we still assume shorter pulse width with δ = 10−3.
This also verifies the accuracy of the proposed AWGN approximation model compared to the realistic
simulated channel when both the Gordon–Haus and inter-soliton interaction effects are negligible.

5. Conclusions

In this paper, we proposed a number of new approaches for estimating the capacity of the
amplitude-modulated soliton communication systems. We provided insights into the AIRs of such
systems when effects such as Gordon–Haus and inter-soliton interaction are present. The non-central
Chi squared channel model that is commonly used in the literature was initially considered and was
then approximated by a unit-variance AWGN channel by applying VNT. Using the approximated
channel model and subject to a peak amplitude constraint, optimal input distribution and the
corresponding capacity were obtained numerically. The optimized distributions are discrete with a
mass point at zero corresponding to no soliton transmission as well as an almost uniform distribution
of mass points spread in a range away from zero up to the peak amplitude constraint. Using this
general form of the optimal distribution based on the approximate AWGN model and applying
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some mathematical simplifications, we developed an analytical expression to estimate the capacity of
the soliton communication system. Despite the additional approximations, the analytical approach
provides a close match to the results obtained numerically based on the AWGN model. The optimal
input distribution based on AWGN model were also used to calculate the mismatch capacity of the
soliton communication system using the split-step simulation of the realistic channel defined by the
NLSE. The results show that the effect of inter-soliton interaction caused by limiting the soliton pulse
width is stronger than the Gordon–Haus effect for long haul fibers operating in a range of launch
powers up to 10 dBm. They also show the trade-off between extending the pulse width to avoid
inter-soliton interaction and compressing the pulse width to improve the temporal efficiency.

In future works, the soliton pulse truncation factor δ can be included in the capacity problem
formulation as an additional variable. This allows for a more comprehensive analysis of the soliton
interaction effects. Moreover, the capacity problem based on the assumption of variable pulse width
can be considered in the presence of soliton interaction effects. Another interesting problem related to
this work is the capacity analysis of higher-order soliton transmissions.
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Notations

j:
√
−1; Euler’s number: e; Absolute value: | · |; Expectation: E[·]; Modified first order Bessel

function of the first kind: I1(·); Probability density function (PDF) of y: PY(y); Conditional PDF
of y given x: PY|X(y|x); MI between input X and output Y: I(X; Y); Time-scaled MI between
input X and output Y: R(X; Y) [25]; KL divergence between distribution P and distribution
Q given parameter x: DKL(P, Q|x); Lower constraint: (·)lb; Upper constraint: (·)ub; Minimum
nonzero value: (·)min; Maximum nonzero value: (·)max; Optimal value: (·)∗; Lambert W
function: W(·).

Appendix A

Proof of Proposition 1. Following a similar method as in [32], a non-negative term KL divergence is
employed to evaluate difference between two distributions,

DKL(P, Q|x) =
∫ +∞

−∞
PY|X(y|x) ln

PY|X(y|x)
QY|X(y|x)

dy, (A1)

where P and Q denote the distributions, x indicates the given parameter(s) of the two distribution P
and Q. Within this proof, PY|X(y|x) is considered to be a noncentral chi distribution as

PY|X(y|x) =
y2

x
exp

(
−y2 + x2

2

)
I1(xy), (A2)
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where I1(·) denotes the modified Bessel function of the first kind, and the mean and variance of
PY|X are denoted with µNCX(x) and σ2

NCX(x) respectively. QY|X(y|x) is considered as a Gaussian
distribution with identical mean µNCX(x) and variance σ2

NCX(x), i.e.,

QY|X(y|x) =
1√

2πσ2
NCX(x)

exp

(
− (y− µNCX(x))2

2σ2
NCX(x)

)
. (A3)

To prove the convergence of the NCX distribution to a Gaussian distribution with mean x and
unit variance at a sufficiently large x, we first verify the convergence of the moments of of the NCX
distribution and then show its tendency to Gaussian distribution at large x. Taking the limits of the
first and second moments at large values of x, we obtain

lim
x→∞

µNCX(x) = lim
x→∞

√
4 + x2 − σ2

NCX(x) = lim
x→∞

√
3 + x2 = x, (A4)

lim
x→∞

σ2
NCX(x) = lim

x→∞
4 + x2 − µ2

NCX(x) = lim
x→∞

4 + x2 − π

2

[
L(1)

