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Abstract: In this article, I use an operational formulation of the Choi–Jamiołkowski isomorphism
to explore an approach to quantum mechanics in which the state is not the fundamental object.
I first situate this project in the context of generalized probabilistic theories and argue that this
framework may be understood as a means of drawing conclusions about the intratheoretic causal
structure of quantum mechanics which are independent of any specific ontological picture. I then give
an operational formulation of the Choi–Jamiołkowski isomorphism and show that, in an operational
theory which exhibits this isomorphism, several features of the theory which are usually regarded
as properties of the quantum state can be derived from constraints on non-local correlations.
This demonstrates that there is no need to postulate states to be the bearers of these properties,
since they can be understood as consequences of a fundamental equivalence between multipartite
and temporal correlations.
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1. Introduction

In the standard mathematical formulation of quantum mechanics, the quantum state is the most
fundamental object. However, there exists a longstanding debate about whether we should regard the
quantum state as an element of reality [1,2]. A recent result known as the PBR theorem purported to
settle this debate once and for all by showing that no interpretation of quantum mechanics where the
quantum state is not an element of reality can reproduce all of the theory’s empirical predictions [3].
However, in order to prove the PBR theorem it is assumed that information about the past must be
carried into the future by a mediating state, so in fact the setup for the theorem takes it for granted that
the fundamental object in quantum mechanics is some sort of temporally evolving state, whether or
not that state turns out to be the quantum state.

The assumption that temporal correlations must be mediated by states is seldom seriously
questioned, but it is in fact in tension with certain elements of modern physics [4], and this suggests
that we ought to take seriously the possibility of re-imagining quantum mechanics with an ontology
that does not employ states at all. Quantum states have certain fundamental temporal properties
(for example, they cannot be broadcasted, they are contextual, they exhibit interference effects, and they
are subject to uncertainty relations) and a literal reading of the formalism of quantum mechanics
would suggest that the characteristic features of the theory are derived from these properties of the
quantum state. Thus as a first step towards a stateless ontology, we should determine whether it is
necessary to postulate some sort of state to be the bearer of these properties, or whether they can be
accounted for in another way.

In recent years there have been moves within the quantum foundations community toward a type
of research where quantum mechanics is placed in the context of a space of generalized probabilistic
theories (GPTs), with the aim of showing that certain features of quantum mechanics can be derived
from some chosen axioms [5–13]. However, most of these projects use axioms which employ a concept
of ‘state’, and hence they don’t offer an obvious route to a stateless ontology. In this paper, I employ
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the methodology of the generalized probabilistic theories framework, but I develop an alternative
approach which is explicitly geared towards eliminating the concept of state.

I begin in Section 2 by elaborating on the rationale for studying generalized probabilistic
theories. Then in Section 3 I set out an operational form of the Choi–Jamiołkowski isomorphism,
and demonstrate that this operational isomorphism can be used to derive temporal properties of
states from constraints on the types of non-local correlations that are permitted within the theory.
This demonstrates that in fact we don’t require a state to be the bearer of the aforementioned temporal
properties, and thus paves the way for a new way of thinking about the intratheoretic causal structure
of quantum mechanics where states are not fundamental objects.

2. Intratheoretic Causal Structure

2.1. Ontology

The issue of ontology is a vexed one in physics. It is a well-established fact that ontology
is always underdetermined by the empirical results, and therefore no amount of experimentation
can give us certainty about the nature of the unobservable entities associated with our theory [14].
Furthermore, when one theory is replaced by another, it is often the case that the theoretical objects
postulated by the original theory do not feature in the new theory, and thus unless we believe our
current theory is the correct final theory of reality we should probably assume that the theoretical
objects posited by our current theory will not feature in future theories [15]. Considerations such as
these have led many physicists to adopt variants of anti-realism, positivism or empiricism, holding
that physics should be concerned only with empirical predictions and should be silent on questions of
ontology [16,17].

However, it is important to recognise that the ontology we associated with our theories affects
the way in which science progresses. For example, recall that classical physics can be written either
in the standard Newtonian form, where we start with initial positions and calculate trajectories from
those positions, or in a Lagrangian form where we define an ’action’ over an entire history and find
the trajectory which optimizes the action [18,19]. Historically most physicists have considered the
Newtonian formulation of classical physics to be more fundamental than the Lagrangian one, and in
this context it was natural for the founders of quantum mechanics to formulate the new theory in
terms of a state evolving forwards in time, even though we now know that an alternative Lagrangian
formulation in terms of path integrals exists [18,20]. Quantum mechanics might look very different
(and indeed might well be less difficult to ’interpret’) had we taken the Lagrangian formulation
seriously from the start.

Moreover, simply becoming an operationalist and refusing to talk about ontology doesn’t confer
immunity to these sorts of biases, because ontological assumptions are baked into the way in which we
think about and do physics [4,18,21], and so those who decline to think seriously about ontology are
effectively choosing to uphold the status quo ontological assumptions - which, in the case of quantum
mechanics, entails upholding the assumption of an ontology based on states.

Thus reconsidering the ontology associated with our theories can be a useful way of flushing
out unjustified assumptions and ultimately coming up with new physics. However, in adopting this
strategy we risk getting caught up in the details of some specific ontology, which due to the problem
of underdetermination will inevitably not be correct in every particular. Ideally, what we would like to
do is extract the significant structural content of various different ontologies and discard the specifics,
which don’t really contribute to the project of coming up with new physics and are essentially just
window-dressing. This is exactly what the framework of generalized probabilistic theories allows us to
do [5–13]: It offers a middle way between realism and empiricism, where we impose hierarchies within
our theories by regarding certain features of the theory as consequences of other features, but do not
actually specify the details of the ontology underlying the hierarchy.
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2.2. Intratheoretic Causation

Hierarchical structures of this kind occur in many places throughout the sciences. They are most
straightforward in theories which come with an ontology attached, because in such cases a hierarchy
of fundamentality can be read directly off the ontology. For example, the ontology of classical physics
postulates objects which move in inertial reference frames and are subject to certain mechanical
forces, but centrifugal force is not one of those mechanical forces—rather it is is a ‘fictitious’ force
which arises when we try to describe an object in a reference frame which is accelerating relative
to an inertial reference frame [22]. This ontology encodes a hierarchy where the centrifugal forces
are to be understood as consequences of the more fundamental laws governing motion relative to
inertial frames. Indeed, the hierarchy licences counterfactual assertions about the relationship between
these features: If the laws governing motion relative to inertial frames had been relevantly different,
the centrifugal forces would also have been different. Thus we observe that these hierarchies of
fundamentality are roughly analogous to causal structures, with ‘causation’ to be understood in the
counterfactual sense: In a given theory, feature A causes feature B if feature B would not have obtained
if A had not obtained (There are many subtleties that have to be dealt with in any counterfactual
account of causation; I will not deal with any of them here, but refer to reference [23] for a general
discussion of counterfactual approaches to causation. It is likely that further subtleties would arise
in the application of this approach to intratheoretic causation; I will return to these in forthcoming
work.). Therefore I will henceforth refer to these hierarchies as ‘intratheoretic causal structures’ though
I emphasize that the word ‘causal’ is here being used in a specialised sense, since the relata of the
putative causal relation are not immanent.

We are already quite familiar with the case where the intratheoretic causal structure can be read
off the ontology. However, what if there is no general consensus regarding the ontology of a theory?
Quantum mechanics is one such case—to this day it is not even clear whether quantum mechanics
requires the existence of the wavefunction [2], let alone other proposed features such as spontaneous
collapses [24], de Broglie-Bohm particles [25] or ‘many-worlds’ [26]. As a result the intratheoretic causal
structure of quantum mechanics is much less transparent - witness the continuing controversy over
the reality of the quantum state, which can be understood as a discussion about whether we should
adopt an intratheoretic causal structure in which the characteristic features of quantum mechanics are
derived from the properties of the quantum state, or whether we should take it that the quantum state
itself is derived from some deeper properties.

