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Abstract: We propose regularization methods for linear models based on the Lq-likelihood, which is
a generalization of the log-likelihood using a power function. Regularization methods are popular
for the estimation in the normal linear model. However, heavy-tailed errors are also important in
statistics and machine learning. We assume q-normal distributions as the errors in linear models.
A q-normal distribution is heavy-tailed, which is defined using a power function, not the exponential
function. We find that the proposed methods for linear models with q-normal errors coincide with
the ordinary regularization methods that are applied to the normal linear model. The proposed
methods can be computed using existing packages because they are penalized least squares methods.
We examine the proposed methods using numerical experiments, showing that the methods perform
well, even when the error is heavy-tailed. The numerical experiments also illustrate that our methods
work well in model selection and generalization, especially when the error is slightly heavy-tailed.

Keywords: least absolute shrinkage and selection operator (LASSO); minimax concave penalty
(MCP); power function; q-normal distribution; smoothly clipped absolute deviation (SCAD);
sparse estimation

1. Introduction

We propose regularization methods based on the Lq-likelihood for linear models with heavy-tailed
errors. These methods turn out to coincide with the ordinary regularization methods that are used
for the normal linear model. The proposed methods work efficiently, and can be computed using
existing packages.

Linear models are widely applied, and many methods have been proposed for estimation,
prediction, and other purposes. For example, for estimation and variable selection in the normal linear
model, the literature on sparse estimation includes the least absolute shrinkage and selection operator
(LASSO) [1], smoothly clipped absolute deviation (SCAD) [2], Dantzig selector [3], and minimax
concave penalty (MCP) [4]. The LASSO has been studied extensively and generalized to many
models, including the generalized linear models [5]. As is well known, the regularization methods
have many good properties. Many regularization methods are the penalized maximum likelihood
estimators, that is, minimizing the sum of the negative log-likelihood and a penalty. The literature
proposed various penalties. As described later, our regularization methods use another likelihood
with existing penalties.

Because the regularization methods for the normal linear model are useful, they are sometimes
used in linear models with non-normal errors. Here, popular errors include the Cauchy error
and the t-distribution error, both of which are heavy-tailed errors. For example, Ref. [6] partly
consider the Cauchy and t-distribution errors in their extensive experiments. These heavy-tailed
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distributions are known to be q-normal distributions, which are studied in the literature on statistical
mechanics [7–9]. The q-normal model is also studied in the literature on the generalized Cauchy
distribution. For example, see [10–13].

In this study, we consider the problem of a linear regression with a q-normal error. We propose
sparse estimation methods based on the Lq-likelihood, which is a generalization of the log-likelihood
using a power function. The maximizer of the Lq-likelihood, the maximum Lq-likelihood estimator
(MLqE), is investigated by [14] as an extension of the ordinary maximum likelihood estimator
(MLE). Ref. [14] studies the asymptotic properties of the MLqE. However, we are interested in
the regularization, not in the MLqE, because regularization estimators can be better than the MLqE.
We examine the proposed methods using numerical experiments. The experiments show that our
methods perform well in model selection and generalization, even when the error is heavy-tailed.
Moreover, we consider the effects of the sample size, dimension and sparseness of the parameter,
and value of the nonzero elements in the numerical experiments.

We also find that the proposed methods for linear models with q-normal errors coincide with
the ordinary regularization methods that are applied to the normal linear model. This finding partly
justifies the use of the ordinary regularization methods for linear regressions with heavy-tailed errors.
Moreover, the proposed methods are penalized least squares methods, and can be efficiently computed
by existing packages.

The rest of the paper is organized as follows. In Section 2, we introduce several tools, including the
normal linear model, regularization methods, Lq-likelihood, and q-normal models. In Section 3,
we describe the problem under consideration, that is, estimations in linear models with q-normal
errors. Moreover, we propose several regularization methods based on the Lq-likelihood. In Section 4,
we evaluate the proposed methods using numerical experiments. Section 5 concludes the paper.

2. Preliminaries

2.1. Normal Linear Model and Sparse Estimation

First, we introduce the normal linear model, the estimation of which is a basic problem in statistics
and machine learning [15]. Furthermore, we briefly describe some well-known regularization methods.