1/2(−
x2

2
)

]2

= 1, (A5)

which verifies the convergence of moments to the corresponding values in the theorem statement.
Now substituting the NCX distribution (A2) and its corresponding Gaussian distribution (A3) into (A1),
the KL divergence can be expressed as

DKL(P, Q|x) =
∫ +∞

−∞
PY|X(y|x) ln(PY|X(y|x))dy−

∫ +∞

−∞
PY|X(y|x) ln(QY|X(y|x))dy

= −hNCX(x)− ENCX[ln(QY|X(y|x))], (A6)

where hNCX(x) denotes the differential entropy of the NCX distribution (A2) given parameter x,
and ENCX(·) denotes the expectation over the NCX distribution (A2). The first term can be expressed as

hNCX(x) = −ENCX[ln(PY|X(y|x))]

= −ENCX

[
ln
(

y2

x
exp

(
−y2 + x2

2

)
I1(xy)

)]
= −2ENCX[ln(y)]− ENCX[ln(I1(xy))] + x2 + ln(x) + 2, (A7)

while the second term can be written as

ENCX

[
ln
(

QY|X(y|x)
)]

= ENCX

ln

 1√
2πσ2

NCX(x)
exp

(
− (y− µNCX(x))2

2σ2
NCX(x)

)
= ln

1√
2πσ2

NCX(x)
− 1

2
. (A8)

Since function f (y) = ln(I1(xy)) where x is a given non-negative constant and function
g(y) = ln(y) are concave functions [39], Jensen’s inequality is applied to obtain an upperbound
on the KL divergence as

DKL(P, Q|x) = 2ENCX[ln(y)] + ENCX[ln(I1(xy))]− x2 − ln
x√

2πσ2
NCX(x)

− 3
2

≤ ln
(µNCX(x))2 I1(xµNCX(x))

√
2πσ2

NCX(x)

xex2+3/2
= Dub(x). (A9)
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Next, we find the limit of the upper bound of KL divergence Dub(x) using the limits of mean
µNCX and variance σ2

NCX(x) already calculated in (A4) and (A5), that is

lim
x→+∞

Dub(x) = lim
x→+∞

ln
(3 + x2)I1(x

√
3 + x2)

√
2π

xex2+3/2
= 0. (A10)

At last, using the non-negativity of KL divergence, we have 0 ≤ limx→+∞ DKL ≤ limx→+∞ Dub =

0, i.e., limx→+∞ DKL = 0. Therefore, we can conclude that the KL divergence between (A2) and (A3)
goes to zero when x is sufficiently large and this concludes the proof.

Appendix B

Proof of Theorem 1. In this proof, we show that the gap between the NCX channel capacity and the
mismatch capacity of the NCX channel given the approximate AWGN channel as auxiliary channel
tends to zero as Xlb → ∞. Consider that the input random variable X ∈ {0∪ [Xlb, Xub]} is separated
into zero and nonzero sets. Then the PDF of X can be written as

PX(x) = p0δ(x) + (1− p0)PX̂(x), (A11)

where δ(x) denotes the Dirac delta function, and PX̂(x) denotes the PDF of the nonzero input X̂.
Similarly, the output random variable Y can also be separated in a similar manners as

PY(y) = p0PY|X(y|0) + (1− p0)PŶ(y), (A12)

where the PŶ(y) =
∫

X̂ PY|XPX̂(x)dx denotes the PDF of the output corresponding to the nonzero input.
The MI between input X and output Y is then given as

I(X; Y) = h(Y)− h(Y|X) =
∫

X

∫
Y PX(x)PY|X(y|x) log2

1
PY(y)

dydx−
∫

X

∫
Y PX(x)PY|X(y|x) log2

1
PY|X

dydx. (A13)