Obviously it is open to us to resolve these questions by adopting an interpretation of quantum
mechanics and drawing the conclusions implied by its ontology. For example, the Everett interpretation
tells us that the quantum state is indeed the fundamental object of quantum mechanics [26],
whereas Quantum Bayesianism suggests that the quantum state is simply a description of an agent’s
degrees of belief about the outcomes of measurements [27]. However, the study of generalized
probabilistic theories offers an alternative, allowing us to draw conclusions about intratheoretic causal
structure which are independent of any specific ontological assumptions. Research of this kind works
by placing quantum mechanics in the context of a wider space of GPTs so that we can meaningfully
consider counterfactual questions about how changing one aspect of a theory might lead to other
changes [5–13]. This often involves proving statements of the form: ‘any generalized probabilistic
theory which has feature X must also have feature Y’. For example, reference [12] proves that any GPT
which obeys no-signalling must also obey a form of monogamy of correlations, thus demonstrating
the existence of a (putatively causal) relationship between these features which holds regardless of
what the underlying ontology might be. The framework of generalized probabilistic theories therefore
provides exactly the formalism needed for us to study the counterfactual reasoning associated with
intratheoretic causal structure in a way that does not depend on any particular ontology.

Of course, showing that certain features of quantum mechanics can be derived from other features
in this way doesn’t actually prove anything about the intratheoretic causal structure of quantum
mechanics, because there exists no unique axiomatization of quantum mechanics and each different
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axiomatization will suggest different intratheoretic causal relations. However, that is just to restate the
old problem of underdetermination of theory by data, and a similar response can be made: The point
is not necessarily to know for certain, but to understand the implications of different possible causal
structures as a way of exploring alternative ways forward for physics. One need not believe that any
particular causal structure is the correct one, or indeed that a unique correct causal structure even
exists, to see the value of the exercise.

2.3. Structural Realism

I have suggested that one motivation for research in the space of generalized probabilistic theories
is the idea that we don’t have much hope of coming to know the true ontology of our theories, so instead
of focusing on the details of specific ontologies we should instead think in terms of intratheoretic
causal structures, which plausibly we could get right even if the true ontology remains epistemically
inaccessible. This suggestion clearly has common ground with the philosophical view known as
structural realism [15], which proposes that since the specific ontologies of our theories will likely
be discarded when we move to a new theory, we should not be epistemically committed to specific
ontologies but instead commit to the structural relations implied by the ontologies of the theories,
since these relations are often maintained when we move to a new theory. However, the relations to
which structural realism refers are usually instantiated by specific objects in the world, whereas the
intratheoretic relations that I discuss here hold between parts of a theory, so the domain of application
of this form of structuralism is importantly different.

3. The Choi–Jamiołkowski Isomorphism

In the remainder of this article, I will elaborate on an intratheoretic causal structure for quantum
mechanics where the quantum state is not the fundamental object. My approach is based on
the Choi–Jamiołkowski isomorphism, which describes the mathematical correspondence between
quantum channels and entangled bipartite states [28]. The Choi–Jamiołkowski isomorphism can be
derived from the standard mathematical formalism of quantum mechanics, and the fact that it is
usually taught in this way encourages physicists to regard it as a consequence of the properties of the
quantum state. In particular, it is often interpreted by appeal to an operational procedure known as
‘noisy gate teleportation’ in which agents A and B share entanglement and agent A is in possession of
a system in an unknown state ρ and the aim is for B to end up with a system in the state Tρ where T is
some fixed transformation; this cannot usually be achieved with perfect certainty, but insofar as it is
possible it works because of the Choi–Jamiołkowski isomorphism [29,30]. This presentation implies
that the isomorphism is just one of the many surprising operational consequences which follows from
the properties of the quantum state, so it is of no special foundational interest.

However, consider: What the isomorphism actually tells us (roughly speaking), is that in quantum
mechanics, the set of possible multipartite correlations exhibited by entangled states is equivalent to
the set of possible temporal correlations exhibited by sequences of measurements on a single system
over time. This equivalence has the air of a fact about ontology. Indeed, I would argue that and indeed,
any choice for the ontology of quantum mechanics which failed to reflect such a striking equivalence
would surely be suspect on the grounds of exhibiting ‘asymmetries which do not appear to be inherent
in the phenomena’. [31] Thus in this paper I will suppose that the Choi–Jamiołkowski isomorphism is
indeed a deep fact about the underlying ontology of quantum mechanics, and therefore causally prior
to most other features of the theory.

In accordance with the discussion of Section 2, rather than proposing a specific ontology which
has this feature, I will proceed directly to an investigation of the consequences of this conjecture for the
intratheoretic causal relations in quantum mechanics. In Section 3, I give an operational formulation of
the Choi–Jamiołkowski isomorphism, which relates measurements on different parts of a multipartite
system to sequences of measurements on the same system and vice versa. In Sections 5–7, I use
it to prove results of the form ‘Any generalized probabilistic theory which obeys the operational
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Choi–Jamiołkowski isomorphism, and which has property A, must also have property B’, where A
is a constraint on multipartite measurements and B is a constraint on sequences of measurements,
as shown in the table below (Table 1). That is, I show that several features of quantum mechanics
which are typically interpreted as temporal properties of the quantum state could in fact be derived
from the properties of some more general entity which is the substratum for both multipartite states
and time evolution.

Table 1. Summary of results.

Property Implies

Strong monogamy of correlations and Bell nonlocality No-broadcasting and quantum interference

No-signalling and Bell nonlocality Preparation contextuality

Information causality Fine-grained uncertainty relations

Each of the properties in this table will be given an operational definition in subsequent sections.
Note that the concept of ‘operational state’ will feature in the definition of some of the properties
on the right-hand side of the table, since they have been chosen specifically as properties which are
normally attached to states. However, crucially, the concept of state is not used in the operational
definitions of the concepts on the left-hand side, or in the operational Choi–Jamiołkowski isomorphism.
Thus as promised, these results demonstrate features that appear to be properties of states can in fact
be understood as consequences of features of the theory which do not depend in any way on a concept
of state.

3.1. Related Work

While the mainstream literature on quantum mechanics is still very dominated by state-based
approaches, in recent years a variety of interesting work has been done on non-standard temporal
pictures. For example, there has been growing interest in retrocausal approaches to quantum
theory [32,33], including a proof by Pusey and Leifer demonstrating that if quantum mechanics obeys
a certain sort of time-symmetry then it must exhibit retrocausality [34] and a model due to Wharton
which suggests a natural resolution to the quantum reality problem using the “all-at-once”-style
analysis of action principles [35]. Elsewhere, Oreskhov and Cerf [36] have set out the process matrix
formalism, which allows us to generalize the framework of operational theories in a way that does not
depend on a predefined time or causal structure, thus giving us the mathematical resources to deal
with theories that might contain indefinite causal order, causal loops or other structures that don’t fit
into our familiar notions of time and causality. Similarly, Shrapnel and Costa have used the process
matrix formalism to set out a generalisation of the ontological models approach which does not assume
that information must be carried through time by a mediating state, and have used this generalisation
to demonstrate that even without mediating states quantum mechanics must still exhibit a generalized
form of contextuality [37]. Thus the ideas set out here add to a growing body of work on the ways in
which quantum mechanics could be embedded into global and temporally non-local structures.

