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Abstract: In this study, a new approach to basis of intelligent systems and machine learning
algorithms is introduced for solving singular multi-pantograph differential equations (SMDEs).
For the first time, a type-2 fuzzy logic based approach is formulated to find an approximated
solution. The rules of the suggested type-2 fuzzy logic system (T2-FLS) are optimized by the
square root cubature Kalman filter (SCKF) such that the proposed fineness function to be minimized.
Furthermore, the stability and boundedness of the estimation error is proved by novel approach on
basis of Lyapunov theorem. The accuracy and robustness of the suggested algorithm is verified by
several statistical examinations. It is shown that the suggested method results in an accurate solution
with rapid convergence and a lower computational cost.

Keywords: fuzzy systems; square root cubature kalman filter; singular multi-pantograph differential
equations; statistical analysis; Lyapunov function

1. Introduction

The application of multi-pantograph differential equations (MDEs) is expanding into various
branches of science such as modeling of cell-growth [1], electrodynamics [2], number theory [3],
electrodynamics, astrophysics [4], atomic physics [5], among many others.

Recently, due to the importance of MDEs, the solving of these equations have been frequently
considered in the literature and many numerical and analytical methods have been presented [6].
For example, in References [7–9], a homotopy approach and power series are developed for solving
linear MDEs and coinciding of the estimated solution with the exact solution is investigated.
In Reference [10], the spectral tau method is studied and the convergence of the presented
approach is investigated by L2 norm. In Reference [11], by obtaining the fractional integral of
Taylor wavelets in the sense of Riemann-Liouville definition, an estimated solution is presented
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for fractional MDEs. In Reference [12], by the Bessel and block-pulse functions, a numerical
solution is suggested and it is shown that the increasing of Bessel functions improves the accuracy.
In Reference [13], on the basis of topological degree theorem, an analytical method is developed.
In Reference [14], by the use of residual power series, an analytical solution is obtained and the
efficiency of using residual power series is compared with Chebyshev and Boubaker polynomials.
In Reference [15], Adomian decomposition approach is used to construct a solution algorithm for
MDEs with fractional-order in the sense of Caputo definition. In Reference [16], by the use of Riemann
Liouville fractional derivative and integral definitions, some operational matrices are constructed
and then on basis of Jacobi polynomials, an analytical solution is presented. In Reference [17],
the collocation method by the use of Boubaker polynomials is developed to convert the problem into
a nonlinear system, and then by solving the reduced nonlinear system, an approximated solution
is presented. In Reference [18], the spectral tau approach using Jacobi polynomials is improved
to solve MDEs. The shifted Gegenbauer-Gauss collocatio technique is introduced in Reference [19],
for functional-differential equations. The exponential Jacobi spectral and Jacobi collocation approaches
are developed in References [20,21].

Recently, fuzzy logic systems (FLSs) and machine learning algorithms are widely applied on
engineering problems [22–28]. However, to the best knowledge of the authors, the solution of singular
MDEs by FLSs and machine learning algorithms has not been studied in the literature. However,
quite rarely, some neural methods have been presented for conventional MDEs. For example,
in Reference [29], a neural network (NN) is learned by genetic algorithm to find a solution for
a pantograph system. In Reference [30], a simple NN is used to find an approximated solution
for ordinary differential equations and its accuracy is compared with the analytical solution.
In Reference [31], by the method of Lagaris et al, a neural approach is developed for solving MDEs
and its efficiency is proved. Now days, the computation techniques in software engineering are used
in various branch of scientific problem such as multimedia systems [32,33], security systems [34],
forecasting problems [35], stock market prediction [36], control systems [37], internet of things [38],
and so on. However these effective techniques quite rarely are applied on MDEs.

Considering the above motivation, in this paper a new approach using T2-FLSs is presented for
the solving of singular MDEs. Unlike the aforementioned NN-based methods [29–31], the optimization
is done by a low computation cost and stable algorithm. The proposed learning algorithm is on the
basis of stable SCKF. For the first time, a new approach on the basis of the Lyapunov theorem is
suggested to analyze the convergence and closed-loop stability. By several statistical examinations,
such as root mean square error (RMSE), inequality coefficient of Theil index (TIC), variance (VAR),
fitness (FIT), interquartile range (IR), median (Med), minimum (Min) and mean of absolute error,
the accuracy of the suggested method is shown. The main contributions are:

• A new numerical method is proposed for solving singular MDEs.
• For the first time, a type-2 fuzzy logic based approach is formulated to find an approximated solution.
• A new approach on the basis of the Lyapunov theorem is introduced for convergence and

stability analysis.
• Square root cubature Kalman filter is developed for the optimization of the suggested solver.
• Several statistical examinations are presented to demonstrate the accuracy and stability.