The normal linear model is defined as follows. A response is represented by a linear combination
of explanatory variables x1, x2, . . . , xd as

ya = θ0 +
d

∑
i=1

xa
i θi + εa (a = 1, 2, . . . , n), (1)

where ya is the response of the a-th sample, n is the sample size, d is the number of explanatory
variables, xa

i is the i-th explanatory variable of the a-th sample, εa is a normal error with mean zero and
known variance, and the regression coefficient θ = (θ0, θ1, . . . , θd)> is the parameter to be estimated.
The normal linear model is equivalently given by

µ = Xθ,

where µa = E[ya] is the expectation of the response ya, µ = (µa), and X = (xa
i ) is a design matrix of

size n× (d + 1), with xa
0 = 1 (a = 1, 2, . . . , n). Moreover, we define a row vector xa (a = 1, 2, . . . , n) as

xa = (1, xa
1, xa

2, . . . , xa
d), and a column vector xi (i = 0, 1, 2, . . . , d) as xi = (x1

i , x2
i , . . . , xn

i )
>, which results

in X = (x1>, x2>, . . . , xn>)> = (x0, x1, x2, . . . , xd). Let y = (ya) be the response vector of length n.
We assume that each column vector xi (i = 1, 2, . . . , d) is standardized, as follows: ∑n

a=1 xa
i = 0 and

‖xi‖ = 1, for i = 1, 2, . . . , d.
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As is well known, some regularization methods for the normal linear model are formulated as
an optimization problem in the form of

min
θ∈Rd+1

{
1

2n
‖y− Xθ‖2 + ρλ(θ)

}
, (2)

where ρλ(θ) is a penalty term, and λ ≥ 0 is a regularization parameter. The LASSO [1] uses ρλ(θ) =

λ‖θ‖1 = λ ∑d
i=1 |θi|. The path of the LASSO estimator when λ varies can be made by the least angle

regression (LARS) algorithm [16]. The SCAD [2] uses

ρλ(θ) =



d

∑
i=1

λ|θi| (|θi| ≤ λ),

−
d

∑
i=1

|θi|2 − 2aλ|θi|+ λ2

2(a− 1)
(λ < |θi| ≤ aλ),

d

∑
i=1

(a + 1)λ2

2
(aλ < |θi|),

(3)

and the MCP [4] uses

ρλ(θ) = λ
d

∑
i=1

∫ |θi |

0

(
1− u

γλ

)
+

du, (4)

where a(> 2) and γ(> 0) are tuning parameters.
The regularization problem given in (2) can be represented by

min
θ∈Rd+1

{
− 1

n
log f (y|θ) + ρλ(θ)

}
, (5)

where f (y|θ) is the probability density function of the statistical model. Note that log f (y|θ) is the
log-likelihood.

2.2. Lq-Likelihood

The Lq-likelihood is a generalization of the log-likelihood that uses a power function instead of the
logarithmic function. Let y = (y1, y2, . . . , yn)> be a vector of independent and identically distributed
(i.i.d.) observations, and let θ be a parameter of a statistical model. For q > 0 (q 6= 1), the Lq-likelihood
function is defined as

Lq(θ|y) =
n

∑
a=1

logq f (ya|θ), (6)

where f (·|θ) is a probability density function of the statistical model, and

logq(u) =
1

1− q
(u1−q − 1) (u > 0)

is the q-logarithmic function [9]. For q = 1, we define

log1(u) = log u (u > 0),

which is the ordinary logarithmic function. When q = 1, the Lq-likelihood is the log-likelihood.
The MLqE is defined as the estimator that maximizes the Lq-likelihood. [14] studied the asymptotic

performance of the MLqE, showing that it enjoys good asymptotic properties (e.g., asymptotic normality).
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2.3. q-Normal Model

Before defining the q-normal distribution [7–9], we introduce the q-exponential function.
For q > 0 (q 6= 1), the q-exponential function is the inverse function of the q-logarithmic function,
and is given by

expq(u) = {1 + (1− q)u}
1

1−q (u < −1/(1− q)).

For q = 1, the 1-exponential function is the ordinary exponential function

exp1(u) = exp u (u ∈ R).

Using the q-exponential function, the q-normal model is given by

Sq = { fq(y| ξ, σ)|ξ ∈ Ξ, σ > 0},

fq(y| ξ, σ) =
1

Zq
expq

{
− 1

3− q

(
y− ξ

σ

)2
}

=
1

Zq

{
1− 1− q

3− q

(
y− ξ

σ

)2
} 1

1−q

,

where ξ is a location parameter, Ξ ⊂ R is the parameter space, and σ is a dispersion parameter.
The constant Zq is a normalizing constant.

We assume that 1 ≤ q < 3, which ensures that the sample space is the real line itself, not just part
of it. Moreover, the parameter space is Ξ = R when 1 ≤ q < 3.