It has been recognised that the Choi–Jamiolkowski isomorphism is likely to play an important
role in such non-standard temporal pictures—in particular, the process matrix is defined using the
Choi–Jamiolkowski representations of the relevant CP maps [36]. The process matrix formalism
therefore assigns to the isomorphism an implicit ontological significance, and so the results
presented here can be understood as complementary to that line of research, since I have made
the ontological significance of the isomorphism explicit and used an operational formulation to explore
its consequences for intratheoretic causal structure. A variety of other authors have also suggested that
the isomorphism should be understood in ontological terms, so for example it is noted in [38] that the
Choi–Jamiołkowski representation for quantum operations ‘gives a nice way of unifying statics and
dynamics in one framework: The future is entangled (or at least correlated) with the past’, and likewise,
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reference [39] puts forward a theoretical model in which ‘one particle at N times is ... equivalent to N
particles at one time’.

Finally, a different version of an ‘operational Choi–Jamiołkowski isomorphism’ was put forward
in reference [6], where it is shown that in any operational theory which (a) is causal, and (b) has
the property that every mixed state has a purification, it is necessarily the case that there exists
an isomorphism between transformations and bipartite states which has the same structural properties
as the Choi–Jamiołkowski isomorphism. This paper is a good example of what I have described as
the study of intratheoretic causal structure, but the structure proposed is quite different to the one
I have suggested here. First, I have taken the ‘operational Choi–Jamiołkowski isomorphism’ to be
fundamental and derived other features of quantum mechanics from it, whereas in reference [6] the
operational Choi–Jamiołkowski is derived from other features of the theory, so the intratheoretic causal
structure is in fact precisely reversed. Second, I have specifically avoided using the concept of state in
my formulation of the operational Choi–Jamiołkowski isomorphism and instead derived properties of
the state from the isomorphism together with constraints on possible correlations, whereas in reference
[6] one of the axioms from which the rest of quantum mehcanics is derived is ‘every mixed state has
a purification’, so in this approach it seems natural to take the state as a fundamental object and not
an emergent feature.

4. Preliminaries

4.1. Operational Theories

In attempting to understand some of the special features of quantum mechanics, it is often
helpful to make comparisons between quantum theory and other possible theories. In this context it
is common to employ the language of generalized probabilistic theories, where theories are defined
entirely in terms of preparation procedures and measurements, eschewing abstract mathematical
constructions. This has been a very active area of study in recent years, with many interesting results
emerging to show how quantum mechanics relates to the broader field of possible operational theories.
For example, it was shown that quantum mechanics is not the maximally non-local theory without
signalling [10]: There exists a gap between the numerical bound on the set of non-local correlations
which can be produced in a theory limited only by no-signalling, and the corresponding ‘Tsirelson’
bound on the set of non-local correlations which can be produced in quantum theory, and much effort
has gone into trying to explain this difference (see for example refs [11,40–42]).

In the framework of operational theories, a given theory is specified as a quadruple (P ,M, T , p)
where P is a set of preparations,M is a set of measurements, T is a set of transformations, and the
function p(Mx|P, T) specifies, for every possible combination of preparation P, transformation T,
and measurement outcome Mx, the probability of obtaining outcome Mx to the measurement M if it is
performed on a system prepared according to P and then subjected to transformation T. [43]

I will sometimes write p(Mx|P) as shorthand for p(Mx|P, I), so p(Mx|P) denotes the probability
of obtaining outcome Mx to the measurement M if it is performed directly on a system prepared
according to P. For the operational theories considered in this paper, I stipulate that performing
a transformation followed by a given measurement is equivalent to simply performing some other
measurement, i.e., for any P, T, {Mx}, there exists some {Nx} such that p(Mx|P, T) = p(Nx|P, I);
for any operational theory where this is not the case, we can trivially make it the case by expanding
the setM.

4.2. Ensemble Preparations

The operational formulation of the Choi–Jamiołkowski isomorphism will make use of the
following concept:
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Definition 1. An ensemble preparation, P, specified by a probability distribution p(i) : I ∈ {1, 2...N} and a set
of preparations {Qi : I ∈ {1, 2...N}}, is a procedure in which an observer draws a number i from {1, 2...N}
with probability distribution p(i), and then performs the corresponding preparation Qi.

In particular, when the operational theory in question is quantum mechanics, every possible
ensemble preparation can be described by a POVM {Mi} and density operator ρ, where p(i) = Tr(ρMi)

and Pi is a preparation which produces the quantum state ρi =
√

ρMi
√

ρ

Tr(Miρ)
[44].

For brevity, I will also use the following definitions:

Definition 2. For any ensemble preparation P for a given system S, any set of channels T2, T3, ...Tn which may
then be applied to S, and any set of measurements M2, M3...Mn which can be applied to the distinct outputs of
these channels, I denote by pP;T2...Tn ;M2...Mn the joint probability distribution over the outcome of the random
choice in the ensemble preparation P and the outcome of the measurements M2, M3...Mn.

Definition 3. For any joint preparation P12...n for a set of systems S1, S2...Sn, and any set of measurements
M1, M2, ...Mn which can be applied separately to systems S1, S2, ...Mn, I denote by pP12...n ;M1...Mn the joint
probability distribution over the outcomes of the measurements M1, M2, ...Mn.

4.3. The Choi–Jamiołkowski Isomorphism

In its original form, the Choi–Jamiołkowski isomorphism is a one-to-one map between
unnormalized quantum states and completely positive (CP) operators. Specifically, for a given
CP operator εB|A mapping a Hilbert space HA to a Hilbert space HB, the corresponding
Choi–Jamiołkowski state ρε is obtained by applying εB|A to half of the maximally entangled state
ρAA′ =

1
d ∑i ∑i′ |i〉A|i〉A′〈i′|A〈i′|A′ , where A′ is a quantum system with the same Hilbert space as A,

and d is the dimension of this Hilbert space: [44,45] (The formula presented here is for the Choi version
of the isomorphism; I will not need to employ the -Jamiołkowski version here.)

ρε
AB = (εB|A ⊗ I)ρAA′

However, in reference [44] the isomorphism is reformulated as a map between conditional density
operators and completely positive trace-preserving (CPTP) operators. This formulation, which I
paraphrase below, is more transparent in its physical interpretation and hence I will take it as the
starting point for the operational approach:

Lemma 1. For any bipartite state ρε
AB, there exists a CPTP map ε and a reduced state ρA = TrB(ρ

ε
AB) such

that given any two POVMs M and O, if MT is obtained by taking the transpose of all the measurement
operators in M with respect to some fixed basis, then when we perform the ensemble preparation described by the
POVM MT and the density operator ρA, then evolve the state according to ε, then perform the measurement
O, the probability that state ρi is prepared and then the measurement M has outcome j is the same as the joint
probability of obtaining outcomes Mi and Oj when the POVM M is performed on system A and the POVM O
is performed on system B for a bipartite system AB in the state ρε

AB.
Conversely, for any pair of a CPTP map and state ρ there exists a bipartite state ρε

AB such that the same
conditions hold, so we have defined an isomorphism between bipartite states and pairs (ρA, εr), where εr denotes
the restriction of the CPTP map ε to the support of ρA.

4.4. Reformulation

Using these concepts, we can define an operational version of the Choi–Jamiołkowski isomorphism.

Definition 4. Operational Choi–Jamiołkowski Isomorphism:
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For any joint preparation P123...n on a set of systems S, S2, ...Sn, there exists a set of channels T2, T3, ...Tn

which may simultaneously be applied to the system S, such that for any set of measurements M, M2, ... Mn

which may be performed on S, S2, ...Sn, there exists an ensemble preparation P for the system S such that the
distribution pP123...n ;M,M2...Mn is the same as the distribution pP;T2...Tn ;M2...Mn .

Conversely, for any set of channels T2, T3, ...Tn which may simultaneously be applied to the system S to
produce a set of systems S2, ...Sn, there exists a joint preparation P123...n for systems S, S2, S3...Sn such that for
any ensemble preparation P which may be performed for system S and any set of measurements M2, M3, ...Mn

which may be performed on the products S2, ...Sn, there exists a measurement M on S such that the distribution
pP123...n ;MM2...Mn is the same as the distribution pP;T2...Tn ;M2,...Mn .