Substituting Equation (A12) in the output differential entropy h(Y), it is then rewritten as

h(Y) =
∫ Xub

Xlb

∫ +∞

Xlb/2
PX(x)PY|X(y|x) log2

1
PY(y)

dydx +
∫ Xlb/2

−∞
p0PY|X(y|0) log2

1
PY(y)

dy

=
∫ Xub

Xlb

∫ +∞

−Xlb/2
PX(x)PY′ |X(y

′|x) log2
1

p0PY′ |X(y′|0) + (1− p0)P′
Ŷ′
(y′)

dy′dx

+
∫ Xlb/2

−∞
p0PY|X(y|0) log2

1
p0PY|X(y|0) + (1− p0)PŶ(y)

dy, (A14)

where we changed the variable of integral in the first term of the last equality as y′ = y−Xlb. Taking the
Taylor expansion of the logarithmic functions inside the two integrals of the right hand side of (A14) at
y′ = 0 and y = 0, respectively, we obtain

h(Y) =
∫ Xub

Xlb

∫ +∞

−Xlb/2
PX(x)PY′ |X(y

′|x)

log2
1

(1− p0)PŶ′ (y
′)

+
∞

∑
k=1

(−1)k

k

(
p0PY′ |X(y′|0)

(1− p0)PŶ′ (y
′)

)k
 dy′dx

+
∫ Xlb/2

−∞
P0PY|X(y|0)

log2
1

p0PY|X(y|0)
+

∞

∑
k=1

(−1)k

k

(
(1− p0)PŶ(y)

p0PY|X(y|0)

)k
 dy

=
∫ Xub

Xlb

∫ +∞

−Xlb/2
PX(x)PY′ |X(y

′|x) log2
1

(1− p0)PŶ′ (y
′)

dy′dx + ∆̂

+
∫ Xlb/2

−∞
P0PY|X(y|0) log2

1
p0PY|X(y|0)

dy + ∆0, (A15)
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where the ∆̂ and ∆0 are higher order terms for nonzero and zero input, respectively. At Xlb → ∞,

∆̂ = E

[
∑∞

k=1
(−1)k

k

[
p0P′(y′ |0)

(1−p0)P
Ŷ′ (y

′)

]k
]

and ∆0 = E

[
∑∞

k=1
(−1)k

k

[
(1−p0)PŶ(y)
p0PY|X(y|0)

]k
]

can be written in the

form of expectations. They will therefore vanish since, for NCX distribution, limXlb→∞ PY′ |X(y′ ≤
−Xlb/2|x ≥ Xlb) = 0 and limXlb→∞ PY|X(y ≥ Xlb/2|0) = 0. Inserting (A15) in (A13), the MI is
given as

I(X; Y) =
∫ −Xub

Xlb

∫ +∞

Xlb/2
PX(x)PY′ |X(y

′|x) log2
PY′ |X(y′|x)

(1− p0)P′
Ŷ′
(y′)

dy′dx + ∆̂

+
∫ Xlb/2

−∞
P0PY|X(y|0) log2

1
p0

dy + ∆0. (A16)

The mismatch capacity is a proven lower bound of the capacity. Assuming mismatch decoder
design based on the Gaussian distribution, QY|X(y|x), the mismatch capacity ILB is defined as

ILB =
∫

X

∫
Y

PX(x)PY|X(y|x) log2
QY|X(y|x)

QY(y)
dydx, (A17)

where the mismatch output distribution QY(y) can be written in similar manner as (A12) as

QY(y) = p0QY|X(y|0) + (1− p0)QŶ(y), (A18)

where the QŶ(y) =
∫

X̂ QY|X(y|x)PX̂(x)dx denotes the PDF of the output corresponding to the nonzero
input. The mismatch capacity at Xlb can be obtained via similar approach as before as

ILB(X; Y) =
∫ Xub

Xlb

∫ +∞

−Xlb/2
PX(x)PY′ |X(y

′|x)

log2
QY′ |X(y′|x)

(1− p0)QŶ′ (y
′)

+
∞

∑
k=1

(−1)k

k

(
p0QY′ |X(y′|0)

(1− p0)QŶ′ (y
′)

)k
 dy′dx

+
∫ Xlb/2

−∞
P0P′(y′|0)

log2
QY|X(y|0)

p0QY|X(y|0)
+

∞

∑
k=1

(−1)k

k

(
(1− p0)QŶ(y)

p0QY|X(y|0)

)k
 dy

=
∫ Xub

Xlb

∫ +∞

−Xlb/2
PX(x)PY′ |X(y

′|x) log2
Q′(y|x)

(1− p0)QŶ′ (y
′)

dy′dx + ∇̂

+
∫ Xlb/2

−∞
P0PY|X(y|0) log2

1
p0

dy +∇0, (A19)

where the ∇̂ and ∇0 are higher order terms of the Taylor expansion for nonzero and zero inputs.