The paper organization is as follows. The problem is formulated in Section 2. The suggested
T2-FLS is illustrated in Section 3. The learning algorithm is presented in Section 4. The stability is
investigated in Section 5. The evaluation indexes are described in Section 6. The simulation results are
provided in Section 7, and finally the main outcomes are summarized in Section 8.
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2. Problem Formulation

The suggested solver is designed on the basis of fuzzy systems and SCKF. The general diagram of
the suggested solution approach is shown in Figure 1. The problem is described as:

χ̈ (t) +
n

∑
k=1

χ̇ (rkt) /Pk (t) + χ (t) /Gk = F (t) , (1)

where the initial conditions are χ (0) = a1 and χ̇ (0) = a2. Fk (t) and G (t) are nonlinear functions.
If there is a singularity in Fk (t) and G (t), then both sides of (1) are multiplied by Fk (t) and G (t).
The parameters of T2-FLS should be learned such that the estimated solution χ̂ (t) is to be converged
to the exact solution χ (t). Then the estimated χ̂ (t) satisfies:

¨̂χ (t) +
n

∑
k=1

˙̂χ (γkt) /Pk (t) + χ̂ (t) /Gk = F (t) . (2)

The cost function is defined as follows:

J =
1
N

N

∑
i=1

(
¨̂χi (t) +

n

∑
k=1

˙̂χi (γkt) /Pk,i (t) + χ̂i (t) /Gi − F (t)

)2

+
1
2

(
χ̂2

0 + ˙̂χ2
0

)
, (3)

where i = 1, ..., N and N is the number of samples.

Figure 1. Block diagram of the proposed solver.

3. T2-FLS Structure

The structure of T2-FLS χ̂ (t) is shown in Figure 2. The details are given as follows:

(1) Get the input t.
(2) The input t is mapped into time range [0, 1].
(3) The [0, 1] is divided into M section and for each section a Gaussian membership function (MF)

with mean ml , l = 1, ..., M and variance νl is considered.
(4) The upper and lower firing rules are computed as:

f̄l (t) = exp

(
− (t−ml)

2

ν̄2
l

)
, l = 1, ..., M, (4)

f
l
(t) = exp

(
− (t−ml)

2

ν2
l

)
, l = 1, ..., M. (5)
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(5) The normalized rule firings (type-reduction by the Nie-Tan approach [39]) are obtained as:

ψl (t) =
f̄l (t) + f

l
(t)

M
∑

l=1
f̄l (t) + f

l
(t)

. (6)

(6) The output is obtained as:

χ̂ (t, θ, m, ν) =
M

∑
l=1

θlψl (t, m, ν), (7)

where M is number of rules, θ is the vector of rule parameters. From (7), ˙̂χ is computed as:

˙̂χ (t, θ, m, ν) =
M

∑
l=1

θl

ḟl (t)
M
∑

l=1
fl (t)− fl (t)

M
∑

l=1
ḟl (t)(

M
∑

l=1
fl (t)

)2 . (8)

From (8), ḟl (t) is:

ḟl (t) = −
2 (t−ml)

ν2
l

exp

(
− (t−ml)

2

ν2
l

)
. (9)

Equation (9), can be rewritten as:

ḟl (t) = −
2 (t−ml)

ν2
l

fl (t) . (10)

Then from (8) and (10), ˙̂χ (t, θ, m, ν) is rewritten as:

˙̂χ (t, θ, m, ν) =
M

∑
l=1

θl

− 2(t−ml)

ν2
l

+ fl (t)
M
∑

l=1

2(t−ml)

ν2
l

M
∑

l=1
fl (t)

. (11)

Similarly, from (11), ¨̂χ (t, θ, m, ν) is obtained as:

¨̂χ (t, θ, m, ν) =

M
∑

l=1
θl


[
− 2t

ν2
l
+ ḟl (t)

M
∑

l=1

2(t−ml)

ν2
l

+ fl (t)
M
∑

l=1

2t
ν2

l

]
M
∑

l=1
fl (t)

−
[

2(t−ml)

ν2
l

+ fl (t)
M
∑

l=1

2(t−ml)

ν2
l

]
M
∑

l=1
ḟl (t)


/[

M
∑

l=1
fl (t)

]2

.
(12)

Considering (10), the Equation (12) is rewritten as:

¨̂χ (t, θ, m, ν) =

M
∑

l=1
θl


[
− 2t

ν2
l
+ ḟl (t)

M
∑

l=1

2(t−ml)

ν2
l

+ fl (t)
M
∑

l=1

2t
ν2

l

]
−[

2(t−ml)

ν2
l

+ fl (t)
M
∑

l=1

2(t−ml)

ν2
l

]
M
∑

l=1

2(t−ml)

ν2
l


/

M
∑

l=1
fl (t).

(13)
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Figure 2. The structure of suggested T2-FLS.

4. Learning Method

The suggested T2-FLS is optimized through the SCKF. To apply SCKF on learning of T2-FLS such
that the cost function (3) to be minimized, the following state-space representation is taken to account:

ξk+1 = ξk + Nk
Jk+1 = Jk (χ̂k|ξk) + Wk,

(14)

where λ (t) and W (t) are the Gaussian noise with covariance R and Q and zeros mean and ξ is the
vector of parameters of T2-FLS that includes rule parameters:

ξ = [θ1, ..., θM]T . (15)

The learning algorithm is presented as follows.

(1) Consider error covariance as φk−1 at sample time k − 1 and compute cubature points Ch,
h = 1, ..., 6M as:

Ch,k−1 = φk−1ςh + ξk−1, (16)

where, M is the number of rules and ςh is:

ςh =



√
3M
[

0 · · ·
h−th element

1 · · · 0
]T

h = 1, 2, ..., 3M
√

3M
[

0 · · ·
h−th element
− 1 · · · 0

]T

h = 3M + 1, ..., 6M.

(17)
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(2) For each wι in (16), evaluate the cost function J as:

Jh = 1
N

N
∑

i=1

(
¨̂χi (t|Ch) +

n
∑

k=1
˙̂χi (γkt|Ch) /Pk,i (t) + χ̂i (t|Ch) /Gi − F (t)

)2

+ 1
2
(
χ̂2

0 (t|Ch) + ˙̂χ2
0 (t|Ch)

)
,

(18)

where, h = 1, ..., 6M.
(3) From (18), estimate Jm as the mean of Jh, h = 1, ..., 6M:

Jm =
6M

∑
h=1

Jh/6M. (19)

(4) Define Zk−1 as:
Zk−1 = 1√

6M
[J1,k−1 − Jm,k−1, J2,k−1 − Jm,k−1,

· · · , J6M,k−1 − Jm,k−1]
T .

(20)

(5) From (20), compute the square-root of covariance matrix as:

φzz,k−1 = Tria
([

Zk−1 SR,k

])
, (21)

where Tria (·) represents triangularization and SR,k−1 is the square root of Rk−1.
(6) Compute cross-covariance πξz,k−1 as:

πξz,k−1 = ζk−1ZT
k−1, (22)

where
ζk−1 = 1√

6M
[C1,k−1 − ξk−1, C2,k−1 − ξk−1,

· · · , C6M,k−1 − ξk−1].
(23)

(7) Obtain Kalman gain as:
κk =

(
πξz,k−1/φT

zz,k−1

)
/φT

zz,k−1. (24)

(8) Update ξ as:
ξk = ξk−1 − κk Jm. (25)

(9) Update error covariance as:

SR,k = Tria
([

ζk−1 − κkZk−1 κkSR,k−1

])
. (26)

5. Stability and Convergence Analysis

To prove the stability and convergence of the suggested algorithm, the Lyapunov approach [40,41]
is used. To apply Lyapunov approach, the following Lyapunov function is defined:

V (t) =
1
N

N

∑
i=1

(
¨̂χi (t) +

n

∑
k=1

χ̂i (γkt) /Pk,i (t) + χ̂i (t) /Gi − F (t)

)2

. (27)

Time difference of V, results in:

V (t)−V (t− 1) = 1
N

N
∑

i=1

(
¨̂χi (t) +

n
∑

k=1
χ̂i (γkt) /Pk,i (t) + χ̂i (t) /Gi (t)− F (t)

)2

− 1
N

N
∑

i=1

(
¨̂χi (t− 1) +

n
∑

k=1
χ̂i (γk (t− 1)) /Pk,i (t− 1) + χ̂i (t− 1) /Gi (t− 1)− F (t− 1)

)2
.