In graphical terms, this says that for any scenario as in Figure 1 there exists a scenario as in
Figure 2 and vice versa; likewise, for any scenario as in Figure 3 there exists a scenario as in Figure 4
and vice versa.

p(3)

p(2)

p(1)

321

Q3Q2Q1

M

T

M2 M3M1

Figure 1. A schematic diagram of an ensemble preparation P with three possible results for the random
number generation step, followed by a transformation T, followed by a measurement M with three
possible outcomes M1, M2, M3. This scenario can be described by the probability distribution pP;T;M.
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M2M1 P12

M1
2 M2

2 M3
2M1

1 M2
1 M3

1

Figure 2. A schematic diagram of a joint preparation P12 on a bipartite state, followed by followed
by measurement M1 with possible outcomes M1

1, M2
1, M3

1 on one system, and measurement M2 with
possible outcomes M1

2 , M2
2 , M3

2 on the other system. This scenario can be described by the probability
distribution pP12;M1,M2 .

p(3)

p(2)

p(1)

321

Q3Q2Q1

T2 T3

M2 M3

M3
2M2

2M1
2 M1

3 M2
3 M3

3

Figure 3. A schematic diagram of an ensemble P with three possible results for the random number
generation step, followed by two channels T2 and T3 each producing a distinct system, followed by
a measurement M2 with three possible outcomes M1

2 , M2
2 , M3

2 on one system, and a measurement M3

with three possible outcomes M1
3, M2

3, M3
3 on the other system. This scenario can be described by the

probability distribution pP;T2,T3;M2,M3 .
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P123

M1 M3M2

M1
1 M2

1 M3
1 M1

3 M2
3 M3

3M1
2 M2

2 M3
2

Figure 4. A schematic diagram of a joint preparation P12 on a bipartite state, followed by followed by
a measurement M1 with possible outcomes M1

1, M2
1, M3

1 on one system, and measurement M2 with
possible outcomes M1

2 , M2
2 , M3

2 on the other system. This scenario can be described by the probability
distribution pP123;M1,M2,M3 .

Relation to Original Choi–Jamiołkowski Isomorphism

This operational definition of the isomorphism differs from the original in several respects. It is of
course to be expected that an operational formulation of the isomorphism will not be exactly equivalent
to the original quantum-mechanical statement of it, since the quantum-mechanical version is heavily
theory-dependent and it is not possible to jettison these theory-dependent elements without losing
some content. I believe nonetheless that this formulation captures much of what is important about
the original Choi–Jamiołkowski isomorphism.

First, it should be noted that the operational formulation does not actually postulate the existence
of an isomorphism: It makes a statement of the form ‘for each x there exists a y, and for each y
there exists an x’, but this does not imply that there is an isomorphism between the sets {x}, {y},
since I do not insist that each distinct x should be mapped to a different y. One could of course make
this further stipulation and it might turn out that further interesting results would arise from the
correspondingly stronger constraint, but it was not necessary to do this for any of the results obtained
here and I thought it best to employ the weakest possible version of the constraint that was still
sufficient to derive these results. I have continued to use the term ‘isomorphism’ for consistency with
the established terminology.

Second, the operational formulation applies to all multipartite states, whereas the
quantum-mechanical Choi–Jamiołkowski isomorphism applies only to bipartite states. This change
has been made in order to make it possible to derive the no-cloning result in a particularly simple
and transparent way. This particular generalization has in fact been considered before: It was used
to demonstrate the connection between no-cloning/no-broadcasting theorems and the monogamy
of entanglement in reference [46]. Furthermore, recall that the motivation for putting forward this
operational Choi–Jamiołkowski isomorphism is the intuition that the quantum isomorphism expresses
a deep fact about the underlying ontology of the theory - channels behave like preparations because
they are in fact the same sort of thing at the level of the underlying ontology. If this is the case, then we
would naturally expect the constraint to apply to all multipartite states rather than just bipartite ones,
since bipartite states are simply a special case of multipartite states.

5. No-Broadcasting Theorem and the Monogamy of Entanglement

5.1. Background

It is a particularly distinctive feature of quantum information that quantum states cannot be
cloned—that is, there is no quantum operation which makes perfect copies of two non-orthogonal
quantum states. In fact, the impossibility of cloning quantum states is a special case of the impossibility
of broadcasting quantum states:

Definition 5. A map M from the Hilbert space H to the the Hilbert space HA ⊗HB broadcasts the set of
states S iff for any state ρ ∈ S, TrA(M(ρ)) = ρ and TrB(M(ρ)) = ρ.
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Definition 6. A universal broadcasting map broadcasts any set of states.

Theorem 1. No-Broadcasting Theorem: A set of quantum states can be broadcasted if and only if they commute
pairwise [47] (A pair of quantum states ρ0, ρ1 are said to commute iff ρ0ρ1 − ρ1ρ2 = 0 [47])

Corollary 1. There is no universal broadcasting map in quantum mechanics

5.2. Operational Formulations

In reference [46], it is shown that Corollary 1 can be derived directly from the monogamy of
entanglement using the Choi–Jamiołkowski isomorphism:

Theorem 2. Supposing the existence of a universal broadcasting map is equivalent to supposing the existence
of a tripartite state of a system A, B, C where both the bipartite reduced state of A, B and the bipartite reduced
state of B, C are pure and maximally entangled.

Here I will derive a similar result, but my derivation will be presented in the context of
general operational theories without presupposing the Hilbert space structure of quantum mechanics.
Therefore before embarking on the proof, I need to provide definitions of broadcasting and monogamy
which are suited to the operational context.

In order to define ‘broadcasting’ we will use the concept of as an ‘operational state’; note, again,
that this concept will be used only to define broadcasting, and will not appear in the definitions of the
features from which no-broadcasting will be derived.

Definition 7. Given two preparation procedures Pa, Pb which appear in an operational theory, I say that these
procedures produce the same operational state iff when a system is prepared using one of these procedures, there is
no subsequent measurement or sequence of measurements which can give us any information about whether the
system was prepared using Pa or Pb.

Definition 8. A transformation T broadcasts the set of operational states S iff when T is applied to a system
whose operational state is ρ ∈ S, together with one or more ancilla systems, the output includes two distinct
systems both having the operational state ρ.

Definition 9. A universal broadcasting map broadcasts any set of operational states.

Defining the relevant monogamy property for an operational context is less straightforward.
In quantum mechanics, the monogamy of entanglement refers to the fact that the amount of
entanglement a quantum system has with a given system limits the amount of entanglement it
can have with any other system - in the most extreme case, a quantum system which is maximally
entangled with a given quantum system cannot be entangled at all with any other quantum system.
However, entanglement is a property of quantum states, usually quantified using state-dependent
measures like the ‘concurrence’ (or ‘tangle’) [48], and these measures do not have a straightforward
physical interpretation, making it difficult to translate them to the framework of operational theories.

Therefore it is more helpful for us to focus on the ‘monogamy of correlations’, which is a property
of certain theories in which there are limits on how strongly a system can be correlated with other
systems. The monogamy of correlations is defined purely in terms of observable statistics, and is
therefore much more easily cast in an operational framework.