Similarly, at Xlb → ∞, ∇̂ = E

[
∑∞

k=1
(−1)k

k

[
p0QY′ |X(y

′ |0)
(1−p0)QŶ′ (y

′)

]k
]

and ∇0 = E

[
∑∞

k=1
(−1)k

k

[
(1−p0)QŶ(y)
p0QY|X(y|0)

]k
]

can be written in the form of expectations. They will therefore vanish, for AWGN channel, since
limXlb→∞ QY′ |X(y′ ≤ −Xlb/2|x ≥ Xlb) = 0 and limXlb→∞ QY|X(y ≥ Xlb/2|0) = 0 for the Gaussian
distribution. The gap between the MI I(X; Y) and its lower bound ILB(X; Y) is then defined as

Igap =I(X; Y)− ILB(X; Y)

=
∫ Xub

Xlb

∫ +∞

−Xlb/2
PX(x)PY′ |X(y

′|x) log2
PY′ |X(y

′|x)
(1− p0)PŶ′ (y

′)

(1− p0)Q′Ŷ′ (y
′)

QY′ |X(y′|x)
dy′dx + ∆̂− ∇̂+ ∆0 −∇0

=∆̂− ∇̂+ ∆0 −∇0 +
∫ Xub

Xlb

∫ +∞

−Xlb/2
PX(x)PY′ |X(y

′|x) log2
PY′ |X(y

′|x)
QY′ |X(y′|x)

dy′dx

−
∫ Xub

Xlb

∫ +∞

−Xlb/2
PX(x)PY′ |X(y

′|x) log2
PŶ′ (y

′)

QŶ′ (y
′)

dy′dx. (A20)
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At Xlb → ∞, the vanishing terms ∆̂, ∇̂, ∆0 and ∇0 tends to 0, Hence, the limit of Igap is given by

lim
Xlb→∞

Igap =
∫ Xub

Xlb

PX(x)

(∫ +∞

−∞
PY′ |X(y

′|x) log2
PY′ |X(y′|x)
QY′ |X(y′|x)

dy

)
dx

−
∫ +∞

−∞

(∫ Xub

Xlb

PX(x)PY′ |X(y
′|x)dx

)
log2

P′
Ŷ′
(y′)

Q′
Ŷ′
(y′)

dy′

=
∫ Xub

Xlb

PX(x)DKL(P′, Q′|x)dx− (1− p0)DKL(P′Ŷ′ , Q′Ŷ′), (A21)

where the second term in (A20) is a nonnegative KL divergence term, hence, the Igap at Xlb → ∞ is
bounded by

0 ≤ lim
Xlb→∞

Igap ≤
∫ Xub

Xlb

PX(x)DKL(P′, Q′|x)dx =
∫ Xub

Xlb

PX(x)DKL(P, Q|x)dx, (A22)

which is the expectation of the KL divergence over the nonzero range of X. According to Proposition 1,
limx→∞ DKL(P, Q|x ∈ [Xlb, Xub]) for NCX PDF PY|X(y|x) and Gaussian PDF QY|X(y|x) tends to 0,
therefore, the upper bound of the Igap also tends to 0. This completes the proof.

Appendix C

Proof of Proposition 2. Consider the input random variable X ∈ {0 ∪ [Xlb, Xub]} is separated into
zero and nonzero sets. Then the probability density function of X can be

PX(x) = p0δ(x) + (1− p0)PX̂(x), (A23)

where δ(x) denotes the Dirac delta function, and PX̂(x) denotes the PDF of the nonzero input X̂.
Similarly, the output random variable Y can also be separated with similar manners as

PY(y) = p0PY|X(y|0) + (1− p0)PŶ(y), (A24)

where the PŶ(y) =
∫

X̂ PY|X(y|x)PX̂(x)dx denotes the PDF of the output corresponding to the nonzero
input. Using the Taylor expansion as in Equation (A15), Appendix B, and considering the AWGN
channel model, defined by PY|X(y|x), the MI is given as

I(X; Y) =h(Y)− h(Y|X) = h(Y)− h(Γ)

=
∫ +∞

−∞
PY(y) log2

1
PY(y)

dy− log2

√
2πe

=
∫ Xub

Xlb

∫ +∞

−Xlb/2
PX(x)PY′ |X(y

′|x) log2
1

(1− p0)P′
Ŷ′
(y′)

dy′dx + ∆̂

+
∫ Xlb/2

−∞
P0PY|X(y|0) log2

1
p0PY|X(y|0)

dy + ∆0 − log2

√
2πe, (A25)

where we changed the variable of integral in the first term of the last equality as y′ = y − Xlb.