For example, the 1-normal model is the ordinary normal model. Another example is the Cauchy
distribution for q = 2:

f2(y|µ, σ) =
1

σB( 1
2 , 1

2 )

(
1 +

(y− ξ)2

σ2

)−1

,

where B(·, ·) is the beta function. Furthermore, the t-distribution of the degree of freedom ν is obtained
for q = 1 + 2/(ν + 1):

f1+2/(ν+1)(y|µ, σ) =
1

√
νσB( ν

2 , 1
2 )

(
1 +

(y− µ)2

νσ2

)− ν+1
2

.

3. Problem and Estimation Method

3.1. Linear Model with q-Normal Error

In this subsection, we formulate our problem, that is, a linear regression with a heavy-tailed error.
The errors of the Cauchy and t-distributions in linear models have been studied by researchers in the
context of heavy-tailed errors [17–20]. However, they focused mainly on the least squares methods,
whereas we are interested in sparse estimators. Moreover, our approach is based on the Lq-likelihood,
not the ordinary log-likelihood.

We examine the problem of estimating the linear model given in (1) with i.i.d. errors from
a q-normal distribution; henceforth, we refer to this as the q-normal linear model. In terms of probability
distributions, we wish to estimate the parameter θ of the q-normal linear modelMq:
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Mq = { f (·| θ)| θ ∈ Rd+1},

f (y| θ) = 1
Zn

q

n

∏
a=1

expq

{
− (ya − xaθ)2

3− q

}

=
1

Zn
q

n

∏
a=1

{
1− 1− q

3− q
(ya − xaθ)2

} 1
1−q

, (7)

where the dispersion parameter is assumed to be known (σ = 1). The 1-normal linear model is identical
to the normal linear model, as described in Section 2.1.

3.2. Lq-Likelihood-Based Regularization Methods

We propose regularization methods based on the Lq-likelihood. For q-normal linear models,
the proposed methods coincide with the original regularization methods for the normal linear model.
In other words, we apply the ordinary regularization methods as if the error distribution were a normal
distribution. The literature describes how to compute the proposed methods efficiently. Moreover,
our method calculates the MLqE.

We define the Lq-likelihood for the q-normal linear model in (7) as (6), where θ is the regression
coefficient. Note that the components of y are not assumed to be identically distributed because their
distributions are dependent on the explanatory variables.

The Lq-likelihood for the q-normal linear model is

Lq(θ|y) =
n

∑
a=1

logq f (ya|θ)

=
n

∑
a=1

logq

[
1

Zq
expq

{
− (ya − xaθ)2

3− q

}]

= −
Zq−1

q

3− q
‖y− Xθ‖2 − n logq(Zq), (8)

where the second term is a constant. The MLqE of the parameter θ is defined as the maximizer of the
Lq-likelihood. In the q-normal linear model, the MLqE is equal to the ordinary least square, the MLE
for the normal linear model.

We propose a LASSO, SCAD, and MCP based on the Lq-likelihood by replacing the log-likelihood
with the Lq-likelihood in the optimization problem in (5). That is, the Lq-likelihood-based regularization
methods are given in the form of

min
θ∈Rd+1

{
− 1

n
Lq(θ|y) + ρλ(θ)

}
. (9)

The penalty ρλ is λ‖θ‖1 for the LASSO, (3) for the SCAD, and (4) for the MCP. Note that the
estimator for λ = 0 is the MLqE. As a special case, the proposed methods are the ordinary regularization
methods when q = 1.

Because of (8) and (9), for the q-normal linear models, the Lq-likelihood-based regularization
methods are essentially the same as the penalized least square (2). In other words, we implicitly use
the Lq-likelihood-based regularization methods when we apply the ordinary LASSO, SCAD, and MCP
to data with heavy-tailed errors.

4. Numerical Experiments

In this section, we describe the results of our numerical experiments and compare the proposed
methods. Here, we focus on model selection and generalization.
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Our methods do not require additional implementations because the LASSO, SCAD, and MCP
are already implemented in software packages. In the experiments, we use the ncvreg package of the
software R.

4.1. Setting

The procedure for the experiments is as follows. We fix the value q of the q-normal linear model
and the Lq-likelihood, the dimension d of the parameter θ, the ratio of nonzero components rnz of θ,
the true value θ0 of the nonzero components of θ, and the sample size n. The value of q is selected from
1, 13/11, 3/2, 5/3, 2, 2.01, 2.1, and 2.5, where q = 13/11 is the t-distribution with ν = 10 degrees of
freedom, q = 3/2 is the t-distribution with ν = 3 degrees of freedom, and q = 5/3 is the t-distribution
with ν = 2 degrees of freedom. The sample size is n = 100 or n = 1000. The true parameter consists of
d× rnz θ0s and d× (1− rnz) zeros. All cases are illustrated in Table 1.