In order to facilitate comparison to the quantum case, I will define monogamy for a general
operational theory using the CHSH quantity:

Definition 10. CHSH quantity: For any joint preparation PAB of two systems, and any pair of measurements
M0

A, M1
A which may be performed on system A, and any pair of measurements M0

B, M1
B which may be performed
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on system B, the CHSH quantity BAB(PAB, M0
A, M1

A, M0
B, M1

B) for this combination of preparation and
measurements is defined by the following sum of expectation values:

BAB(PAB, M0
A, M1

A, M0
B, M1

B) :=

〈AB〉PAB ,M0
A ,M0

B
+ 〈AB〉PAB ,M0

A ,M1
B
+ 〈AB〉PAB ,M1

A ,M0
B
− 〈AB〉PAB ,M1

A ,M1
B

(1)

Note that is also possible to define a related CHSH quantity BAB(P0, P1, T, M0
B, M1

B) for the
scenario where an experimenter applies one of two ensemble preparations P0, P1 to a system,
then applies a fixed transformation T, then performs one of two measurements M0

B, M1
B. This quantity

is defined just as in Equation (1), where the result of the measurement MA is replaced with
the result of the probabilistic choice in the ensemble preparation. This definition ensures that if
for some transformation T, some set of preparations PAB, P0, P1 and some set of measurements
M0

1, M1
1, M0

2, M1
2, for any x, y ∈ {0, 1} the distributions pPAB ;Mx

1 My
2

and pPx ;T;My
2

are the same,

then BAB(PAB, M0
A, M1

A, M0
B, M1

B) = BAB(P0, P1, T, M0
B, M1

B).
With a definition for the CHSH quantity in hand, we may now define two types of monogamy

which might be obeyed by an operational theory:

Definition 11. Non-signalling monogamy of correlations: An operational theory obeys no-signalling monogamy
of correlations iff for any joint preparation of three systems SA, SB, SC, for any choice of measurements
M0

A, M1
A on SA, any choice of measurements M0

B, M1
B on SB, and any choice of measurements M0

C, M1
C

on SC, the associated CHSH quantities satisfy:

BAB(PABC, M0
A, M1

A, M0
B, M1

B) +BBC(PABC, M0
B, M1

B, M0
C, M1

C) ≤ 4

It can be shown that this bound is necessarily obeyed by any operational theory which does not
allow signalling (see Definition 15) [12].

Definition 12. Strong monogamy of correlations: An operational theory obeys strong monogamy of correlations
iff for any joint preparation of three systems SA, SB, SC, for any choice of measurements M0

A, M1
A on SA,

any choice of measurements M0
B, M1

B on SB, and any choice of measurements M0
C, M1

C on SC, the associated
CHSH quantities satisfy:

BAB(PABC, M0
A, M1

A, M0
B, M1

B)
2 +BBC(PABC, M0

B, M1
B, M0

C, M1
C)

2 ≤ 8

Strong monogamy of correlations need not be obeyed by all non-signalling operational theories,
but it is obeyed by quantum mechanics [49].

5.3. Bell Nonlocality

We will also require the notion of Bell nonlocality, which is again defined by analogy with the
quantum case:

Definition 13. An operational theory exhibits Bell nonlocality iff there exists at least one joint preparation
PAB for two systems SA and SB, such that for some pair of measurements M0

A, M1
A on SA and some pair of

measurements M0
B, M1

B on SB, the CHSH quantity satisfies:

BAB(PAB, M0
A, M1

A, M0
B, M1

B) > 2
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5.4. Theorem

Using these concepts, we have the following theorem (see Appendix A.1 for the proof).

Theorem 3. In an operational theory which obeys the operational Choi–Jamiolkowksi isomorphism and exhibits
Bell nonlocality, the existence of a universal broadcasting map implies that the theory violates strong monogamy
of correlations

Note that if we impose the ontological Choi–Jamiołkowski isomorphism as a fundamental
constraint on an operational theory, it follows by modus tollens that the strong monogamy of
correlations together with the existence of Bell nonlocality implies the absence of broadcasting,
as advertised in the table above.

5.5. Quantum Interference

The results of Section 5.4 may also be used to derive the existence of quantum interference from
the monogamy of correlations together with the existence of Bell non-locality.

To see this, let us limit ourselves to considering GPTs whose observables have the algebraic
structure of the self-adjoint operators in a C∗ algebra. Not all GPTs meet this criterion (See reference
[50] for a discussion of the general conditions under which a theory can be represented as a C∗

algebra), but nonetheless it is a reasonable heuristic framework since a large class of important GPTs,
including classical mechanics and quantum mechanics, can indeed be thus represented. Then observe
that for any theory represented as a C∗-algebra, it can be shown that if the C∗ algebra is commutative
then the theory has a univeral broadcasting map [13,51]. Thus if a GPT does not have a universal
broadcasting map, any C∗ algebra that represents it must be non-commutative. Finally, note that
theories represented by commutative C∗ algebras are classical phase space theories, whereas theories
represented by non-commutative C∗ algebras have observables which cannot be simultaneously
measured and hence exhibit superposition and interference [51].

Thus, if we limit ourselves to GPTs which have the algebraic structure of the self-adjoint operators
in a C∗ algebra and which obey the operational Choi–Jamiołkowski isomorphism, it follows from
Theorem 3 that any GPT which exhibits strong monogamy of correlations and Bell non-locality must
also exhibit superposition and interference. This means that superposition and interference need not
be regarded as properties of the quantum state - with the help of the operational Choi–Jamiołkowski
isomorphism they can be derived directly from properties of non-local correlations, with no need to
appeal to a concept of state at all.

6. Preparation Contextuality and No-Signalling

6.1. Background

One of the most puzzling feature of quantum theory is the fact that it is contextual: That is, it is
not possible to interpret the outcomes of quantum-mechanical measurements as if they simply reveal
the pre-existing value of some property of the system being measured.

The original formulation of contextuality [52] tied the concept of contextuality to the concept
of determinism, but the notion was subsequently generalized by Spekkens [43]. Spekkens’ form of
contextuality is most easily defined within the ontological models framework, where one supposes
that every system has a single real ‘ontic state’, which determines the probabilities for the outcomes
of any measurement on that system (The use of this faramework does not necessarily imply the
endorsement of a description of quantum reality in terms of underlying states; the ontological models
approach could simply be regarded as a helpful language in which we may express mathematical facts
about the structure of quantum theory, such as its contextual character.). An ontological model thus
consists of a space Λ of ontic states λ, a set of probability distributions µP(λ) giving the probability
that the system ends up in the state λ when we perform the preparation procedure P, a set of response
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functions ξM,X(λ) giving the probability that we obtain outcome Mx when we perform measurement
M on a system whose ontic state is λ, and a set of column-stochastic matrices TO representing the
way in which the ontic state is transformed when some operation O is applied to the system. A valid
ontological model must satisfy the following positivity and normalization conditions:

1. ∀P, λ µP(λ) ∈ [0, 1]
2. ∀P ∑λ µP(λ) = 1
3. ∀M, X ~ξM,X(λ) ∈ [0, 1]
4. ∀M ∑X ~ξM,X(λ) = 1
5. ∀O T0 is a column-stochastic matrix.

An ontological model is preparation contextual if it does not represent every quantum state
by a unique probability distribution µ(λ); transformation contextual iff it does not represent every
possible quantum operation O by a unique transformation matrix TO; and measurement contextual
if it does not represent every possible quantum measurement element Mx by a unique set of
response functions ξM,X(λ). Spekkens proved [43] that any ontological model of quantum mechanics
which reproduces all the correct measurement statistics must exhibit preparation and transformation
contextuality, but examples such as the Beltrametti-Bugajski model [53] show that this is not true for
measurement contextuality.

6.2. Operational Formulations

I now generalize the definition of preparation contextuality to the framework of operational
theories. (Similar generalizations can be made for measurement and transformation contextuality,
but I will not need these concepts here).

Definition 14. We say that an operational theory is preparation contextual iff it is not possible to represent
the theory by a valid ontological model in which every operational state is represented by a unique probability
distribution over ontic states.

I will also employ a definition of the no-signalling principle suited for an operational framework.
This generalization is a straightforward one, since it is just the operational version of the no-signalling
principle as it is used in the context of relativistic cryptography [54]:

Definition 15. Operational no-signalling principle: In a process involving a set of non-communicating devices
{Di} : I ∈ {1 . . . N} such that device Di accepts an input variable Ni and produces an output variable Oi, let J
be any subset of {1 . . . N}, let OJ be the set of variables {Oj : j ∈ J}, let NJ be the set of variables {Nj : j ∈ J};
then if the inputs {Ni} are uncorrelated, the outcomes satisfy p(OJ |N1, . . . , Nn, ) = p(OJ |NJ).