At Xlb → ∞, ∆̂ = EX̂×Y′

[
∑∞

k=1
(−1)k

k

[
p0P′(y′ |0)

(1−p0)P
Ŷ′ (y

′)

]k
]

and ∆0 = EX0×Y

[
∑∞

k=1
(−1)k

k

[
(1−p0)PŶ(y)
p0PY|X(y|0)

]k
]

can
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be written in the form of expectations. They will therefore vanish since, for AWGN channel,
limXlb→∞ PY′ |X(y′ ≤ Xlb/2|x ≥ Xlb) = 0 and limXlb→∞ PY|X(y ≥ Xlb/2|0) = 0. Hence, we will have

I∞(X; Y) = lim
Xlb→∞

I(X; Y)

=
∫ Xub

Xlb

∫ +∞

−∞
PX(x)PY|X(y|x) log2

1
(1− p0)PŶ(y)

dydx

+
∫ +∞

−∞
P0PY|X(y|0) log2

1
p0PY|X(y|0)

dy− log2

√
2πe,

=p0 log2
1
p0

+ (1− p0) log2
1

1− p0
+ (1− p0)

(
h(Ŷ)− log2

√
2πe

)
=h0 + (1− p0)I(X̂; Ŷ), (A26)

where h0 = p0 log2
1
p0

+ (1− p0) log2
1

1−p0
, and I(X̂; Ŷ) denotes the MI between the nonzero input X̂

and its corresponding output Ŷ. The time- scaled capacity formulation in (19) is then given as

C = sup
PX(x):X∈{0}∪[Xlb,Xub]

R∞(X; Y) = sup
PX(x):X∈{0}∪[Xlb,Xub]

I∞

ts(Amin, δ)

= sup
p0,PX̂(x):x∈[Xmin,Xub]

σ2
NX2

min
2 ln(2/δ− 1)

(
h0 + (1− p0)I(X̂; Ŷ)

)
. (A27)

Let P∗X(x) denote the capacity achieving distribution for the problem in (A27), which is fully
defined by p∗0 , X∗min and the PDF of nonzero input, P∗

X̂
. Next, we will show that this distribution is

discrete with a finite number of mass points, which in turn implies the statement of this proposition.
We first show that the capacity achieving distribution P∗

X̂
is also the solution of the following

optimization problem
sup

PX̂(x):x∈[X∗min,Xub]

I(X̂; Ŷ). (A28)

Let P◦
X̂

be any arbitrary distribution within the feasible set of the problem in (A28), implying that
X◦min ≥ X∗min. Since P∗

X̂
defines the capacity achieving distribution for the problem in (A27), it yields a

time-scaled MI larger than that of any arbitrary distribution such as P◦
X̂

. Therefore we can write

σ2
NX∗min

2

2 ln(2/δ− 1)

(
h0|p∗0 + (1− p∗0)I∗(X̂; Ŷ)

)
≥

σ2
NX◦min

2

2 ln(2/δ− 1)

(
h0|p∗0 + (1− p∗0)I◦(X̂; Ŷ)

)
, (A29)

where I∗(X̂; Ŷ) and I◦(X̂; Ŷ) are the MI given by P∗
X̂

and P◦
X̂

, respectively. Simplifying (A29) and using
the fact that X◦min ≥ X∗min, we have

h0|p∗0 + (1− p∗0)I∗(X̂; Ŷ) ≥ X◦min
2

X∗min
2

(
h0|p∗0 + (1− p∗0)I◦(X̂; Ŷ)

)
≥ h0|p∗0 + (1− p∗0)I◦(X̂; Ŷ), (A30)

which implies that I∗(X̂; Ŷ) ≥ I◦(X̂; Ŷ). Since this is true for any arbitrary P◦
X̂

within the feasible set of
the problem in (A28), we can conclude that P∗

X̂
is also the optimal distribution for the problem in (A28).