For each of m = 1000 trials, we create the design matrix X using the rnorm() function in R.
The response y is generated as q-normal random variables using the qGaussian package. For the
estimation, we apply the ncvreg() function to (y, X) with the default options; for example, the values
of the tuning parameters are a = 3.7 and γ = 3.

Table 1. All cases in the experiments. Each case is studied for the values of q and n.

θ0
rnz = 0.2 rnz = 0.4 rnz = 0.6 rnz = 0.8

d = 10 d = 100 d = 10 d = 100 d = 10 d = 100 d = 10 d = 100

100 1 5 9 13 17 21 25 29
101 2 6 10 14 18 22 26 30
102 3 7 11 15 19 23 27 31
103 4 8 12 16 20 24 28 32

To select one model and one estimate from a sequence of parameter estimates generated by
a method, we use the AIC and BIC:

AIC = −2 log p(y|θ̂) + 2d′, (10)

BIC = −2 log p(y|θ̂) + d′ log n, (11)

where d′ is the dimension of parameters of the model under consideration. Moreover, we use other
criteria based on the Lq-likelihood:

Lq-AIC = −2Lq p(y|θ̂) + 2d′, (12)

Lq-BIC = −2Lq p(y|θ̂) + d′ log n. (13)

For a sequence (θ̂(k)) made by each of the methods, let I(k) = {i| θ̂i
(k) 6= 0} and θ̂

(k)
MLE the MLE of

the modelM(k) = {p(·|θ)| θ j = 0 (j 6∈ I(k))}. We call (10) with θ̂ = θ̂
(k)
MLE AIC1, and (10) with θ̂ = θ̂(k)

AIC2. Similarly, (11) with θ̂ = θ̂
(k)
MLE is BIC1, and (11) with θ̂ = θ̂(k) is BIC2. The Lq-AIC and Lq-BIC are

referred to in the same manner; for example, (12) with θ̂ = θ̂
(k)
MLE is Lq-AIC1. Note that AIC1, BIC1,

Lq-AIC1, and Lq-BIC1 are available only when the MLE exists; AIC2, BIC2, Lq-AIC2, and Lq-BIC2 are
always applicable. Finally, we used cross-validation (CV) in addition to these information criteria.

4.2. Result

The results are presented in Figures 1–22, which report the best result for each method based on
the various information criteria. We present the tables of the results of the numerical experiments in
the Supplementary Material. In the figures, white bars represent LASSO, gray bars represent SCAD,
and black bars represent MCP.
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The model selection results are reported in Figures 1–14. The vertical axis indicates the number of
trials (among m = 1000 trials) where a method selects the true model. Here, a larger value is better.
The horizontal axis shows the value of θ0.

The generalization results are reported in Figures 15–22. To evaluate the generalization error
of the proposed methods, we newly make m = 1000 independent copies {(y′1, X′1), . . . , (y′m, X′m)} in
each trial. We computed the difference between (y′1, . . . , y′m) and the m predictions using each of the
methods. The vertical axis indicates the average prediction error over m trials. In this case, a smaller
value is better. The scaling of Figures 21 and 22 (q = 5/3) is different from that of the other figures.
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Figure 1. Model selection for q = 1, n = 100.
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Figure 2. Model selection for q = 1, n = 1000.
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Figure 3. Model selection for q = 13/11, n = 100.
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Figure 4. Model selection for q = 13/11, n = 1000.
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Figure 5. Model selection for q = 3/2, n = 100.
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Figure 6. Model selection for q = 3/2, n = 1000.
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Figure 7. Model selection for q = 5/3, n = 100.
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Figure 8. Model selection for q = 5/3, n = 1000.
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Figure 9. Model selection for q = 2, n = 100.
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Figure 10. Model selection for q = 2, n = 1000.
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Figure 11. Model selection for q = 2.01, n = 100.
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Figure 12. Model selection for q = 2.01, n = 1000.
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Figure 13. Model selection for q = 2.1, n = 100.
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Figure 14. Model selection for q = 2.1, n = 1000.
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Figure 15. Generalization error for q = 1, n = 100.
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Figure 16. Generalization error for q = 1, n = 1000.
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Figure 17. Generalization error for q = 13/11, n = 100.
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Figure 18. Generalization error for q = 13/11, n = 1000.