6.3. Theorem

Thus we have the following theorem (see Appendix A.1 for the proof).

Theorem 4. Given an operational theory which obeys the operational Choi–Jamiołkowski isomorphism and the
no-signalling principle, if the theory is preparation non-contextual, it does not exhibit Bell nonlocality.

Note that if we impose the ontological Choi–Jamiołkowski isomorphism as a fundamental
constraint on an operational theory, it follows by modus tollens that if the theory exhibits Bell
nonlocality but obeys the no-signalling principle, it must be preparation contextual; that is,
preparation contextuality is a necessary feature of any such operational theory describing a world
which is non-local but also non-signalling.
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7. Uncertainty Relations

7.1. Background

’Heisenberg’s Uncertainty Principle’ is one of the most well-known features of quantum physics,
not least because the fact that there exist incompatible measurements whose results cannot be
simultaneously predicted with certainty seems strongly in conflict with our classical intuitions.
This provides a clear imperative to seek an explanation for the existence of such apparently arbitrary
limitations on the properties that quantum systems can possess.

To be more precise, there are in fact a number of different uncertainty relations which characterize
tradeoffs between the precision with which the outcomes of various sets of measurements can be
predicted. Most of these relations were originally formulated in terms of standard deviations and
commutators, but this approach has been criticized on the grounds that the use of commutators
makes the relations state-dependent, which should not be the case given that in quantum mechanics
there always exists a dynamical evolution which transforms any initial pure state into any any
other pure state [55]. Thus more recently there has been a move towards expressing uncertainty
relations as a constraint on the Shannon entropies corresponding to the probability distributions over
outcomes associated with various possible measurements [55–57]. However these entropic uncertainty
relations have their own limitations—in particular, they are not capable of distinguishing between
different possible combinations of outcomes [58]—and therefore in certain cases it is more useful to
consider fine-grained uncertainty relations, which directly constrain particular sets of outcomes of
different measurements.

The derivation of this section is inspired by the work of reference [58], where it is shown that it is
possible to derive the Tsirelson bound from the following fine-grained entropic uncertainty relation,
which applies to any pair of orthogonal two-outcome measurements M and M′ on a two-dimensional
quantum system (such as the binary spin-half observables X and Z):

∀m∀n∀ρ ∈ {0, 1} p(m|M)ρ + p(n|M′)ρ ≤ 1 +
1√
2

(2)

Here, p(m|M)ρ denotes the probability that I obtain outcome m ∈ {0, 1} when I perform
measurement M on a system in quantum state ρ.

In the operational framework, Equation (2) becomes a constraint applying to all preparations
in the operational theory which prepare systems of dimension two, according to the operational
definition of ‘dimension’ which I provide in Section 7.2. I also reverse the argument of reference [58],
in order to derive the uncertainty relation from the Tsirelson bound. I then note that it was shown in
reference [11] that the Tsirelson bound can be derived from the principle of information causality:

Definition 16. Information causality: if Alice and Bob pre-share a set of devices which exhibit nonlocal
correlations, and Alice receives a bit string N0N1...Nn and sends Bob a classical message M of m bits, and Bob
performs a measurement with some setting k and obtains outcome O, then ∑r I(MO : Nr|k = r) > m [11]

Thus, if we take it that information causality is a fundamental constraint on quantum theory,
as suggested in [11], the fact that quantum states obey this particular fine-grained uncertainty relation
in quantum theory may be understood as a consequence of the fundamental constraint. Moreover,
in quantum mechanics, the inequality in Equation (2) is tight (for example, the inequality is saturated
if we choose measurements X, Z and prepare the system to be measured in an eigenstate of 1√

2
(X + Z)

or 1√
2
(X − Z)) and thus argue in this particular case information causality may be understood as

setting the exact limits of quantum uncertainty.
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7.2. Operational Formulations

Since the fine-grained uncertainty relation of Equation (2) applies only for systems of dimension
two, we need an operational way to single out systems of dimension two. To do so, we must first
add some structure to the usual framework of operational theories. Thus far, we have assumed that
for a given operational theory (P ,M, T , p) it is possible to perform any preparation followed by any
transformation followed by any measurement, but in a theory with a meaningful concept of dimension
this is not so, because we can only perform measurements which match the dimension of the system I
have prepared. Thus in this section I consider an operational theory to be a collection of subtheories
(P ,M, T , p), such that within any given subtheory it is possible to perform any preparation followed
by any transformation followed by any measurement, but it is not possible to perform a preparation
from one subtheory followed by a transformation or measurement from another subtheory. I then
define the dimension of a sub-theory as follows.

Definition 17. A sub-theory (P ,M, T , p) of an operational theory is d-dimensional iff d is the smallest
number such that there exists a set of d2 − 1 continuous parameters in [0, 1] with the following properties:

1. Specifying the values of all d2 − 1 parameters for any preparation P ∈ P fully determines the probabilities
p(Mx|P) for every outcome Mx of every measurement M inM.

2. For every possible set of values of the d2 − 1 parameters, there exists a preparation P ∈ P described by
those parameters.

Obviously, the choice to associate d dimensions with d2 − 1 parameters is inspired by quantum
theory: A d-dimensional quantum state is described by a set of d complex parameters, or d2 continuous
real parameters, minus 1 to account for normalization. However, this particular mapping is a naming
convention only - I could equally well have chosen to say that a subtheory described by a set of d
parameters is d-dimensional, which might have seemed the natural choice if it were not for the example
of quantum theory. Therefore this definition does not take for granted any particular structure for the
state space of the subtheory, other than the continuity implied by the second property.

The fine-grained uncertainty relation also applies only for pairs of orthogonal measurements,
and therefore we require a notion of ‘orthogonal measurement’ for the operational framework:

Definition 18. In some subtheory (P ,M, T , p) of an operational theory, two measurements M1, M2 ∈ M are
orthogonal iff given an arbitrary unknown preparation P, the set of probabilities {p(Mx

1 |P)} and {p(Mx
2 |P)}

are independent.

This definition implies that given a preparation P, and any set of q orthogonal measurements
{Mi} each having two outcomes M0

i , M1
i , we need q independent parameters to specify the set of

q probabilities p(M0
i |Mi, P). Therefore I can set q out of the d2 − 1 parameters needed to specify

the full set of outcome probabilities to be equal to the q probabilities p(M0
i |Mi, P). In particular,

for a two-dimensional system, given any set of three orthogonal measurements {M1, M2, M3} each
having two outcomes, specifying the three probabilities p(M0

1|M1, P), p(M0
2|M2, P), p(M0

3|M3, P) is
sufficient to fix the probabilities for any other measurement which may be performed after the
preparation P.

7.3. Theorem

Using these concepts, we have the following theorem (see Appendix A.3 for the proof).

Theorem 5. If an operational theory obeys the operational Choi–Jamiołkowski isomorphism and information
causality, then given any subtheory (P ,M, T , p) of dimension two, for any preparation P ∈ P and any
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pair of orthogonal measurements M1, M2 ∈ M, and any two outcomes Mm
1 , Mn

2 of the measurements
M1, M2, we must have:

p(Mm
1 |M) + p(Mn

2 |M′) ≤ 1 +
1√
2

8. Discussion

I have suggested that the study of intratheoretic causal structures offers us a way of rethinking the
structural assumptions built into our theories in a way that is independent of any particular ontology.
In particular, I have focused here on a particularly stubborn ontological assumption which is deeply
woven into both classical and quantum physics: The idea that information about the past must be
carried into the future by a mediating state.