(28)
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Considering small sample time, eq.dv1 can be simplified as:

V (t)−V (t− 1) ≤
1
N

N
∑

i=1

(∣∣ ¨̂χi (t)
∣∣− ∣∣ ¨̂χi (t− 1)

∣∣+ n
∑

k=1

(
[|χ̂i (γkt)| − |χ̂i (γk (t− 1))|] /Pk,i (t) +
[|χ̂i (t)| − |χ̂i (t− 1)|] /Gi (t)

))
.

(29)

From (13), ¨̂χi (t)− ¨̂χi (t− 1) is obtained as:

¨̂χi (t)− ¨̂χi (t− 1) =
M
∑

l=1
[θl (t)− θl (t− 1)] ·
[
− 2t

ν2
l
+ ḟl (t)

M
∑

l=1

2(t−ml)

ν2
l

+ fl (t)
M
∑

l=1

2t
ν2

l

]
−[

2(t−ml)

ν2
l

+ fl (t)
M
∑

l=1

2(t−ml)

ν2
l

]
M
∑

l=1

2(t−ml)

ν2
l

 /
M
∑

l=1
fl (t).

(30)

From (11), ˙̂χi (γkt)− χ̂i (γk (t− 1)) is written as:

˙̂χi (γkt)− χ̂i (γk (t− 1))

=
M
∑

l=1
[θl (t)− θl (t− 1)]

− 2(t−ml)
ν2
l

+ fl(t)
M
∑

l=1

2(t−ml)
ν2
l

M
∑

l=1
fl(t)

.
(31)

From (7), χ̂i (t)− χ̂i (t− 1) is computed as:

χ̂i (t)− χ̂i (t− 1) =
M

∑
l=1

[θl (t)− θl (t− 1)]ψl (t, m, ν). (32)

From (29) and Equations (31) and (32), one has:

V (t)−V (t− 1) = 1
N

N
∑

i=1

M
∑

l=1
[θl (t)− θl (t− 1)]·

∣∣∣∣∣∣∣∣

[
− 2t

ν2
l
+ ḟl (t)

M
∑

l=1

2(t−ml)

ν2
l

+ fl (t)
M
∑

l=1

2t
ν2

l

]
−[

2(t−ml)

ν2
l

+ fl (t)
M
∑

l=1

2(t−ml)

ν2
l

]
M
∑

l=1

2(t−ml)

ν2
l

 /
M
∑

l=1
fl (t)

∣∣∣∣∣∣∣∣+
n
∑

k=1


∣∣∣∣∣∣∣
− 2(t−ml)

ν2
l

+ fl(t)
M
∑

l=1

2(t−ml)
ν2
l

M
∑

l=1
fl(t)

∣∣∣∣∣∣∣ /Pk,i (t) +

|ψl (t, m, ν)| /Gi (t)


.

(33)

From (25) and (33), one has:

V (t)−V (t− 1) ≤ 1
N

N
∑

i=1

M
∑

l=1
−κ Jm·

∣∣∣∣∣∣∣∣

[
− 2t

ν2
l
+ ḟl (t)

M
∑

l=1

2(t−ml)

ν2
l

+ fl (t)
M
∑

l=1

2t
ν2

l

]
−[

2(t−ml)

ν2
l

+ fl (t)
M
∑

l=1

2(t−ml)

ν2
l

]
M
∑

l=1

2(t−ml)

ν2
l

 /
M
∑

l=1
fl (t)

∣∣∣∣∣∣∣∣+
n
∑

k=1


∣∣∣∣∣∣∣
− 2(t−ml)

ν2
l

+ fl(t)
M
∑

l=1

2(t−ml)
ν2
l

M
∑

l=1
fl(t)

∣∣∣∣∣∣∣ /Pk,i (t) +

|ψl (t, m, ν)| /Gi (t)


.