1 10 100 1000

0
2

4
6

8
10 L

S
M

(a) d = 10, rnz = 0.2
1 10 100 1000

0
2

4
6

8
10 L

S
M

(b) d = 10, rnz = 0.4
1 10 100 1000

0
2

4
6

8
10 L

S
M

(c) d = 10, rnz = 0.6
1 10 100 1000

0
2

4
6

8
10 L

S
M

(d) d = 10, rnz = 0.8

1 10 100 1000

0
2

4
6

8
10 L

S
M

(e) d = 100, rnz = 0.2
1 10 100 1000

0
2

4
6

8
10 L

S
M

(f) d = 100, rnz = 0.4
1 10 100 1000

0
2

4
6

8
10 L

S
M

(g) d = 100, rnz = 0.6
1 10 100 1000

0
2

4
6

8
10 L

S
M

(h) d = 100, rnz = 0.8

Figure 19. Generalization error for q = 3/2, n = 100.
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Figure 20. Generalization error for q = 3/2, n = 1000.
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Figure 21. Generalization error for q = 5/3, n = 100.
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Figure 22. Generalization error for q = 5/3, n = 1000.

Our first concern is whether the proposed methods work well. The results for q = 1 can be
regarded as a reference for the other values of q. The figures show that the proposed methods work
well in both model selection and generalization, especially for q < 2. The methods also perform well
in terms of model selection for q = 2, 2.01, and 2.1. However, they perform poorly for q = 2.5 in
terms of model selection and for q ≥ 2 in terms of generalization. As anticipated, a large q makes the
problem difficult.

Second, we evaluate the performance of the proposed methods, finding that the MCP performs
best in most cases. In a few cases, the MCP performed similarly to or slightly worse than the other
methods. For model selection, the cases with q = 1, n = 1000 and large θ0 are exceptions. Furthermore,
the LASSO performed worse than the SCAD and MCP.

Third, we consider the effect of rnz, θ0, d, and n, in addition to q. The cases with large rnz and/or
small θ0 are difficult. Moreover, a large d makes the problems difficult. However, if we have a small q
(1 ≤ q < 2), large θ0 (θ0 = 102, 103) and small rnz, the problems with large d can be easier than those
with small d. Furthermore, a small n makes the problems difficult in a similar manner to a large d.
These observations imply that, for 1 ≤ q < 2, small-sample problems can be easier than large-sample
problems if rnz is small and θ0 is large.
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Fourth, the choice of information criterion changes the methods’ performance. In terms of model
selection, BIC2 was mostly the best for many values of q. For 3/2 ≤ q ≤ 2.1, BIC1 was a little better
than BIC2 if BIC1 was available. For q = 1 and 13/11, BIC2 was better than BIC1. AIC1 and AIC2
were as good as BICs for 2 ≤ q ≤ 2.1. Moreover, the Lq-BIC1 and -BIC2 were best only for q = 3/2,
when BIC1 and BIC2 performed just as well. Overall, the Lq-information criteria performed poorly.

Furthermore, in terms of generalization, BIC2 was mostly the best. AIC2 was as good as BIC2,
whereas AIC2 was sometimes a little worse than BIC2. The information criteria using the Lq-likelihood
were poor for q = 13/11. For q = 1, 3/2, and 5/3, the Lq-information criteria worked as well as the
ordinary criteria and CV, except for some cases. The performance of CV was mostly good, but was
occasionally very poor.

In summary, using an appropriate criterion, the proposed methods perform well for linear models
with slightly heavy-tailed errors (1 ≤ q < 2). Moreover, the proposed methods work in terms of model
selection, even if the error is heavy-tailed (2 ≤ q < 2.5). Overall, we recommend using the MCP
and BIC2.

5. Conclusions

We proposed regularization methods for q-normal linear models based on the Lq-likelihood.
The proposed methods coincide with the ordinary regularization methods. Our methods perform well
for slightly heavy-tailed errors (1 ≤ q < 2) in terms of model selection and generalization. Moreover,
they work well in terms of model selection for heavy-tailed errors (2 ≤ q < 2.5). A theoretical analysis
of the proposed methods is left to future work.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/9/1036/
s1, Tables S1–S34: The results of the numerical experiments.

Funding: This work was partly supported by JSPS KAKENHI Grant Number JP18K18008 and JST CREST Grant
Number JPMJCR1763.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. B 1996, 58, 267–288. [CrossRef]
2. Fan, J.; Li, R. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. J. Am.