While it is still very common to assume that temporal correlations must be mediated, we do not
usually suppose that the non-local multipartite correlations in quantum mechanics are mediated by
an intervening process, not least because any such process would either have to travel faster than light
or go backwards in time. Thus by considering an intratheoretic causal structure for quantum mechanics
in which the equivalence between multipartite correlations and temporal correlations is treated as
fundamental, we are moving towards a picture of quantum mechanics where temporal correlations are
not mediated. Therefore the structure set up here offers a way of thinking about quantum mechanics
where neither the quantum state nor any other sort of state is a fundamental object.

In particular, I have demonstrated that several of the characteristic properties of the quantum
state can in fact be derived from features of non-local correlations without appeal to any concept of
state. For example, Theorem 4 shows that using the operational Choi–Jamiołkowski isomorphism,
the fact that quantum states exhibit preparation contextuality can be derived from the fact that we live
in a world which is non-local but non-signalling. Intuitions will vary, of course, but to me non-locality
and no-signalling seem like very fundamental features of reality, and therefore I find it plausible to
regard preparation contextuality as a consequence of non-locality and no-signalling. Thus preparation
contextuality need not be regarded as a fundamental property of some entity known as the quantum
state—it can be thought of as a behaviour that is in fact caused by very general facts about space and
time together with the equivalence between multipartite correlations and temporal correlations.

The same goes for the other derivations presented here. There is no need to postulate a quantum
state to be the bearer of the properties of ‘no-broadcasting’, ’interference’, and ‘obeying uncertainty
relations’, since these features can be regarded as consequences of constraints on non-local correlations.
Thus these derivations point towards a picture of quantum mechanics where the state is not
a fundamental entity but instead emerges from deeper properties of the theory. There do exist
several specific proposals for the ontology of quantum mechanics which eliminate states from the
picture—particularly those approaches where the ontology consists entirely of events, such as the
GRW flash ontology [59,60] or Kent’s solution to the Lorentzian quantum reality problem [61]—but by
couching the discussion in terms of intratheoretic causal structure it is possible to understand some
general consequences of the elimination of states without committing to specific ontological details.

I will finish by reinforcing that the possibility of a stateless ontology for quantum mechanics has
significant consequences for physics outside quantum foundations, because the attitude that we take
toward the quantum state has a strong influence on the way we are likely to proceed when working
on extensions of the theory, such as quantum field theory and quantum gravity. If we think of the
quantum state as the fundamental object of quantum theory, it is natural to deal with gravity by
writing down quantum states of spacetime - that is, by ’quantizing gravity’, as is done in most of the
mainstream approaches to quantum gravity, including covariant quantum gravity, canonical quantum
gravity and string theory. On the other hand, if we think that the quantum state is actually just
a codification of relations between events or some other ontological substratum, it seems more natural
to regard spacetime itself as emerging from the underlying substratrum, as in causal set theory.
Which direction we take will depend to a large extent on the beliefs we hold, implicitly or explicitly,
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about the underlying intratheoretic causal structure of quantum mechanics, and so exploring new
structures where states are not fundamental may shed new light on outstanding problems in quantum
field theory and quantum gravity.
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Appendix A

Appendix A.1. Proof of Theorem 3

Proof. Consider any operational theory (P ,M, T , p) which obeys the operational Choi–Jamiołkowski
isomorphism. Suppose the theory exhibits Bell-nonlocality. Then for some joint preparation PAB and
some pair of measurements M0

A, M1
A on SA and some pair of measurements M0

B, M1
B on SB, the CHSH

quantity satisfies:

BAB(PAB, M0
A, M1

A, M0
B, M1

B) > 2

From the operational Choi–Jamiołkowski isomorphism, there exist ensemble preparations
P0, P1 and a transformation T which give rise to the same probability distributions, and therefore

BAB(P0, P1, T, M0
B, M1

B) > 2

By stipulation (recall Section 4.1), I can always combine the transformation T with the
measurements P0, P1 to produce new measurements N0, N1, thus there exist measurements
N0, N1 such that BAB(P0, P1, I, N0, N1) > 2.

Now suppose the theory (P ,M, T , p) has a universal broadcasting map, i.e., a channel which
takes any given operational state to two perfect copies of the same operational state. This channel may
be represented as two copies of the identity transformation I acting on the input state.

Let us apply this universal broadcasting map to the result of an ensemble preparation P,
producing two copies of the input state on two systems SB, SC. I may then apply measurements
NB, NC, giving rise to a joint distribution pP;I;NB over the outcome of the ensemble preparation and
the outcome of the measurement NB, and another joint distribution pP;I;NC over the outcome of the
ensemble preparation and the outcome of the measurement NC, and hence a joint distribution pP;NB ,NC

over the outcome of the ensemble preparation and the two outcomes of the two measurements.
From the operational Choi–Jamiołkowski isomorphism, it follows that there exists a joint

preparation PABC of three systems SA, SB, SC and a measurement NA on system SA such that if I
perform PABC and then the measurements NA, NB, NC on the three systems respectively, the joint
distribution pPABC ;NA NB NC over the measurement outcomes is identical to the distribution pP;NB ,NC .

Thus consider applying the universal broadcasting map to either of the two ensemble preparations
P0, P1 and then choosing from the set of measurements N0, N1 for the systems SB, SC. I have that:

BAB(P0, P1, I, N0, N1) > 2

BAC(P0, P1, I, N0, N1) > 2

It follows that there exists a preparation P′ABC such that if I perform P′ABC and then choose from
the measurements N0, N1 for the systems SA, SB, SC, I have:

BAB(P′ABC, N0
A, N1

A, N0
B, N1

B) > 2

BAC(P′ABC, I, N0
A, N1

A, N0
C, N1

C) > 2
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Therefore:

BAB(P′ABC, N0
A, N1

A, N0, N1)2 +BAC(P′ABC, I, N0
A, N1

A, N0, N1)2 > 8

Thus the monogamy of correlations is necessarily violated in the theory (P ,M, T , p).

Appendix A.2. Proof of Theorem 4

Proof. Consider an operational theory (P ,M, T , p) which obeys the operational Choi–Jamiołkowski
isomorphism and the no-signalling principle.

Within such a theory, suppose we perform a joint preparation PAB for two distinct systems
A, B, then perform one measurement from a set of n measurements {Mi} on system A, and a fixed
measurement Fb on system B.

It follows from the operational Choi–Jamiołkowski isomorphism that there exists a set of n
ensemble preparations {Pi} on a system S and a channel T such that if we perform the preparation Pi
on S, then input S to the channel T, then perform measurement Fb on the product of the channel, each of
the resulting distributions pPi ;T;Fb is identical to the corresponding distribution pPAB ;Mi Fb . Thus each Pi
is associated with a probability distribution pi(x) such that pi(x) = pA(Mx

i |Mi, PAB).
Since the theory is no-signalling, there is no choice of measurement Fb on system B which gives

any information about which measurement Mi was performed on system A in the former scenario,
and therefore there is no choice of measurement Fb which gives any information about which ensemble
preparation Pi was chosen in the latter scenario. This means that any one of the preparation procedures
in {Pi}, followed by the transformation TAB, gives rise to the same operational state, which I denote
by χ. I will henceforth denote by P′i the composite preparation procedure obtained by performing the
procedure Pi followed by the transformation TAB.