(34)
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From the fact that Jm > 0, it is concluded that V (t)−V (t− 1) ≤ 0 and from the Lyapunov theorem,
the stability and boundedness of the cost function is derived.

6. Evaluation Index

To evaluate the accuracy and robustness of the suggested algorithm, the following indexes
are defined.

RMSE =

√√√√ 1
N

N

∑
i=1

(χi − χ̂i)
2, (35)

TIC =

√√√√ 1
N

N

∑
i=1

(χi − χ̂i)
2

/
√√√√ 1

N

N

∑
i=1

χ2
i +

√√√√ 1
N

N

∑
i=1

χ̂2
i

, (36)

VAR =
N

∑
i=1

(χ− χ̂i)
2/ (N − 1) , (37)

where N is the number of sample times, χi and χ̂i are the exact and estimated solutions and RMSE, TIC
and VAR are root mean square error, inequality coefficient of Theil index, and variance, respectively.

7. Simulations

By several statistical analyses, the accuracy of the suggested algorithm is examined.

Example 1. For the first examination, an SMDE is considered as:

χ̈ (t) +
1
t

χ̇ (t/2) +
1
t2 χ̇ (t/4) +

1
1− t

χ (t) = F (t) , 0 < t ≤ 1, (38)

where

F (t) =
1
t

α cos (αt/2) +
1
t2 α cos (αt/4) +

α2t +
(
1− α2)

1− t
sin (αt) , (39)

where, α = π. The real solution of (38), is sin (αt). To estimate the solution by the suggested method, the cost
function is given as:

J =
1
N

N
∑

u=0

(
(1− u) u2 ¨̂χ (u|ξ) + (1− u) u ˙̂χ

( u
2 |ξ
)
+ (1− u) ˙̂χ

( u
4 |ξ
)
− (1− u) u2F (u)

)2

N = 1/τ, τ = 0.05.

(40)

The time range [0, 1] is divided into 21 sections and then we have 21 rules. The standard division of each MF is
considered to be 0.1. The trajectories of the output of T2-FLS (approximated solution), mean of approximated
solutions and exact solution are depicted in Figure 3a and the corresponding rule parameters are shown in
Figure 3b. The absolute error is depicted in Figure 4a and the values of FIT, RMSE, VAR and TIC are shown in
Figure 4b. The statistical analyses for TIC, RMSE, VAR and FIT are given in Figures 5–8. One can observe
that the metrics of TIC, RMSE, VAR and FIT are in the favorable level and the trajectory of the approximated
solution well tracks the exact solution x(t) = sin(αt).

For the accuracy of the suggested approach to be well seen, the values of interquartile range (IR),
median (Med), minimum (Min) and mean of absolute error at each sample time are provided in Table 1.
One can see that the values of mean and IR items are in range of 10−3 to 10−2 that indicate an accurate
and robust solution.
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Figure 3. Example 1: (a): Solution performance; (b): Weights of NN.
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Figure 4. Example 1: (a): Absolute error; (b): The values of FIT, RMSE, VAR and TIC.
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Figure 5. Example 1: (a): The value of TIC at each iteration; (b): Histogram plot for TIC; (c): Box plot
for TIC.
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Figure 6. Example 1: (a): The value of RMSE at each iteration; (b): Histogram plot for RMSE;
(c): Box plot for RMSE.
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Figure 7. Example 1: (a): The value of VAR at each iteration; (b): Histogram plot for VAR; (c): Box plot
for VAR.
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Figure 8. Example 1: (a): The value of FIT at each iteration; (b): Histogram plot for FIT; (c): Box plot
for FIT.