Note that the problem in (A28) is equivalent to the amplitude constrained AWGN channel capacity
problem presented in [34]. In [34], Smith proved that the capacity achieving distribution for such
channels are discrete with a finite number of mass points. Thus, the optimal P∗

X̂
and thereby P∗X should

be discrete with a finite number of mass points as well, which concludes this proof.
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Appendix D

Proof of Theorem 2. Recalling the approximate time-scaled MI function is given as

Rapp(X; Y) =
σ2

NX2
min

2 ln(2/δ− 1)

[
p0 log2

1
p0

+ (1− p0) log2
Xmax − Xmin

1− p0
− (1− p0) log2(

√
2πe)

]
. (A31)

In order to find the maximum of the function (A31) analytically, its first order partial derivatives
with respect to p0, Xmin and Xmax, are first derived. These first order partial derivatives are given as

∂Rapp

∂Xmax
=

σ2
NX2

min
2 ln(2/δ + 1)

1− p0

Xmax − Xmin
, (A32)

∂Rapp

∂Xmin
=

2σ2
NXmin

2 ln(2/δ + 1)

(
p0 ln

1
p0

+ (1− p0) ln
Xmax − Xmin

1− p0
− (1− p0) ln

√
2πe

)
−

σ2
NX2

min
2 ln(2/δ + 1)

(
1− p0

Xmax − Xmin

)
, (A33)

∂Rapp

∂p0
=

σ2
NX2

min
2 ln(2/δ + 1)

(
ln

1
p0
− ln

Xmax − Xmin

1− p0
+ ln
√

2πe
)

, (A34)

Notice that (A32) is positive because Xmax > Xmin and p0 < 1. This implies that the approximate
time-scaled MI, Rapp(·), monotonically increases with respect to Xmax, thus, Rapp(·) maximizes at the
boundary as

X∗max = Xub. (A35)

Now setting the partial derivative in (A33) to zero and using the boundary condition above,
we obtain the following nonlinear equation that needs to be solved to obtain the possible optimal value
of Xmin denoted by X∗min.

2 ln
Xub − X∗min +

√
2πe√

2πe
=

X∗min

Xub − X∗min +
√

2πe
. (A36)

Note that the solution to this nonlinear equation can be written based on the Lambert W function
W(·) as

X∗min = (Xub +
√

2πe)

1− 1

2W
(

Xub
2
√

2π
+
√

e
2

)
 . (A37)

Then, the corresponding probability of the zero mass point can be derived by setting (A34) to
zero and using the results above as

p∗0 =

√
2πe

Xub − X∗min +
√

2πe
=

2
√

2πeW
(

Xub
2
√

2π
+
√

e
2

)
Xub +

√
2πe

. (A38)

Now, in order to show the optimally of p∗0 and X∗min derived above, the second order partial
derivative test should be performed. The second order partial derivative with respect to p0 and Xmin

is taken first and are given as

∂2Rapp

∂p2
0

= −
σ2

NX2
min

2 ln(2/δ + 1)

(
1
p0

+
1

1− p0

)
, (A39)
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∂2Rapp

∂X2
min

=
σ2

N
2 ln(2/δ + 1)

[
2(p0 ln

1
p0

+ (1− p0) ln
Xub − Xmin

1− p0
− (1− p0) ln

√
2πe)−

4Xmin
1− p0

Xub − Xmin
− X2

min
1− p0

(Xub − Xmin)2

]
. (A40)

The mixed second order partial derivatives are also required, which are given as

∂2Rapp

∂p0∂Xmin
=

∂2Rapp

∂Xmin∂p0
=

σ2
N

2 ln(2/δ + 1)

[
2Xmin ln

√
2πe(1− p0)

p0(Xub − Xmin)
+

X2
min

Xub − Xmin

]
. (A41)

By inspecting Equations (A39) and (A40), one may find that the second order partial derivatives
are less than zero at p0 = p∗0 and Xmin = X∗min, while the determinant of the Hessian matrix,
∂2Rapp

∂p2
0

∂2Rapp

∂X2
min
− ∂2Rapp

∂p0∂Xmin

∂2Rapp
∂Xmin∂p0

, is larger than zero. Hence, the maximum of the time-scaled MI in

(A31) is obtained at the optimal points X∗max = Xub, p∗0 and X∗min defined above as

Capp = Rapp(X; Y)|p∗0 ,X∗min,X∗max
. (A42)
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