Let us now write down an ontological model for this operational theory.
Each ensemble preparation Pi is associated with a set of preparations Px

i each being chosen with
probability pi(x). Each preparation Px

i is associated with a probability distribution µ(λ|Px
i ) in the

ontological model, and the result of performing a preparation Pi
x and then applying the transformation

T is also associated with a probability distribution, µ(λ|T, Pi
x) (We need not assume that there exists

a unique column-stochastic matrix in the ontological model which represents the transformation
T—if there is more than one such transformation, we simply use any one which produces the correct
statistics for this particular scenario–and therefore we need not assume that the theory is transformation
contextual.). Thus each of the ensemble preparations Pi ∈ {Pi} gives rise to a representation of χ as
a probability distribution over ontic states:

p(λ|χ) = ∑
x

pi(x)µ(λ|T, Pi
x)

= ∑
x

pA(Mx
i |Mi, PAB)µ(λ|T, Pi

x)

For any Mi ∈ {Mi}, the joint probability distribution pPAB ;Mi ;Fb over the outcomes of the
measurements on the systems A, B after the preparation PAB can be written as follows (Note that we
need not assume that there exists a unique set of response functions p(Fy

b |Fb, λ) for the measurement
Fb—if there is more than one such response function, we can simply use any one which produces
the correct statistics for this particular scenario—and therefore we need not assume that the theory is
measurement non-contextual.):

p
(

Mx
i , Fy

b

)
PAB ,Mi ,Fb

= pA (
Mx

i

∣∣Mi, PAB
)

p
(

Fy
b

∣∣∣Mx
i , Mi, Fb, PAB

)
= pA (

Mx
i

∣∣Mi, PAB
)

p
(

Fy
b

∣∣∣T, Pi
x

)
= pA (

Mx
i

∣∣Mi, PAB
)

∑
λ

ξ
(

Fy
b

∣∣∣Fb, λ
)

p
(
λ
∣∣T, Pi

x
) (A1)
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Now suppose the operational theory (P ,M, T , p) is not preparation contextual. This means that
it is possible to choose the ontological model in such a way that all representations of χ are identical,
so there exists a unique probability distribution p(λ) such that for any i ∈ {1, 2, ...n} I have:

∑
x

pA(Mx
i |Mi, PAB)p(λ|T, Pi

x) = p(λ)

Now for any i ∈ {1, 2...n} let us define:

ξ(Mx
i |Mi, λ) :=

pA(Mx
i |Mi, PAB)p(λ|T, Pi

x)

p(λ)

Note that ∀i ∑x ξ(Mx
i |Miλ) = ∑x

pA(Mx
i |Mi ,PAB)p(λ|T,Pi

x)

p(λ) = p(λ)
p(λ) = 1, and since every

ξ(Mx
i |Mi, λ) is nonnegative, it follows that ∀i, x ξ(Mx

i |Mi, λ) ∈ [0, 1]. These are the sufficient
conditions for a function to be a valid response function of an ontological model, so ξ(Mx

c |Ma, λ) is
a valid response function.

The joint probability distribution over the outcomes of the measurements on the systems A, B
after the preparation PAB can then be written as follows:

p(Mx
i , Fy

b )PAB ,Mi ,Fb = ∑
λ

ξ(Fy
b |Fb, λ)ξ(Mx

i |Mi, λ)p(λ) (A1)

Thus any joint probability distributions within the theory (P ,M, T , p) are factorizable, and it is
a well-known result [62] that measurements described by factorizable probability distributions cannot
satisfy BAB > 2, so the theory (P ,M, T , p) cannot exhibit Bell nonlocality.

Appendix A.3. Proof of Theorem 5

Proof. Let M1, M2, M3 ∈ P be a set of three orthogonal measurements for the two-dimensional
subtheory (P ,M, T , p), each having two outcomes which I label by 0, 1.

Let Pa ∈ P be a preparation which maximizes p(0|M1, Pa) + p(0|M2, Pa), with the maximization
performed over all preparations in P . Let us say that p(0|M1, Pa) = i, p(0|M2, Pa) = j and
p(0|M3, Pa) = k Since I can choose p(0|M1, P), p(0|M2, P), p(0|M2, P) to be the set of three parameters
which suffice to fix the measurement outcomes for any other measurement performed after P, and by
definition, for any valid set of values of these parameters, there exists a preparation P ∈ P described
by those parameters, it follows that there exist preparations Pb, Pc, Pd with outcome probabilities
as follows:

Pa Pb Pc Pd
p(0|M1) i 1− i i 1− i
p(0|M2) j 1− j 1− j j
p(0|M3) k k k k

Suppose Alice performs either preparation Pa or Pb, chosen uniformly at random, and then
sends the resulting system to Bob. If Bob then performs the measurement M1, he will obtain the
outcome 0 with probability 1

2 and if Bob then performs the measurement M2, he will obtain the
outcome 0 with probability 1

2 . Likewise, if Alice performs Pc or Pd chosen uniformly at random and
then sends the system to Bob, if Bob performs the measurement M1 Bob will obtain the outcome
0 with probability 1

2 and if Bob then performs the measurement M2, he will obtain the outcome
0 with probability 1

2 . Clearly the probabilities for the outcomes of measurement M3 are also the
same for both decompositions. Since the probabilities p(0|M1, P), p(0|M2, P), p(0|M2, P) suffice to
fix the measurement outcomes for any other measurement performed after P, this implies that
these two probabilistic preparations give rise to the same measurement statistics for any subsequent
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measurements, and hence both decompositions produce the same operational state, which I denote
by χ.

It follows from the operational Choi–Jamiołkowski isomorphism that there exists a preparation
PAB and a measurement S0 such that when S0 is performed on one subsystem A of a bipartite system
AB jointly prepared using preparation PAB with probability 1

2 I obtain outcome 0 and the resulting
operational state of subsystem B is the same as the operational state produced by preparation Pa,
and with probability 1

2 I obtain outcome 1 and the resulting operational state of subsystem B is the
same as the operational state produced by preparation Pb. Likewise, there exists a measurement S1

defined similarly for preparations Pc, Pd.
Now consider a CHSH game in which Alice and Bob are each given input bits c, d and are required

to produce outcomes a, b such that a⊕ b = cd. Alice and Bob may employ the following strategy:

1. Before the start of the game, Alice and Bob perform the preparation PAB, and then Alice takes
subsystem A and Bob takes subsystem B.

2. When Alice is given input c ∈ {0, 1}, she performs measurement Sc and then returns her
measurement outcome.

3. When Bob is given input d ∈ {0, 1}, he performs measurement Md+1 and then returns his
measurement outcome.

If the inputs are chosen uniformly at random, the probability that Alice and Bob win the game
using this strategy is:

1
4 ∑

c,d,a
p(a|c)p(x(acd)|acd)

where p(a|s) the probability that Alice obtains outcome a when she performs measurement s, x(acd)
is defined such that for any a, c, d, a ⊕ x(a, c, d) = cd, and p(q|acd) is the probability that Bob
obtains outcome q when Alice performs measurement Sc and obtains outcome a and Bob performs
measurement Md+1.

S0 and S1 are defined such that ∀a ∀s p(a|s) = 1
2 . Moreover, by the definition of S0, if Alice

performs measurement S0 and obtains outcome 0, the resulting probabilities p(q|0, 0, d) for the
outcomes of Bob’s measurement Md+1 are the same as if Alice were to simply perform preparation
Pa and hand the prepared system over to Bob. That is, p(0|0, 0, 0) = i and p(0|0, 0, 1) = j.
Similar relationships hold for other possible values of a and c, and using the table above, it is
straightforward to obtain:

∀a, c
2

∑
d=1

p(x(a, c, d)|a, c, d) = i + j

Hence the probability that Alice and Bob win the game using this strategy is 1
2 (i + j).

Ex hypothesi the operational theory satisfies information causality. It is known that information
causality implies the Tsirelson bound [11], and the Tsirelson bound implies that the maximum
probability of winning this CHSH game is 1 + 1√

2
; hence i + j ≤ 1 + 1√

2
.

Since we chose Pa to be the preparation which maximizes p(0|M1, Pa) + p(0|M2, Pa), it follows
that for any preparation P, p(0|M1, P) + p(0|M2, P) ≤ 1 + 1√

2
.

Then note that for any m ∈ {0, 1}, n ∈ {0, 1} I can make a similar argument by starting from the
requirement that Pa is the state which maximizes p(m|0) + p(n|1), and hence:
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