Table 1. Example 1: Statistical analysis.

t Min Mean Med IR

0 0.0218 0.0776 0.0823 0.0451
0.0500 0.0228 0.0786 0.0830 0.0448
0.1000 0.0223 0.0788 0.0835 0.0455
0.1500 0.0200 0.0774 0.0827 0.0473
0.2000 0.0154 0.0736 0.0799 0.0498
0.2500 0.0089 0.0672 0.0746 0.0519
0.3000 0.0014 0.0589 0.0675 0.0523
0.3500 0.0040 0.0505 0.0595 0.0520
0.4000 0.0001 0.0430 0.0514 0.0500
0.4500 0.0030 0.0373 0.0434 0.0416
0.5000 0.0039 0.0323 0.0354 0.0328
0.5500 0.0003 0.0279 0.0278 0.0202
0.6000 0.0006 0.0242 0.0231 0.0139
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Table 1. Cont.

t Min Mean Med IR

0.6500 0.0042 0.0211 0.0209 0.0129
0.7000 0.0026 0.0179 0.0167 0.0159
0.7500 0.0001 0.0149 0.0124 0.0138
0.8000 0.0019 0.0121 0.0120 0.0127
0.8500 0.0012 0.0092 0.0091 0.0112
0.9000 0.0000 0.0062 0.0057 0.0087
0.9500 0.0003 0.0033 0.0030 0.0053
1.0000 0.0000 0.0000 0.0000 0.0000

Example 2. In this Example, the following SMDE is considered:

χ̈ (t) +
1
t

χ̇ (t/2) +
1
t2 χ̇ (t/4) +

1
1− t

χ (t) = F (t) , 0 < t ≤ 1, (41)

where
F (t) =

1
t

exp (t/2) +
1
t2 exp (t/4) +

2− t
1− t

exp (t) . (42)

The cost function is:

J =
1
N

N
∑

u=0

(
(1− u) u2 ¨̂χ (u|w) + (1− u) u ˙̂χ

( u
2 |w

)
+ (1− u) ˙̂χ

( u
4 |w

)
− (1− u) u2F (u)

)2

+ 1
2

(
(χ̂ (0|w)− 1)2 +

( ˙̂χ (0|w)
)2
)

N = 1/τ, τ = 0.05.

(43)

Similar to Example 1, we have 21 rules. The trajectories of the output of T2-FLS (approximated solution),
the mean of approximated solutions and exact solution are depicted in Figure 9a and the corresponding rule
parameters are shown in Figure 9b. The absolute error is depicted in Figure 10a and the values of FIT, RMSE,
VAR and TIC are shown in Figure 10b. The statistical analysis for TIC, RMSE, VAR and FIT are given in
Figures 11–14. One can observe that the metrics of TIC, RMSE, VAR and FIT are in the favorable level and the
trajectory of the approximated solution well tracks the exact solution x(t) = exp(t).

Similar to Example 1, in order for the accuracy of the suggested approach to be well seen,
the values of interquartile range (IR), median (Med), minimum (Min) and mean of absolute error at
each sample time are provided in Table 2. One can see that the values of mean and IR items are in the
range of 10−3 to 10−2 that indicate an accurate and robust solution.
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Figure 9. Example 2: (a): Solution performance; (b): Weights of NN.
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Figure 10. Example 2: (a): Absolute error; (b): The values of FIT, RMSE, VAR and TIC.
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Figure 11. Example 2: (a): The value of TIC at each iteration; (b): Histogram plot for TIC; (c): Box plot
for TIC.
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Figure 12. Example 2: (a): The value of RMSE at each iteration; (b): Histogram plot for RMSE; (c): Box
plot for RMSE.
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Figure 13. Example 2: (a): The value of VAR at each iteration; (b): Histogram plot for VAR; (c): Box
plot for VAR.
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Figure 14. Example 2: (a): The value of FIT at each iteration; (b): Histogram plot for FIT; (c): Box plot
for FIT.

Table 2. Example 2: Statistical analysis.

t Min Mean Med IR

0 0.0004 0.0006 0.0006 0.0001
0.0500 0.0006 0.0009 0.0009 0.0002
0.1000 0.0010 0.0014 0.0015 0.0003
0.1500 0.0013 0.0016 0.0016 0.0002
0.2000 0.0000 0.0008 0.0008 0.0005
0.2500 0.0002 0.0014 0.0013 0.0014
0.3000 0.0013 0.0048 0.0047 0.0025
0.3500 0.0038 0.0090 0.0092 0.0038
0.4000 0.0065 0.0133 0.0137 0.0050
0.4500 0.0090 0.0171 0.0176 0.0059
0.5000 0.0112 0.0204 0.0210 0.0067
0.5500 0.0134 0.0234 0.0240 0.0073
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Table 2. Cont.