Stat. Assoc. 2001, 96, 1348–1360. [CrossRef]
3. Candes, E.; Tao, T. The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Stat. 2007,

36, 2313–2351. [CrossRef]
4. Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942.

[CrossRef]
5. Park, M.Y.; Hastie, T. L1-Regularization Path Algorithm for Generalized Linear Models. J. R. Stat. Soc. B

2007, 69, 659–677. [CrossRef]
6. Ahmed, S.E.; Kim, H.; Yildirim, G.; Yüzbasi, B. High-Dimensional Regression Under Correlated Design:

An Extensive Simulation Study. In International Workshop on Matrices and Statistics; Springer: Cham,
Switzerland, 2016; pp. 145–175.

7. Furuichi, S. On the maximum entropy principle and the minimization of the Fisher information in Tsallis
statistics. J. Math. Phys. 2009, 50, 013303. [CrossRef]

8. Prato, D.; Tsallis, C. Nonextensive foundation of Lévy distributions. Phys. Rev. E 2000, 60, 2398–2401.
[CrossRef] [PubMed]

9. Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009.
10. Alzaatreh, A.; Lee, C.; Famoye, F.; Ghosh, I. The Generalized Cauchy Family of Distributions with

Applications. J. Stat. Distrib. Appl. 2016, 3, 12. [CrossRef]
11. Bassiou, N.; Kotropoulos, C.; Koliopoulou, E. Symmetric α-Stable Sparse Linear Regression for Musical

Audio Denoising. In Proceedings of the 8th International Symposium on Image and Signal Processing and
Analysis (ISPA 2013), Trieste, Italy, 4–6 September 2013; pp. 382–387.

http://www.mdpi.com/1099-4300/22/9/1036/s1
http://www.mdpi.com/1099-4300/22/9/1036/s1
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1198/016214501753382273
http://dx.doi.org/10.1214/009053606000001523
http://dx.doi.org/10.1214/09-AOS729
http://dx.doi.org/10.1111/j.1467-9868.2007.00607.x
http://dx.doi.org/10.1063/1.3063640
http://dx.doi.org/10.1103/PhysRevE.60.2398
http://www.ncbi.nlm.nih.gov/pubmed/11970038
http://dx.doi.org/10.1186/s40488-016-0050-3


Entropy 2020, 22, 1036 16 of 16

12. Carrillo, R.E.; Aysal, T.C.; Barner, K.E. Generalized Cauchy Distribution Based Robust Estimation.
In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
2008, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 3389–3392.

13. Carrillo, R.E.; Aysal, T.C.; Barner, K.E. A Generalized Cauchy Distribution Framework for Problems
Requiring Robust Behavior. EURASIP J. Adv. Signal Process. 2010, 2010, 1–19. [CrossRef]

14. Ferrari, D.; Yang, Y. Maximum Lq-Likelihood Estimation. Ann. Stat. 2010, 38, 753–783. [CrossRef]
15. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer: New York, NY,

USA, 2009.
16. Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. Least Angle Regression. Ann. Stat. 2004, 32, 407–499.
17. Hinich, M.J.; Talwar, P.P. A Simple Method for Robust Regression. J. Am. Stat. Assoc. 1975, 70, 113–119.

[CrossRef]
18. Holland, P.W.; Welsch, R.E. Robust Regression Using Iteratively Reweighted Least-Squares. Commun. Stat.

Theory Methods 1977, 6, 813–827. [CrossRef]
19. Kadiyala, K.R.; Murthy, K.S.R. Estimation of regression equation with Cauchy disturbances. Can. J. Stat.

1977, 5, 111–120. [CrossRef]
20. Smith, V.K. Least squares regression with Cauchy errors. Oxf. Bull. Econ. Stat. 1973, 35, 223–231. [CrossRef]

c© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2010/312989
http://dx.doi.org/10.1214/09-AOS687
http://dx.doi.org/10.1080/01621459.1975.10480271
http://dx.doi.org/10.1080/03610927708827533
http://dx.doi.org/10.2307/3315088
http://dx.doi.org/10.1111/j.1468-0084.1973.mp35003004.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Normal Linear Model and Sparse Estimation
	Lq-Likelihood
	q-Normal Model

	Problem and Estimation Method
	Linear Model with q-Normal Error
	Lq-Likelihood-Based Regularization Methods

	Numerical Experiments
	Setting
	Result

	Conclusions
	References