t Min Mean Med IR

0.6000 0.0155 0.0261 0.0268 0.0077
0.6500 0.0175 0.0285 0.0292 0.0079
0.7000 0.0191 0.0301 0.0309 0.0079
0.7500 0.0201 0.0307 0.0316 0.0075
0.8000 0.0206 0.0306 0.0314 0.0069
0.8500 0.0207 0.0298 0.0306 0.0064
0.9000 0.0205 0.0283 0.0291 0.0057
0.9500 0.0193 0.0255 0.0262 0.0041
1.0000 0.0157 0.0201 0.0205 0.0028

Remark 1. The main hyperparameters of the suggested algorithm are the number of rules and initial covariance
matrices. For stability considerations, the initial covariance matrices are chosen to be relatively small. The number
of rules is equal to the number of membership functions for input t. To determine the number of rules, the time
range t ∈ [0, T] is divided into M sections and for each section one Gaussian membership function with a certain
center and an uncertain standard division is considered. The number of rules can affect the accuracy but it
depends on the size of sample time. For a smaller sample time, more rules can be taken into account.

Example 3. In this section, the performance of the suggested algorithm is compared with other similar techniques
in the literature [29]. In Reference [29], a simple NN is learned by genetic algorithm to find a solution for a
pantograph system. The following MDE is taken into account [29]:

χ̇ =
1
2

et/2χ (t/2) +
1
2

χ (t) , χ (0) = 1. (44)

The exact solution of (44) is χ (t) = et. The number of rules in T2-FLS is considered to be 10, the same as the
number of neurons in Reference [29]. The numerical comparison, with the method of Reference [29], is given in
Table 3. Although the results are close to each other in this Example, the main advantage of the suggested method
is that the results of the suggested method are obtained in only one epoch. However, in the genetic algorithm
presented in Reference [29], the learning process of NN is repeated several times until a reasonable result is
achieved. The evolutionary based learning techniques are not suitable for online applications because of the high
level of computational cost and lack of stability guarantee.

Table 3. Example 3: Comparison.

t Exact Solution Proposed Method Method of Reference [29]

0 1.0000 1.0000 1.0000
0.1 1.1052 1.1051 1.1051
0.2 1.2214 1.2213 1.2213
0.3 1.3499 1.3498 1.3497
0.4 1.4918 1.4917 1.4917
0.5 1.6487 1.6486 1.6486
0.6 1.8221 1.8221 1.8220
0.7 2.0138 2.0137 2.0136
0.8 2.2255 2.2254 2.2253
0.9 2.4596 2.4595 2.4594
1 2.7183 2.7181 2.7181

8. Conclusions

In this paper, a new approach on the basis of fuzzy neural networks and SCKF is introduced
for finding a numerical solution for multi-pantograph singular differential equations. The proposed
learning method is stable and this property is shown by a new approach on the basis of the Lypunov



Entropy 2020, 22, 1041 16 of 18

theorem. Two simulations are provided to demonstrate the efficiency of the designed solver. Several
statistical analyses are given to verify the effectiveness of the introduced algorithm such as the analysis
of RMSE, Interquartile Range, Theil’s Inequality Index and Variance metrics. The metrics of TIC, RMSE,
VAR and FIT are shown in the favorable level and the trajectory approximated solution well tracks
the exact solution. Also, the performance of the suggested method is compared with the other similar
techniques in the literature. It is shown that the proposed technique results in better accuracy despite
less computational cost in contrast to the evolutionary based learning genetic algorithm.
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Abbreviations

SCKF Square root cubature Kalman filter
SMDE Singular multi-pantograph differential equations
T2-FLS Type-2 fuzzy logic system
FLS Fuzzy logic system
NN Neural network
MDE Multi-pantograph differential equation
RMSE Root mean square error
TIC Inequality coefficient of Theil index
VAR variance
FIT Fitness
IR Interquartile range
Med Median
Min Minimum
M Number of rules
ml Center of l-th Gaussian membership function
ν̄l Upper standard division
νl Lower standard division
J Cost function
ψl l-th rule firing
φ Covariance matrix
κ Kalman gain
N Number of data samples
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